Definitions are important?

1) Give meaning to symbols/hords
2) Single out ideas / concepts
3) Distinguish an idea from related ones
4) Pruide "foundational silas"
on which a theory con be puilt.
Ex: A positive integer is prime if it is not 1 , and its only positive divisas ane 1 and itself.
\rightarrow singles out "pome" as mutt Studying.
\rightarrow distinguishes primes from composites... \rightarrow gives way to check primality

What constitutes a good definition?

* As geneal as possible.
* Be specify.
* Uniquely pin dawn idea / concept.
$\rightarrow *$ Shaild pride interesting/urful foundation.
* Be clear/cancise.

Ex: The def of "prime" that 1 wrote down is good because of:
The: Every integer $n>1$ can be decompookd uniquely as a product

$$
\begin{aligned}
& n=p_{1}^{r_{1}} \cdot P_{2}^{r_{2}} \cdots \cdot P_{k}^{r_{k}}, \quad k \geqslant 1, r_{i} \geqslant 1 \\
& P_{1}<p_{2}<p_{3}<\cdots<p_{k}, \text { pnmes. }
\end{aligned}
$$

Rem: If \mid is prime, this the is false: e.y. $6=2^{\prime \cdot} \cdot 3^{\prime}=1^{27} \cdot 2^{\prime} \cdot 3^{\prime}$

$$
=1^{2} \cdot 2^{1} \cdot 3^{1}
$$

Semantics
Every definition is an "if and only if" statement.
\Rightarrow define term
\rightleftharpoons sufficient condition.
Ex A real number is rational iff it is the quotient of the integers w/nomeno denominator.

- $x \in \mathbb{R}$ is rational $\stackrel{\geqq}{\Rightarrow} \Rightarrow X=\frac{m}{n}, m, n \in D, n \neq 0$
- $x \in \mathbb{R}, x=\frac{m}{n}, n, n \in \mathbb{Q} \not n \neq 0 \Rightarrow x$ is rational

The word "is"
A) A prime is a pos integer
the, but B) A prime is an integer >1 def $\begin{aligned} & w / \text { no pos divisas except } 1 \\ & d \text { itself. }\end{aligned}$
Alternative Def

* Give different/valuable approaches
* Mare used to develop certain aspects of theory
* Allow important geresolitations

Ex: Def: A positive integer $p>1$ is prime iff

$$
p|(a b) \Longrightarrow p| a \text { or } p \mid b
$$

for all $a ; b \in \mathbb{Z}$.
Fact: This et is equivalent to our granarlier one. However, the two deft are sanely equivalent for" number systems other

$$
\begin{aligned}
& \text { than } \mathbb{Z} . \\
& \text { Ex: } \mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\} \\
& 2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-s})
\end{aligned}
$$

Congmence
Def(Euclid): Two figures are congwent if they coincide, i.e. If one can be moved to the other by a "rigid motion" (preserves size/shape).

Pros: * easy to undentond * Captures intuition

Cons: Xmirar inge

* Bad in non-

Euclidean geom!

Def. Two line segments are congwert if they have equal length.

- Two angles ore cangment if they have equal measures
"Two triangles are congruent if there is a bis. correspondence b / w their vertices st. (awrespanding sides and angles one cangwent.
Pros cons
* precise
* Wars in different | * Loses imited |
| :--- |
| gemetition |

Def: A plane transformation is a $1-1$ function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
Def: A congneace transformation (isometry) is a plane trausfonaction T such that d $d(T(P), T(Q))=d(P, Q)$ $\forall P, Q \in \mathbb{R}^{2}, \quad d(;)=$ distance function
Def: Two figures $A, B \subseteq \mathbb{R}^{2}$ are congweat if 3 a congreve transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $T(A)=B$.

