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PREFACE

This volume is the fruit of an instructional conference on algebraic number
theory, held from September 1st to September 17th, 1965, in the University
of Sussex, Brighton, It was organized by the London Mathematical Society
under the auspices and with the generous financial aid of the International
Mathematical Union and of the Advanced Study Programme of NATO.
The organizers of the conference owe a great deal to the constant support
which they received from the authorities of the host University.

All the lectures held during the conference are recorded here with the
exception of a few informal seminars. The drafts for publication were either
supplied by the speakers themselves, or were prepared by members of the
conference in collaboration with the lecturers. We wish to express our deep
gratitude to the lecturers both for ensuring the success of the meeting itself,
as well as for enabling us subsequently to publish this volume. We are no
less grateful to the “note-takers” for their co-operation, Both they and the
lecturers also assisted in the proof correction., The editors must emphasize,
however, that neither the lecturers nor the note-takers have any responsibility
for any inaccuracies which may remain: they are an act of God.

Apart from accounts of the lectures this volume also contains exercises
compiled by Tate with Serre’s help, and above all Tate’s doctoral thesis,
which is for the first time published here after it had over many years had a
deep influence on the subject as a piece of clandestine literature.

Finally we wish to express our appreciation for the co-operation which we
received from our publishers.

January 1967 J. W. 8. Cassels
A. Frohlich
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INTRODUCTION

The chapters of this book, with the exception of the final one, are edited
texts of lectures and lecture courses, delivered at the Brighton Conference.
The topics and the general course programme were chosen with the principal
purpose of the Conference in mind. This was to give the non-specialist
mathematician (i.e. the mathematician who specializes in some other field)
an introduction to algebraic number theory, starting from the more elemen-
tary aspects and going on to class field theory, and to acquaint him with
some of the recent developments in the subject. The individual contributions
thus fit into an overali plan.

The first three chapters provide a broad introduction into algebraic
number fields, containing in particular all the more ¢lementary theory
needed later on, The subject maiters of Chapters I and II are closely inter-
woven and the respective chapter headings were chosen to indicate—none
too accurately-~the demarcation line. An alternative choice of titles would
have been “Algebraic Theory of Dedekind Domains™ for Chapter I and
“Topological Arithmetic” for Chapter 11,

Chapters IV and V are frankly utilitarian, preparing the tools that are
needed for class field theory.

The backbone of the book consists of the two chapters by Serre and by
Tate on local and global class field theory, of which the second depends on
the first. A feature of special interest in Serre’s contribution is that it in-
cludes for the first time as an integral part of local class field theory the des-
cription of the maximal Abelian extension in terms of formal groups, due
to Lubin-Tate. This yields a new approach to the existence theorem and
to the refinements of the local reciprocity law dealing with the filtrations of
the Galois group and the group of units.

‘While the first seven chapters were designed as a coherent whole, the rest
are more loosely articulated and deal with various aspects and applications
of the theory. They presuppose a knowledge of some of the material in the
first seven chapters but are substantially independent of one another. The
exercises at the end of the book, which were compiled by Serre and Tate
after the Conference, are intended to indicate lines of thought for which
there was no time at the Conference,

The final chapter does not represent a lecture at the Conference itself. It
is the unchanged text of Tate’s thesis (1950). There is therefore a certain
amount of overlap with the material in earlier chapters.

It was impossible (even if it had been desirable) to impose a completely

xvii



xviii INTRODUCTION

uniform system of notation on all the contributors. But, in addition to usages
which have become too classical for mention, the following more recent
conventions are adopted as standard (except in Tate’s thesis):

Q, Z, R, C are the rational numbers, the rational integers, the reals and
the complex numbers respectively, and F, unless otherwise defined, is a
finite field.

The special arrow > denotes the effect of a map on a typical element of
a set. Thus the map R — R consisting of squaring can be described by:
r— r¥(reR).

In general, bibliographies are at the ends of chapters and are referred
to by the author’s name and the date of publication, with a further italic
letter to differentiate works by the same author in the same year [e.g. Artin
(1927), Hilbert (1900 d)]. Titles of periodicals are usually abbreviated as
in “The World List of Scientific Periodicals” (Butterworth).

