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We examine the two types of singular behaviors of ultrashort pulses in a nonlinear medium, pulse steepening if the weak
longitudinal dispersion is normal and collapse if it is anomalous. Connections with analogous behaviors of wave packets of almost
monochromatic waves in strongly dispersive media are discussed.

1. Introduction

The drive to achieve ever higher local intensities with finite
amounts of energy is the main reason that has led to much
interest into the propagation characteristics of ultrashort
pulses whose spectrum is broad, and whose widths are no
more than several wavelengths of light. A second reason is
that they exhibit novel singular behaviors, behaviors which
are worth contrasting with those of “rogue” waves, familiar
from ocean contexts and the “collapses” associated with the
envelopes of almost monochromatic waves associated with
singular solutions of equations of nonlinear Schrödinger
type. A third reason is the ongoing program of attempting to
create suitable conditions under which one might effectively
propagate high intensity short pulses over long distances
through gases such as the atmosphere.

Our aim in this short paper is to provide a unified
mathematical description via a nonlinear partial differen-
tial equation that captures both type of singularity while
avoiding the usual envelope approximations utilized in the
nonlinear optics literature. Many of the ideas and some of
the equation derivations, albeit in different formats, have
appeared already in the literature; for example, in the recent
works of Balakin et al. (BLMS; [1]) which in turn were
informed by results going back to the eighties [2, 3]; the
papers of Alterman and Rauch [4] and Schaffer and Wayne

[5], and the results of Kolesik and Moloney [6]. Indeed,
in many cases the authors appeared to be unaware of each
other’s results. Our goals here are as follows.

We want to show that the series of governing equations
(UPPE, an acronym for unidirectional pulse propagation
equation) derived by Kolesik and Moloney [6] directly from
Maxwell’s equations using a Fourier decomposition of the
electromagnetic fields can be reduced by asymptotic analysis
to an equation for the dominant electric field in which all
wavelength (short, μm) scales have been removed, essentially
by averaging over wavelength scales. We call the reduced
equation RUPPE. In RUPPE, the electric field varies over dis-
tances associated with nonlinearity, diffraction, dispersion,
and attenuation. The Fourier representation is particularly
valuable because it shows clearly the circumstances in
which nonlinearity has long distance cumulative, order one,
effects. It will let us see, for example, how, if the pulse
is broadband, dispersion in the direction of propagation
(longitudinal dispersion) must necessarily be weak. This
contrasts with the situation in which the pulse is almost
monochromatic with a narrowband spectrum, in which case,
with strong dispersion, the propagation equation will be
more of nonlinear Schrödinger type.

We show how, by taking the inverse Fourier transform
of RUPPE, we arrive at the modified Kadomtsev-Petviashvili
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equation (MKPI) of type I which is closely related to the
equation derived in the early eighties by Kuznetsov for
acoustic waves [2], for which equation with cubic nonlin-
earity, various “blowup” results were found by Turitsyn and
Falkovich [3], and which is the main equation used by BLMS
in their analysis. If E0(x, y, z, τ = t−(n0/c)z) is the dominant
(either linearly or azimuthally polarized) component of the
electric field, then the MKPI equation in nondimensional
form is

∂

∂τ

(
∂E0

∂z
+
z0E

2
0

zNL

∂E0
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− z0s

zdisp

∂3E0

∂τ3
− z0

zatt

∂2E0

∂τ2

)

= z0

zdiff
δ2E0.

(1)

Equation (1) shows how the right going Riemann invariant
E0 of the underlying wave equation is deformed over
long distances by a combination of nonlinear, diffraction,
dispersion, and attenuation influences.

In (1), zNL, zdisp, zatt, and zdiff are the nonlinear, disper-
sion, attenuation, and diffraction distances defined by

zNL = n0ct0
3πχ(3)e2

0
, zdisp = 2n0ct0

|B| ,

zatt = 2n0ct0
A

, zdiff = 2n0L2

ct0
,

(2)

where s = sgn B and χ(3)e2
0 = (8/3)n0n2I is related to

the nondimensional pulse intensity, n0,n2 the linear and
nonlinear refractive indices, t0 pulse width, L beam width
and z0 is the shortest distance (usually zNL or zdiff over
which E0 changes. The nondimensional coefficients B and
A describe how the real and imaginary parts of the linear
susceptibility deviate from constant values. The operator δ2

is the Laplacian ∂2/∂x2 + ∂2/∂y2 = ∂2/∂r2 + (1/r)(∂/∂r) if
the field is asymmetric and linearly polarized and ∂2/∂r2 +
(1/r)(∂/∂r)− 1/r2 for the azimuthally polarized case.

