Def: The sols of an equation are all values of the variables making the sap. true.
Ex: Let's solve $3 x-2=5$ $3 x-2=5\}^{11} x=7 / 3$ is a sol. $3 x=7$ to $3 x-2=5$
$x=7 / 3$ sol.

1) $x=7 / 3$ is a solution becase

$$
3\left(\frac{7}{3}\right)-2=7-2=5
$$

2) If x is a solution to $3 x-2=5$ then $3 x=7$ because
then $x=\frac{7}{3}$ because....
Hence $x=z_{3}$ is the only sol. to $3 x-2=5$.

* Equations are port of a longer sentence.

Ex: \exists a real number x such that ? $3 x-2=5$
there exists existential statement
TRUE: We proved $x=7 / 3$ woks.
Ex: \exists an integer x such that

$$
3 x-2=5
$$

FAlSE: We pred $x=7 / 3$ is the only sol to $3 x-2=5$ and $7 / 3 \notin \pi$

Ex: \forall real number $x, \quad 3 x-2=5$
for all FALSE: b/c $\exists a$
for every real number x such that $3 x-2=5$.
Quantifier: \exists, \forall
Def: An identity is an eqn. which is tue for all (\forall) of the variables.

$$
\begin{aligned}
& \text { Ex: } x^{2}=9=(x-3)(x+3) \\
& \forall x j+\sin ^{2}(x)+\cos ^{2}(x)=1
\end{aligned}
$$

* Solving equations = process of mathematical reasoning.
Q. How do you respard to:

Solve $x^{2}-3 x-4=0$

Mis-indentondiny P Does NOT hold! of "Zero principle"

$$
\text { If } A B=0 B *
$$ then $A=0$ or $B=0$

Observe $x=2, x=5$
do not satiety orig. eqn.

Zero Principle: If A and B are real numbers satisfying $A B=0$, then $A=0$ or $B=0$.
pf. If $A B=0$ and $A \neq 0$ then \exists a real number A^{-1} Sit $A^{-1} \cdot A=1$. Hance.

$$
\begin{aligned}
& \left(A^{\prime} A\right) B=A^{-1}(A B)=A^{-} \cdot 0=0 \\
& \text { in Thus, } A \neq 0 \Rightarrow B=0 \text { crucial un of } 0
\end{aligned}
$$

11 Thus, $A \neq 0 \Rightarrow B=0$ copal I. B Hence, sire either $x \cdot(0+0)=x \cdot 0+x \cdot 0$ $11 \quad A=0$ or $A \neq 0 \quad$ x.0 $0=$ tile Conclude $A=0$ or $B=0$ 图 $x^{1} \times 0=0$

Correct sol'n: $x^{2}-3 x-1=0$

$$
\begin{aligned}
& (x+1)(x-4)=0 \\
& x+1=0 \quad \text { OR } \quad x-4=0 \\
& x=-1 \quad \text { OR } \quad x=4 .
\end{aligned}
$$

Mathematically Justify
$\left(\begin{array}{l}? 2 \\ \forall x\end{array}\right.$ Motivate this reasoning?

$$
{ }^{x}(x+1)(x-4)=x^{2}-3 x-4
$$

"Folじ: Dist. prop ($2+$ mim)