CHAPTER 1

Local Fieldst

A. FROHLICH

1. Discrete Valuation Rings . . . . . . . . . . . . 1
2. Dedekind Demains . . . . . . . . . . . . . . b
3. Modules and Bilinear Forms . . . . . . . . . . . 9
4, Extensions e
5. Ramification . . . . . . . . . . . . . . . . 18
6. Totally Ramified Extensions . . . . . . . . . . . . 22
7. Non-ramified Extensions . . . . . . . . . . . . . 25
8. Tamely Ramified Extensions. . . . . . . . . . . . 29
9, The Ramification Groups . . . . . . . . . . . . 33
10. Decomposition . . . . . . .+ . . .« . .+ . . . 39
Bibliography . 41

1. Discrete Valuation Rings

Preliminaries on Fractional Ideals: Let R be an integral domain (i.e. a commu-
tative ring with 1 4= 0 and no zere divisors) and K its quotient field, For
R-submodules I, I, of K we define in the usual way the operations

I, + I, (sum of submodules)
I, nI,
LI, {submodule generated by products).

In addition we have, for an R-submodule I of X to consider the R-sub-
modules

I''=[xeK|xI<R]
RN =[xeK|xI =1I].

TemMma 1. (i) Addition, multiplication and intersection are commutative
and associative.

Gi) I(I,+1,)=1I;+II,.

(i) RO >R o II™L.

(iv) If IcR, thenI"* o R.

An R-submodule I of K is a fractional ideal of R if it is non-zero and if

i Bc_zck references. Propositions, Lemmas, etc., within the same section are referred to
by their numbers, for other sections this is preceded by the number of the relevant section.
1



2 A. FROHLICH

there is a non-zero element a of K so that al < R. Here a may always be
chosen to lie in R,

Levva 2. If 1, 1, I, are fractional idedls, then so are I+, Iy n 1,
I I, I™! and R(D).

Proof. For the first three operations this is obvious. For the last two we
prove more generally that if Iy, I, are fractional ideals then so is

J=[xeKpl, =1}

Let a, b be non-zero elements with al, = R, bel; nR. Thenabis a
non-zero element of J. Let ¢, d be non-zero elements with ¢y < R, de I,
Then ¢dJ < R.

LemMA 3. Suppose R is Noetherian. A nom-zero R-submodule I of K is
a fractional ideal if and only if it is finitely generated.

Proof. Necessity: I = al = R.—Sufficiency: Multiply up by the denomi-
nator product of the generators.

Let K* be the multiplicative group of a field X, and let Z be the integers
under addition. A map

v:K=2Zuw
is a discrete valuation of K, if
(i) v defines a surjective homomorphism

K*>Z
(again denoted by v);

(i) v(0) = c0;

(i) v(x+y) = inf v(x), v(¥)
(usual conventions for the symbol c0).

We now give the translation into the language of “muitiplicative” valua-
tions (see Chap. II): If v is a discrete valuation of K and p is real
0 < p < 1, then |x], = p*™ is a discrete (non-Archimedean) valuation as
defined in the other place. Every discrete (multiplicative) valuation is of
this form, and equivalent valuations will correspond to the same v with
varying p. The resuits proved in Chap. Il can now be translated back.
In particular:

(a) If o(x} # o(y), then v(x+y) = inf o(x), v(y).

(b) The set R, = [x& Klv(x) = 0] is an integral domain with quotient
field K, the valuation ring of v, and the set p, = {x € K|v(x) > 0] is a maximal
ideal of R,, the valuation ideal.

See the other course for valuation-topology and completion.
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ProposITION 1, A discrete valuation v of a field K can uniquely be extended
to a discrete valuation on the completion K of K with respect to the valuation
topology.

Proof. See Chap. II, §10: A discrete valuation, in the multiplicative
sense, extends uniquely to the completion, and with the same set of values.

Example. Let F be a field and let X be the field of formal series

o

Y, a,t", witha,eFforallneZ

Ny —
(i.e. 3me Z with @, = 0 for all » < m). Then we have a “standard” discrete
valuation v of K, given by
0
v( ¥ a,,t") = inf n.
By - an# 0
K is complete in the valuation topology.