We explore singular behavior in (1). By singular behav-
ior, we mean that there will be a finite time singularity,
namely unbounded growth tending to infinity in a finite
time, in either the amplitude or the slope of the electric
field. Dispersion, as indeed does dissipation, regularizes the
singularity in that either the amplitude or slope becomes
very large before the unbounded growth gets arrested. For
example, if the singularity is in the slope, the pulse steepens
until the dispersion or dissipation terms become sufficiently
large so as to bring about a balance between the nonlinear
steepening effect, manifested by the time derivative of the
electric field cubed and the dissipation or dispersion. If the
singularity is in the amplitude, then the arrest is a bit more
subtle and involves the property that in two transverse space
dimensions the collapsing pulse carries exactly the critical
amount of energy (power) required to affect collapse. Any
loss, through dissipation or radiative dispersion will have
the effect of bringing the power below critical, and then the
collapse slowly radiates away in waves. The point of the paper
is to emphasize that because dispersion and dissipation are
small when applied to the original pulse shape, the pulse

will evolve a long way towards the collapse state before being
arrested, as indeed our numerics show.

We find that there are two distinct types of singular
behavior exhibited by solutions of (1). If the dispersion is
normal, namely B > 0, then the evolution of the electric
field is dominated by the first two terms. The leading part
of the pulse (it is the rear part if viewed from a fixed
frame of reference) steepens until either dispersion causes
the steepening front to form oscillations, or diffusion causes
the front to develop a shock. This is the case studied
by BLMS [1]. We make a very important point. Unlike
KPI, namely where the nonlinearity is quadratic, the MKPI
whose behavior in the longitudinal direction satisfies the
modified Korteweg-de Vries equation, the difference in signs
of nonlinearity and dispersion is crucial. For B > 0, the
oscillations, which the steepening front produces, never
become solitons. They are purely radiative and eventually
disperse. Indeed what we show is that they behave rather
like normal dispersion does in arresting the collapse of the
two dimensional nonlinear Schrödinger equation discussed
by us in the mid nineties [7]. Thus, the energy of the
oscillating waves spreads into the transverse direction by
four-wave resonant interactions. This behavior is clearly
seen in our simulations and was extensively reported in
the simulations of Kolesik and Moloney [6]. On the other
hand, if dispersion is anomalous, B < 0, then solitons do
form and destabilize into local collapses with an amplitude
singularity when diffractive effects become important. By
diffractive effects, we are referring to the dispersion brought
about by the diffraction term which causes pulses whose
carrier wavevector is not quite along the z axis to spread. We
show that each collapse follows a self-similar form given by
E ∼ (Z − z)−1/3, r ∼ (Z − z)2/3, and τ − τ∗(z) ∼ (Z − z)1/3,
where Z is the blowup point and τ∗(z) follows the maximum
of E0.

We also point out that there is a distinct difference
in collapse behavior between the linearly and azimuthally
polarized cases but we leave it to a later paper [8] to report
details.

Finally, we briefly describe how, in the case of strong
longitudinal dispersion, a much weaker nonlinearity, and
an almost monochromatic rather than broadband pulse, (1)
takes on nonlinear Schrödinger form with normal (B > 0)
and anomalous (B < 0) longitudinal dispersion. In that
case, the behavior of the electric field envelope follows that
discussed by Luther et al. [7].

2. Derivation of RUPPE and MKPI

To make the presentation as simple as possible and to
postpone approximations until absolutely necessary, we start

with an azimuthally polarized field E = θ̂E(r, z, t), where

θ̂ is the unit vector in the angular direction and z is the
direction of propagation. The result we obtain for a linearly

polarized wave �E = êE0(x, y, z, t) + · · · will be almost the
same except that it is necessary to include a small electric field
component in the propagation direction z in order to satisfy
the divergence free condition. In addition, the diffraction
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operator will be the Laplacian ∂2/∂r2 + (1/r)(∂/∂r) rather
than δ2 = ∂2/∂r2 + (1/r)(∂/∂r)− 1/r2.

