Q. What is an equation?
(1) $x^{2}+4 x-3 \quad 0\left(n_{0}=\right.$ sign $)$
(2) $3 x-2=7 \quad 13$
(3) $7=5+2 \quad 13$
(4) $1=13 \quad \&\left(\begin{array}{c}\text { no: } \\ \text { not } \\ \text { net }\end{array}\right)$
(5) $2 x+1=x+(x+1) \quad 13$
(6) $1+x=13+x \quad 8$
(on think of eqn. as a statement of equality, almas part of a longer sentence.
\rightarrow Con be T ar F
Ex: There exists $x \in \mathbb{R}$ such that $3 x-2=7$

- The number $x=2$ is not a sol' n of $3 x-2=7$
- As a statement abaca real numbers. $1=13$ is false.

Three fidomertal features of $=$
(1) $a=a$ (reflexive)
(2) $a=b$ then $b=a$ (Symmetric)
(3) H a $a=b$ and $b=c$, then (transitive)
$a=c$

$$
a=c
$$

Def: Any relation that satisfies 1-3 is called on equivalence relation

Ex:: $\Leftrightarrow(\mathrm{iff})$ is an equivalence relation on T / F statements.

- Geometry. Congest angles

$\angle A B C \cong \angle D E F$ means, m $\angle A B C=m \angle D F F$
- Fractions: $\frac{4}{2}=\frac{2}{1}\binom{$ Mt's better to say }{$\frac{4}{2}$ is equivalent to $\frac{2}{1}}$
$\frac{1 \text { somorphism }}{\frac{d}{d}}$
Ex: Recall from last time

$$
\begin{aligned}
& (R,+) \longleftrightarrow\left(R_{>0}, x\right) \\
& p+q \longleftrightarrow a b \\
& 0 \longleftrightarrow 1
\end{aligned}
$$

Mare precisely, for any real \# $e>1$

$$
\begin{aligned}
&(\mathbb{R}, t) \longleftrightarrow\left(\mathbb{R}_{>\infty} x\right)^{p-1} \\
& p \longmapsto e^{p} \\
& \log _{2}(a) \longleftrightarrow a \\
& p+q \longmapsto e^{p+q}=e^{p} \times e^{q} \\
&=\log _{p}(a b) \longleftrightarrow a b \\
& \log _{p}(a)+\log (b)
\end{aligned}
$$

Def: Two mathematical sturetures are somarphx if there is a H correspondence b/w them Sic operations in ane structure give answer that comespands to the operation in other structure.

Ex: $S=\left\{(a, b)_{i}^{i} a, b \in \mathbb{Z}, \quad b \neq 0\right.$ and we consser (a, b) and ($c d$) to be equinglent $+f(c o b c c\}$

$$
\begin{aligned}
& \text { Define }(a, b) \otimes(c, d)=(a c, b d) \\
& (a, b) \oplus(c, d)=(a d+b c, b d) \\
& \text { EHS it dind tot RHS } \\
& \underline{E x} \quad(4,-1) \oplus(3,2)=(5,-2) \\
& \quad(3,1) \otimes(1,3)=(3,3)=(1,1)
\end{aligned}
$$

Claim:
$S \oplus, \otimes$ is isonomphis to \mathbb{Q}, t, x via $(a, b) \mapsto \frac{a}{b}$

