Problems: P. $112, \# 2,5$.
Limiting behavior of real functions
Let f be a function $f: D \rightarrow \mathbb{R}$
We say, for $c \in D$, that \mathbb{R} f diverges to ∞ as x approaches
c from the right, $\lim _{x \rightarrow c^{f}} f(x)=\infty$
it: $\forall M>0, \exists \alpha_{\mu} \in D$ with $\alpha_{\mu}>c$ and $f\left(\alpha_{M}\right)>M$.

Similar defs for div. to $-\infty$ and/ar as x approaches c from left.
Ex: $f(x)=\frac{1}{x-c}$
Def: $f(x)$ has a vertical asymptote at $x=c$ if: f diverges to $\pm \infty$ as x approaches c fum left/nght.

Ex: $f(x)=\frac{(x-1)(x-2)(x+4)^{2}(x-3)}{(x-1)^{3}(x-2)(x+4)(x+5)}$
Q: What are the vert. asymptotes of f? How about zeroes?
What is the domain of f ?

$$
\begin{aligned}
& \therefore D \\
&=\mathbb{R}-\{1,2,-4,-5\} \\
& f^{*}(x)=\frac{(x+4)(x-3)}{(x-1)^{2}(x+5)}
\end{aligned}
$$

$f(x)=f^{*}(x)$, for all $x \in D$.
What is the domain of f^{*} ?

$$
D^{*}=\mathbb{R}-\{1,-5\} \geq D
$$

Zerees of $f=$ zerves of f^{*} on D
since $f=f^{*}$ on D

$$
=\{3\}
$$

Asymptoters of f : -5 (becase
Other possibilities: 1,2,-4. $f=\frac{p(x)}{q(x)}$, $p(-5) \neq 0$

$$
\begin{aligned}
& \lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} f^{x}(x)=f^{*}(2)=\frac{-6}{7} q(-5)=0 \\
& \lim _{x \rightarrow-4} f(x)=\lim _{x \rightarrow-4} f^{x}(x)=f^{*}(-1)=0 \\
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} f^{x}(x)=-\infty \leftarrow \text { vestrwal }
\end{aligned}
$$

We used the following: Let $p(x), g(x)$ be cts. real functions. Then $f(x)=\frac{p(x)}{q(x)}$ has a vertical asymptote at $x=c$ if $p(c) \neq 0$ and $q(c)=0$
Warning: The converse is false: $\quad \begin{aligned} & p(x)=x-c \\ & q(x)=(x-c)^{2}\end{aligned}$

$$
\begin{aligned}
& p(x)=x-c \\
& q(x)=(x-c)^{2}
\end{aligned}
$$

"End behavior"
Def: We say that two real frs. have the some end behavior if

$$
\lim _{x \rightarrow \infty}\left(\frac{f(x)}{g(x)}\right)=1
$$

$\left.\begin{array}{c}\text { Ex } f(x)^{x^{2}}+x+1 \\ g(x)=x^{2}\end{array}\right\} \begin{aligned} & \text { have some end } \\ & \text { behavior a }\end{aligned}$ $g(x)=x^{2} \quad$ behaior $\infty, \infty,-\infty$

$$
\frac{\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{1+\frac{1}{x}+\frac{1}{x^{2}}}{x^{2} 1}}{x^{2}+x+1=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}}
$$

Mare generally: If $f(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\ldots$

$$
g(x)=b_{n} x^{n}+b_{n-1} x_{1}^{-1}+\ldots
$$

Then $\frac{f(x)}{g(x)}$ has the same end hehaiar a $\infty,-\infty$ as

$$
\frac{a_{m}}{b_{n}} x^{m-n}
$$

Def: f has: - horizontal asymptote
if $f(x)$ has some end behavior a ∞ or - $-\infty$ as $g(x)=L$

- oblique asymptote
$y=a x+b, a \neq 0$, if $f(x)$ has same end behavior us $g(x)=a x+b$

Ex: $f(x)=\frac{x^{2}-3 x+1}{x+1}=x-4+\frac{5}{x+1}$
$x+1 \frac{x-4}{1 x^{2}-3 x+1}$ So $f(x)$ has

$$
\frac{x^{2}+x}{-4 x+1} \begin{aligned}
& 4 x-4
\end{aligned}
$$

the same end behave $p \infty,-\infty$ as $x-4$

Def: f, g real functions.

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\left\{\begin{array}{cc}
\pm \infty & f \frac{\text { has higher }}{\text { growthrute }} \\
0 & \frac{f \text { has lower growth }}{\text { rate }} \\
L \neq 0 & \frac{f \text { has the same }}{\text { growthrute }} \\
\frac{\text { us } g}{\text { un }}
\end{array}\right.
$$

Ex: Rank the following functions in terms of their groat rates

1) $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \quad n>0$ $a_{\mathrm{ma}} \neq 0$
2) $\log _{b}(x) \quad b>1$ if f, g are diff
3) $x^{\frac{1}{n}} \quad n \geq 1$ and $\lim _{x \rightarrow \infty} f=\lim _{x \rightarrow \infty} g=\infty$
4) $b^{x} \quad b>1$ then $\lim _{x \rightarrow \infty} \frac{f}{g}=\lim _{x \rightarrow \infty} \frac{f^{\prime}}{g^{\prime}}$
5) $\log (\log (x))$ prided this exists $^{x \rightarrow \infty}$