We take as constitutive relations �B = μ�H and

�D = ε0θ̂

(
E +

∫ t

−∞
χ(t − τ)E(τ)dτ +

∫ t

−∞
χ(3)

×(t−τ1, t−τ2, t−τ3)E(τ1)E(τ2)E(τ3)dτ1dτ2dτ3

)
.

(3)

We write the Fourier transforms of E(r, z, t), the linear
and nonlinear susceptibility χ(t) and χ(3)(t1, t2, t3) to be
e(r, z,ω) = ∫

−∞ E(r, z, t)eiωtdt, χ̂(ω) and χ̂(3)(ω1,ω2,ω3),

respectively. From Maxwell’s equation ∇ × ∇ × �E =
μ(∂2�D/∂t2) and με0 = 1/c2, we obtain the exact relation

∂2e

∂z2
+ δ2e +

ω2

c2

(
1 + χ̂(ω)

)
e

= −2πω2

c2

∫
χ(3)(ω1,ω2,ω3)e(ω1)e(ω2)e(ω3)

× δ(ω − ω1 − ω2 − ω3)dω1dω2dω3,

(4)

where δ(x) is the Dirac delta function. Anticipating that we
will be taking nonlinearity and diffraction to be small when
compared to the linear response (n2(ω)ω2/c2)e ,n2(ω) = 1 +
χ̂(ω), we write e(r, z,ω) as the sum of forward and backward
fields. Let

e(r, z,ω) = A(r, z,ω)eik0(ω)z + B(r, z,ω)e−ik0(ω)z, (5)

where k2
0(ω) = (ω2/c2)(1 + χ̂r(ω)), χ̂r(ω) the real part of χ̂(ω)

and make the free choice of a relation between A and B to be
(∂A/∂z)eik0(ω)z +(∂B/∂z)e−ik0(ω)z = 0 (cf. method of variation
of parameters). Then substituting (5) into (4), and adding
and subtracting the free choice, we obtain the exact relations:

2ik0(ω)
∂A

∂z
= − iω2

c2
χ̂i(ω)A− iω2

c2
χ̂i(ω)Be−2ik0(ω)z

− δ2A− δ2Be−2ik0(ω)z − 2π
c2

ω2Pe−ik0(ω)z,

(6)

where

P =
∫
χ(3)(ω1,ω2,ω3)δ(ω − ω1 − ω2 − ω3)dω1dω2dω3

×
(
A(ω1)e−ik0(ω1)z + B(ω1)e−ik0(ω1)z

)

× (ω1 −→ ω2)(ω1 −→ ω3),

(7)

and an equivalent equation for ∂B/∂z. These equations are
exact. There have been no approximations thus far. Note that
the parameters A and B introduced here and discussed in the
following are different from those introduced in (2).

We will now ask how can we approximate solutions to
(6), and (7) if their right hand sides are small? Suppose we
set A = A0 + A1 + · · · ,B = B0 + B1 + · · · . To leading

order, A0 and B0 will be independent of z but, in order to
remove secular terms (terms growing as z) in the iterates
A1,B1, . . ., we will have to choose their slow variations ∂A0/∂z
and ∂B0/∂z accordingly. So the first task is to identify the
secular terms in A1 and B1. The equation for A1 is

2ik0(ω)
∂A1

∂z
= − iω2

c2
χ̂i(ω)A0 − iω2

c2
χ̂i(ω)B0e

−2ik0(ω)z

− δ2A0 − δ2B0e
−2ik0(ω)z + P0e

−ik0(ω)z,

(8)

where P0 is P given in (7) with A replaced by A0. Since, to
leading order, A0 and B0 are z independent, it is clear that
by direct integration from z = 0 to z = z, the first and
third terms on the right hand side of (8) are secular whereas
the second and fourth, each of whose fast dependence
is ((e−ik0(ω)z − 1)/ik0(ω)), are not. The more interesting
discussion involves the nonlinear term one member of
which, when integrated from 0 to z, is∫

χ(3)(ω1,ω2,ω3)A0(ω1)A0(ω2)A0(ω3)

×
(

ei(k0(ω1)+k0(ω2)+k0(ω3)−k0(ω))z − 1
i(k0(ω1) + k0(ω2) + k0(ω3)− k0(ω))

)

× δ(ω − ω1 − ω2 − ω3)dω1dω2dω3.

