Q: Spse given an infinite supply of blocks, each 2 wits long, with miform mass of 1 kg .
How fur con a stack of blocks be made to extend from the edge of a table:

1. One block:

Laws of physics dictuk that CM must be over table.
2. Two blocks: Lift up first block \& put a new block under it, with rightmost edge at $0: s \mathrm{~s}$? CM of the two blocks

is at:

$$
\frac{(-1) \cdot 1+(0) \cdot 1}{2}=\frac{-1}{2}
$$

\Rightarrow (an "Shave" this 2-block stack $\frac{1}{2}$ unit to the right and it will still be standing.
3. Three Hocks

\Rightarrow Con mare the 3 blocks $\frac{1}{3}$ wit night

Gerent

Thus: A stack of $n-b$ blocks con be made to reach

$$
H(n):=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n} \text { wits }
$$

from the table.

Claim: $H(y)$ can be made arbitrainly lane by making n very big:

$$
\begin{aligned}
& 1 \\
& 1+\underbrace{\frac{1}{2}}_{\frac{1}{2}}+\frac{1}{3}
\end{aligned}+\underbrace{\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}}_{\frac{4}{8}=\frac{1}{2}}+\underbrace{\frac{1}{8}+\cdots+\frac{1}{15}}_{\frac{8}{16}=\frac{1}{2}}+\cdots
$$

Thus:

$$
H\left(2^{n}-1\right)>\frac{\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\cdots+\frac{1}{2}}{n}=\frac{n}{2}
$$

\# particles in wiverse

$$
\begin{aligned}
\approx & 10^{80} \approx \\
& <2^{320} 2^{2000000}
\end{aligned}
$$

Next: Functions: (Problems p.79 \#6)
Q: Person A starts driving at 50 mph . Person B starts 3 hows later and tries to catch up. How lang does it fake if B troves oft 75 mph ?
A : Let $t=$ time it takes to catch up.

$$
\begin{aligned}
& \underbrace{50(3+t)}_{\begin{array}{c}
\text { dist coopered } \\
\text { by } A
\end{array}}=\underbrace{75 t}_{\text {dist covered by P. }} \\
\Rightarrow & t=6 \text { hows. }
\end{aligned}
$$

Further onalysis:
Let $t=$ time (hrs) after B starts driving

$$
\begin{aligned}
& \quad d_{A}=d_{A}(t):=\begin{array}{l}
d_{i s t .} \text { covered by } A \text { at } \\
\text { time } t
\end{array} \\
& d_{B}:=d_{B}(t):=\frac{}{2}= \\
& d_{A}(t)=50(t+3) \\
& d_{B}(t)=75 t
\end{aligned}
$$

Even forther analyss):

* Genealize by haing B trovel at w mph $t=$ time needed to © variable. catch up

$$
\begin{aligned}
& 50(t+3)=w \cdot t \\
\Rightarrow & t=\frac{3}{\frac{w}{50}-1}=\frac{150}{w-50} \quad(w>50)
\end{aligned}
$$

In particular, $\left.\frac{d t}{d w}\right|_{w=75}=-\frac{150}{(25)^{2}}$
i.e. Instantuneas rate of $=-0.24$
chonge of t w.r.t W, when $w=75$, is -0.24
\Rightarrow If w is increased by a small amant Δw, then catch-up time is decreated by $x 0.24 \Delta$ w

Geneal problem:
$h=$ head Start (hrs)
$t=$ catch up time
$V=$ speed of A (constant)
$w=$ speed of B (constant)

$$
t=\frac{h}{\frac{w}{v}-1}
$$

