problems: \#3,p75
Q: What is a function?

* each input has unique at put
* vertical live test
* each in pout... where?,
* at most one output.'
* each output con have multiple imps.
* a relationship b/w variables
* a mathematical Statement..... st.......
* Def(modern): 1 function is a rule which assigns to each element of a set A exactly one element of a set B.
- will use "f" for function, and $\underset{\substack{\text { domain } \\ \text { (source) }}}{f: A \rightarrow B} \rightarrow \underset{\substack{\text { co domain } \\ \text { (target) }}}{\text { coin }}$
- image or range of f is the subset of B consisting of ells which are "outputs" of f.
- will wite $f(a)=$ the el of B assigned to a by f.

- Sometimes we call a function a "map" or a "mapping".
If $f(a)=b$, we sag f maps a to $b^{\prime \prime}$
- f is injective dr $f: a \longmapsto b$
one to one $(1-1)$ if $f(a)=f\left(a^{\prime}\right) \Rightarrow d=a^{\prime}$
- f is surjective or onto
if for even g $b \in B$, there exists $a \in A$
s (. $f(a)=b$ (range $=$ (o-domain)
- bijective $=$ sur, ective t injective.

Examples:

- Functions can be specified by formulas

$$
\begin{aligned}
& \text { - } f(x) \stackrel{\text { def }}{=} x \\
& -f(x)=\sqrt{x} \\
& -f(x)=\sin \left(e^{2^{x}}\right)
\end{aligned}
$$

- Functions can be specified by descriptions: $-f(n)=$ the $n^{t^{\text {th }}}$ prime number for $n=1,2,3, \ldots$

$$
\begin{aligned}
& f(1)=2 \quad f(3)=5 \\
& f(2)=3
\end{aligned}
$$

- $f(h)=$ the ave yearly rainfall (in in) in Tuscon, A7 in year $2000+n$ AD $N=0,1,2,3, .$.
- Con specify functions by tables:

x	$f(x)$
1	7
2	-3
3	24
4	1
5	24
$A=\{1,2,3,4,5\}$	
$B=\mathbb{Z}$	

$A=$ things I have tasted
$B=\{$ yum, yuck $\}$

$a \in A$	$b=f(a) \in B$
apple	yum
orange	yum
bacon	yum
dirt	yuck

- Functions con be given by "piece-mk"

$$
\begin{aligned}
-f(x) & =\left\{\begin{array}{rll}
-x & \text { if } & x \leqslant 0 \\
x & \text { if } & x>0
\end{array}\right. \\
& =|x|
\end{aligned}
$$

- Functions con lse specified by a groph
 encoles the fuction $f(a)=b$ iff (a, b) liec on gruph.

Def. Let $f: A \rightarrow B$ be a function. The graph of f is the subset
of

$$
\Gamma(f)=\left\{(a, b) \in A \times B \left\lvert\, \begin{array}{l}
a \in A \\
b=f(a)
\end{array}\right.\right\}
$$

$A \times B=$ set of areved pain $\binom{a}{a}$
Notice The mappra $A \times B \rightarrow A A B$
$(a, b) \longmapsto a$

$$
f \text { a function } \Rightarrow \operatorname{Pr}_{A}: \Gamma(f) \rightarrow A \text { is bijective }
$$

Def (altenale): A function $f: A \rightarrow B$ is a subset $S \subseteq A \times B$ satisfying $P_{A}: S \rightarrow A$ is bijective.

Some wild functions $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
-f(x)= \begin{cases}1 & \text { if } x \text { is rational } \\ 0 & \text { otherwise }\end{cases}
$$

- Takagi's function: $f_{0}(x)= \begin{cases}x & \text { if } 0 \leqslant x \leqslant 1 / 2 \\ 1-x & \text { if } \frac{1}{2}<x \leq 1\end{cases}$

$$
\begin{aligned}
& f_{k}(x)=\frac{1}{2^{k}} f\left(2^{k} x\right) \\
& f(x)=\sum_{k=0}^{\infty} f_{k}(x)
\end{aligned}
$$