(9)

In order to assess whether this term gives rise to
secular behavior, we must ask what is its limiting behav-
ior as z becomes large. To answer this, we require a
little mathematics. We state two important results. If
f (x) is an ordinary (measurable) function which is abso-
lutely integrable and h(x) is not identically zero over a
finite interval in the domain of integration, we know
that limz→∞

∫
f (x) exp(ih(x)z)dx = 0 (the Riemann-

Lebesgue lemma) and that limz→∞
∫
f (x)Δ(h(x))dx =∫

π sgn zδ(h(x)) + iP(1/h(x)) f (x)dx where Δ(h) = (eihz −
1)/ih and P denotes the Cauchy Principal Value. This
means that as long as the amplitudes A0(ω),B0(ω) are
ordinary (as opposed to, say, Dirac delta) functions and
are absolutely integrable, the nonlinear terms will give a
bounded contribution to A1 and be therefore nonsecular
unless h(ω1,ω2,ω3) = k0(ω1) + k0(ω2) + k0(ω3) − k0(ω)
is identically zero over finite regions of ω2,ω3 space (note:
ω1 = ω − ω2 − ω3). Namely, the nonlinear term will give no
cumulative long distance effect unless h is identically zero.
This occurs only when there is no (at least to leading order)
longitudinal dispersion.

This realization makes the propagation of narrow pulses
with broadband spectrum for which the Fourier transforms
are smooth very different from that of almost monochro-
matic pulses for which the Fourier amplitudes A0(ω) and
B0(ω) are close to Dirac delta functions centered on some
finite set of carrier frequencies. In the latter case, the
nonlinear term can be secular either because of modal inter-
actions leading to a nonlinear Schrödinger type nonlinearity
or resonant interactions leading to coupled wave packets.
Namely, if the amplitudesA0(ω) can be Dirac delta functions,
the integral (9) becomes a sum and Δ(h) will be equal to z at
any points in ω1,ω2,ω3 space with ω1 +ω2 +ω3 = ω where the
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resonant condition h ≡ k0(ω1) +k0(ω2) +k0(ω3)−k0(ω) = 0
holds. We return to this situation at the end of this section.
For now, we focus on the case of narrow pulses for which the
Fourier transforms e(r, z,ω) are smooth in ω and for which
(9) is only secular when k0(ω1) + k0(ω2) + k0(ω3) − k0(ω)
is (almost) identically zero; namely, when k0(ω) = n0(ω/c)

for constant n0 =
√

1 + χ̂r . It should now also be clear that
any of the other products in P0 such as those involving
A0(ω1)A0(ω2)B0(ω3) with fast z behavior Δ(k0(ω1)+k0(ω2)−
k0(ω3) − k0(ω)) never give rise to secular terms. Thus, the
interaction between right and left going pulses is small and
does not affect their deformations.

We now return to (4) and write χ̂(ω) as χ̂(ω) − χ̂(0) +
χ̂(0) and assume that χ̂(ω) − χ̂(0) is small compared to
χ̂(0). This small difference will give rise to weak dispersion
and attenuation. We recall that since E(r, z, t) and D(r, z, t)
are real, χ̂(−ω) = χ̂∗(ω) so that χ̂r(ω) is even in ω and
χ̂i(ω) is odd in ω. We will then obtain an equation (6) for

A(r, z,ω) in which k0(ω) = n0(ω/c),n0 =
√

1 + χ̂r(0) and the
susceptibility deviation from χ̂(0) will manifest itself as the
term ((χ̂(0) − χ̂(ω))/c2)ω2A on the right hand side of (6).
When we now repeat the analysis, we find the only secular
terms arising in A1 are those for which all fast dependence
on z have been removed. To suppress these secular terms in
A1, we allow A0 to be slowly varying. We find the equation
we call RUPPE,

2in0
ω

c

∂A0

∂z

= χ̂(0)− χ̂(ω)

c2
ω2A0 − δ2A0

− 2πω2

c2

∫
χ(3)(ω1,ω2,ω3)A0(ω1)A0(ω2)A0(ω3)

× δ(ω − ω1 − ω2 − ω3)dω1dω2dω3.

(10)

It says, in effect, that the evolution of the right going Fourier
amplitude of the electric field in frequency space travels
without deformation on distances of the order of many
wavelengths but is distorted over much longer distances by
a combination of dispersion and attenuation, diffraction and
nonlinearity. It has several very important properties.

2.1. Analogue of the Turitsyn-Falkovich Theorem. In its
simplest form, we take χ̂(3)(ω1,ω2,ω3) constant and ignore
(χ̂(0) − χ̂(ω)). We define the flux, variance, current, and
Hamiltonian to be

(a) F(z) =
∫∞
z
A0A

∗
0 rdrdω,

(b) V(z) =
∫∞

0
r2A0A

∗
0 rdrdω,

(c) C(z) = 2i
∫∞

0

r

ω

(
A0

∂A∗0
∂r

− A∗0
∂A0

∂r

)
rdrdω,

(d) H(z) = δ
∫
rdrdω

1
ω2

(
∂A0

∂r
+

1
r
A0

)(
∂A∗0
∂r

+
1
r
A∗0

)

− 8π
c2

∫
rdrdωdω1dω2dω3

×A0(ω)A0(ω1)A0(ω2)A0(ω3)

× δ(ω+ω1 +ω2 +ω3),

(11)

where A0(r, z,ω) tends to zero at r = 0 and r = ∞.
The azimuthally polarized case demands that the electric

field be zero at r = 0 in order that the magnetic field is zero
(strictly speaking, the magnetic field will be very weak and
longitudinally polarized but has no azimuthal component.)
Then, we can easily show

dF

dz
= 0,

dV

dz
= C,

dC

dz
= H ,

dH

dz
= 0.

(12)

Thus, d2V/dz2 = H , and if the constant (in z) H is negative
at z = 0, then the positive definite variance V would become
negative in a finite distance z. The only conclusion is that
A0(r, z,ω) must develop a singularity before then.

If we include dispersion and ignore attenuation, then for
χ̂(0) − χ̂(ω) < 0, the case of anomalous dispersion, a similar
conclusion holds. For normal dispersion, we will shortly see
that a different kind of singularity occurs. It is not known
for which class of nonconstant nonlinear susceptibilities
χ(3)(ω1,ω2,ω3), singularities must form.

2.2. The MKPI Equation. The facts that the forward and
backward going components can be separated and that χ̂(ω)
is almost constant suggest that we rewrite (10) as an equation
for the leading order component of the electric field

E0

(
r, z, τ = t − n0z

c

)
= 1

2π

∫
A0(r, z,ω)e−iω(t−(n0z/c))dω.

(13)

We note that −iωA0 has its Fourier transform ∂E0/∂τ. Then
if we take χ̂(3) constant, (10) becomes

2n0

c

∂2E0

∂τ∂z
+

2πχ̂(3)

c2

∂2E3
0

∂τ2
+FT

{
χ̂(0)−χ̂(ω)

c2
ω2A0

}
= δ2E0.

(14)

If we further approximate χ̂(0) − χ̂(ω) = −iAωt0 − Bω2t2
0,

A,B dimensionless, which is not unreasonable over a large
frequency range for air, then (14) becomes

∂

∂τ

(
∂E0

∂z
+

3πχ̂(3)E2
0

n0c

∂E0

∂τ
− Bt2

0

2n0c

∂3E0

∂τ3
− At0

2n0c

∂2E0

∂τ2

)
= c

2n0
δ2E0.

(15)

We introduce the nondimensional scalings

E0−→e0E0, τ−→ t0τ, z−→z0z, x, y−→L
(
x, y

)
(16)
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and define

zNL = n0ct0
3πχ̂(3)e2

0
, zdiff = 2n0L2

ct0
, zdisp = 2n0ct0

|B| ,

zatt = 2n0ct0
A

,

(17)

then (15) is (s = sgn B)

∂

∂τ

(
∂E0

∂z
+

z0

zNL
E2

0
∂E0

∂τ
− sz0

zdisp

∂3E0

∂τ3
− z0

zatt

∂2E0

∂τ2

)
= z0

zdiff
δ2E0

(18)

which is the modified Kadomtsev-Petviashvili equation of
type 1. If we include a plasma oscillation to account for
low-frequency behavior, this is exactly the equation used by
BLMS [1] and derived in other contexts by Kuznetsov and
collaborators in the nineteen eighties. It is also connected
with the work of both Alterman and Rauch [4] and Schaffer
and Wayne [5] who realized that, to leading order, the
propagation characteristics of short pulses are captured by
looking at the deformation of the right going Riemann
invariant E0.

Depending on which effect is dominant, we will choose
z0 accordingly. For air, for pulses of dimensionless power
n2I(e = (3/8n0)χ(3)e2

0) of about 10−4, and for ct0 ∼ 10μm,
for beam widths of between 100 μm and 1 mm, the nonlinear
and diffraction distances are of the order of 10 mm, the
dispersion length about 100 mm. Attenuation is negligibly
small. In this case, we choose z0 = zNL.

The behaviors in the two cases s = 1 and s = −1
corresponding to normal and anomalous dispersion are
markedly different. For normal dispersion, as BLMS have
shown, the forward slope (in τ; rear part in a fixed frame)
steepens. Before it becomes multivalued, it is arrested by an
outburst of regularizing oscillations. The BLMS analysis of
the onset of this singular behavior captures the beginning
of this behavior. The dimensional frequency range of these

waves is given by Ω ∼ (1/t0)
√
zdisp/zNL. These waves, with

wavevector �k0 = (0, 0, k0(Ω)), pick up resonant four wave

partners �k± = (±�k1, k0(Ω)) via the resonance 2�k0 = �k+ + �k−
and eventually disperse the energy transversely. The initial
behavior is captured by the scaling τ − (ρz/4ρ)r2 variable in
BLMS (see their equation (29)).

This behavior is reminiscent of what happens for the
three-dimensional nonlinear Schrödinger equation with a
self-focusing nonlinearity, diffraction, and normal disper-
sion in the propagation direction. There, if normal disper-
sion is initially weak, the cross sectional part of the pulse
with the greatest power begins to focus into a collapse as a
result of the balance between diffraction and self focusing
nonlinearity. By following the evolution in z, the propagation
direction, of the self-similar scaling variables describing the
collapse, we see the effect of normal dispersion is to arrest
the collapse and spread the energy of the failed collapse via
four-wave resonant interactions.

For anomalous dispersion, the behavior is very different.
For linearly polarized waves, the electric field concentrates in

the vicinity of r = 0, z = Z at a retarded time τ = τ∗(Z).
For azimuthally polarized waves, the energy concentrates in
a collapsing ring about r = 0. In the following section, we
show the results of simulations in the normal and anomalous
dispersion cases.

As the final remark of this section, we briefly describe
what happens to an almost monochromatic pulse in the
case where dispersion is strong, namely, where zNL � zdisp.
In that case, the envelope C(x, y, z, τ) of a carrier wave
exp(−iω0τ + ik0(ω0)z) will evolve along its group velocity
trajectory and deform under the joint action of a nonlinear
Schrödinger nonlinearity C2C∗, diffraction (∂2kz/∂kx2 )∇2C,
and dispersion (∂2kz/∂ω2)(δ2C/δτ2).

A natural question to ask is: if, in a medium which
contains a strong resonant band about ω ∼ ω0, is it possible
that an initially broad band pulse can peel off an almost
monochromatic wave packet which separates from the main
pulse and whose further propagation behavior is determined
by a nonlinear Schrödinger type equation describing its
deformation due to dispersion and nonlinearity along its
local group velocity trajectory t = k′0(ω0)z?

3. Numerical Study of the MKPI Equation

With the choice z0 = zNL, equation (18) can be written

∂

∂τ

(
∂E0

∂z
+
∂E3

0

∂τ
− B

∂3E0

∂τ3
− A

∂2E0

∂τ2

)
= DΔ⊥E0, (19)

where

B = zNL

zdisp
, A = zNL

zatt
, D = zNL

zdiff
. (20)

The discussion will be limited to the case of plane polariza-
tion Δ⊥ = ∂2/∂x2 + ∂2/∂y2.

The focus of this section is to study the qualitative aspects
of (19), with particular attention on the role of dispersion
in preventing or promoting singular behavior. It is notable
that for the case of one transverse dimension (Δ⊥ = ∂2/∂y2),
much is already understood about the MKP equation (see
e.g., Klein and Saut [9]). To our knowledge, the only detailed
study of the three dimensional case in the nonlinear optics
context was conducted by Balakin et al. [1]. We will compare
their findings to ours below.

Numerical simulations are used to illustrate the behavior
of solutions of (19). Our method is fairly standard, employ-
ing spectral (Fourier and Hankel transform) representations
of τ and r derivatives. Approximation of the z-derivative
employs fourth-order exponential time differencing [10, 11].
The computational domain is periodic in τ, which has the
effect of cutting off small, physically irrelevant frequencies.

Our main attention will focus on the effects of large
frequency dispersion encoded in the parameter B. To this
end we fix A = 0 and D = 1, and assume radial symmetry
(Δ⊥E0 = r−1(r[E0]r)r). It is particularly instructive to
compare normal (B > 0) to anomalous (B < 0) dispersion.
While the former is expected for optical pulses, the latter case
demonstrates the significance of high frequency dispersion
and the need for normal dispersion as a regularizing
mechanism.
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Figure 1: Evolution of a narrow pulse (a) for large (B = 0.1, (b))
and small (B = 0.0001, (c)) normal dispersion at early stages (z =
0.2). In the latter case, the profile steepens, corresponding to the
generation of higher frequency components.
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Figure 2: Spectral content of a pulse at early stages of evolution,
showing generation of third harmonics (B = 0.0001). e(ω) is the
Fourier transform of the centerline profile E0(r = 0).

3.1. Normal Dispersion. We consider initial data correspond-
ing to a short pulse of unit width

E0(r, z = 0, τ) = exp
(−r2) f (τ), (21)

where f has Fourier transform f0 exp(−(ω − 2π)2) and f0 is
chosen so that the maximum amplitude of E0(r, z = 0, τ) is
equal to one.

Figure 3: Self-focusing of a pulse for small normal dispersion (B =
0.0001) when z = 1. Compression in the transverse direction is
apparent in the back (τ large) of the pulse.
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Figure 4: Evolution of a pulse for large (B = −1, (a)) and small
(B = −0.001, (b)) anomalous dispersion. In the latter case, there is
compression both temporally and in the transverse direction. The
bottom figure shows an incipient collapse event that will develop
into a singularity with infinite amplitude.

Consider first the case of large normal dispersion B = 0.1.
In this situation, the pulse does not retain its structure, but
rather disintegrates into a wave train dominated by a small
band of frequencies (Figure 1, middle).

When the effect of dispersion is smaller (B = 0.0001),
one observes steepening of the pulse (Figure 1(c)). This coin-
cides with generation of harmonics by four-wave interactions
(Figure 2). By comparing the effective size of nonlinear and
dispersive terms, one sees that formation of a shock will be
arrested when steepening reaches a dimensional timescale
τmax ≈ t0B−1/2. By virtue of B depending inversely on initial
amplitude, it follows that stronger pulses generate higher
frequencies.

At a propagation distance comparable to z0, self-focusing
is apparent (Figure 3). We observe that compression in the
transverse direction is stronger when normal dispersion is
smaller. This might be expected, since normal dispersion is
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Figure 5: The maximum amplitude of E0 and its derivative during the collapse. The results are consistent with the power law behavior (22)
derived in the text.

known to prevent self-focusing collapse in the monochro-
matic limit described by the nonlinear Schrödinger equation
[7].

3.2. Anomalous Dispersion and Singular Collapse. The case
B < 0 was also studied using the same initial data. This is
expected to be different since finite time singularities may
occur. In analogy to the focusing nonlinear Schrödinger
equation, one can show this by use of a virial-type argument
[1, 3].

When B = −1, no singular behavior is observed. Rather,
breakup of the pulse into a wave train occurs much like the
large normal dispersion case. (Figure 4(a)). This is analogous
to the situation in the nonlinear Schrödinger equation where
solutions do not have sufficient power for collapse.

In contrast, when B = −0.001, the pulse collapses
(Figure 4(b)) in both τ and r, and the amplitude grows
without bound. This occurs at a point where (E0)τ is large,
suggesting that blowup is initiated when dispersive effects
become significant.

The quantitative aspects of this singularity can be
analyzed by assuming that scales behave as power laws

E0 ∼ (Z − z)α, τ ∼ (Z − z)β, r ∼ (Z − z)γ, (22)

where z = Z is the blowup point. Balancing dispersion,
nonlinearity and diffractive effects for z → Z requires

α− β − 1 = 3α− 2β = α− 4β = α− 2γ, (23)

which means α = −1/3, β = 1/3, γ = 2/3. These scalings
were confirmed numerically (Figure 5).

Numerical evidence also suggests that collapse occurs in
a universal, self-similar fashion (Figure 6). One may derive
an equation for the profile by using the ansatz

E0 = (Z − z)−1/3 U
(
ξ,η
)
, ξ = (Z − z)−1/3(τ − τ∗(z)),

η = (Z − z)−2/3r,
(24)
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Figure 6: Scaled profiles of E0 along the centerline η = (Z −
z)−2/3r = 0, showing collapse onto a single self-similar profile.
Similar results hold for η /= 0.

where the blowup point is at (τ, r, z) = (τ∗(Z), 0,Z). Insert-
ing (24) into (19) gives the similarity equation (ignoring the
attenuation term)

(
1
3

[
U + ξUξ + 2ηUη

]
+ U2Uξ + BUξξξ

)
ξ
− D

η

(
ηUη

)
η
= 0.

(25)

Properties of (25) are still under investigation.

3.3. Shock Formation Versus Blowup. Our numerical findings
indicate two types of singular or nearly singular behavior.
The first type is characterized by steepening of the pulse
front. Normal dispersion always appears to arrest steepening
that would lead to a shock-type solution. The other candidate
for singular behavior is blowup, that is, unbounded growth
in amplitude. This appears to only occur for anomalous
dispersion.

Balakin et al. [1] make a theoretical prediction of the
nature of collapse in (19). The crux of their argument is that
dispersion at high frequencies (represented by our B term)
can be ignored as the pulse amplitude grows. This leads to
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the assertion that the dominant behavior is described by the
equation (ξ, θ are modified coordinates [1])

wξ + 3w2wθ = 0. (26)

They conclude that shock formation should preempt col-
lapse.

In contrast, we find that unless dispersion is exactly zero,
there is no circumstance which leads to shock formation.
We note that there is an inconsistency in the argument that
leads to (26). During such an event, Eτ and higher order
derivatives grow without bound. This means that the fourth-
order dispersive term in (19) should in fact become stronger,
not weaker, relative to the size of the nonlinear term. On
the other hand, (26) probably does capture the steepening
behavior during the early phase of pulse evolution.

4. Summary and Conclusion

In this paper, we have derived an ultra-broadband elec-
tromagnetic propagator as a limiting form of the UPPE
equation of Kolesik and Moloney [6]. The resulting MKPI
equation, derived using asymptotic analysis, allows us to
isolate two key singularities, namely, blowup and shock
formation and their regularization due to weak linear
dispersion. Our results are related to and extend those of
Balakin et al. [1]. The MKPI equation derived here captures
the nonlinear evolution of the full electromagnetic field in
contrast to narrowband nonlinear envelope NLSE equation.
Consequently, it should be relevant to the generation of
higher harmonic waves during filamentation in extended
gaseous media. However, many open questions remain to be
addressed. For example, in this ultra-broadband limit, the
linear dispersion and absorption spectral landscape spans
the ultraviolet to far infrared portion of the electromagnetic
spectrum and will need to be represented by a more general
form than that used here. Additionally, as a spectrum
broadens due to nonlinear propagation, it will be neces-
sary to include real absorption (and associated dispersion)
features associated with real resonances at both ends of
this broad electromagnetic spectrum—it is anticipated that
such resonances will provide a novel nonlocal regularization
mechanism for the singularities discussed here. Moreover,
a switch in sign of the group velocity dispersion from
normal to anomalous as such resonance features are tra-
versed suggests the possibility of novel dispersive waves or
possibly soliton-like structures being emitted. Furthermore,
at the very high field intensities under consideration here,
strong field ionization becomes important and coupling to a
electron-ion plasma will need to be included. This question
is controversial in the current literature, and there are
arguments to support “ionization-free” nonlinear saturation
of the cubic nonlinearity in the case of ultrashort pulse
propagation in air [12].
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