We now turn to a ring-theoretic description of the pair K, v where v is a
discrete valuation of the field K. The elements # with () = 0 form a
subgroup U = U, of K*, the group of units (invertible elements) of R,.
We now choose an element n with v(m) = 1. Then every ae K* has a
unigue representation

a=mn"u, nelZ, uel,
namely with
1 = v(a).
Turning to the fractional ideals I of R, we define
t(I) = inf v(x).
xel

A priori o(I)eZ U 0 U —co. But I = aJ, where J is a non-zero ideal
of R, and aeK*. Hence o(I) = v{J)+v(@eZ. Choose bel with
v(b) = o(I). Then
'®R, = bR, = L.

But

I =[x e K|o(x) = (1)}
If t(x) = o{I) then x = =*Dy, with y e R,. Thus

I« n?®R, = n*®'R,,

hence
I =(x=R,)"\",
In particular
P, =7R,
and so
I =0,

The last equation shows that R, has one and only one non-zero prime



) A. FROHLICH

deal, namely p,, and the preceding one that R, is a principal ideal domain.
We now make the following definition: A discrete valuation ring (d.v. ring)
R is a principal ideal domain with one and only one non-zero prime ideal.
We have then proved one half of

PROPOSITION 2. The valuation ring R, of a discrete valuation v is a d.v.
ring.

Conversely a d.v. ring R is the valuation ring R, for a unique discrete valua-
tion v of its quotient field K.

Proof of converse. Let p = nR be the non-zero prime ideal of R. Ris a
unique factorization domain and hence each non-zero element x of R has
a unique representation

x = a"u, 4 a unit, n=0.
Allowing » to vary over Z we get the corresponding statement for x € K*.
But then
v(x) =n
defines a discrete valuation of K with R = R,. Uniqueness is obvious.

PROPOSITION 3. An integral domain R is a d.v. ring if and only if it is
Noetherian, integrally closed and possesses one and only one non-zero prime
ideal.

(An element x of an extension ring of R is integral over R, if it is the root
of a monic polynomial with coefficients in R, i.e. if the ring R[x] is a finitely
generated R-module. R is integrally closed if every element of the quotient
field of R, which is integral over R, will already lie in R.)

Proof. (Sufficiency of the conditions.) Let Ibea fractional ideal. R(I)is
a ring (see the definition preceding Lemma 1). Hence for all xe R(I),
R[x]is a submodule of R(). By Lemmas 2 and 3, R(J) is a finitely generated
R-module, hence so is R[x]. Therefore x is integral over R,ie. xe R. Thus

1) R(D=R.
Let p be the non-zero prime ideal of R. We next show that
2) p-l#R.

There are non-zero ideals I of R with I~! 3 R, e.g. all principal ideals
aR with ae p, a # 0. Let then J be a non-zero ideal, maximal with respect
to this property. We have to show that J is prime.

Letx, ye R, x ¢ J, xyelJ,z ¢ R, zeJ™*. Then zp(xR+J) < R, hence
zy € R and thus z(yR+J) = R. Thus (JR+J)"* # R, but yR+J > J.
Therefore y e J. We have thus established (2).

By Lemma 1, (iii), (iv)

Ropp™"opR=0p.
But pp~! = p would imply p~* < R(p), which contradicts (1} and (2).

1
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Hence
3 R=pp~..
Clearly p~! = R(n9"). By (1), (2)
4 Nnp"=0.

Hence we can choose an element a€ p, with aR ¢ p*. Then ap™* c R,
but by (3) ap~? ¢ p. Hence ap™* is an ideal of R not contained in any
maximal ideal, i.e. ap~! = R, and so

p=akR.

By (4) every non-zero element of R has then a unique representation
a"u,n = 0, uaunit of R, Thus Ris a d.v. ring.

We shall finally give a description of some groups associated with a
given discrete valuation v of a field X, in terms of the residue class field
k = R/p, where R is the valuation ring of v and p the valuation ideal.

The additive group of K is the union of open (and hence closed) sub-
groups p” (7 € Z), whose intersection is zero. The quotient groups pipttt
have the structure of k-modules and we have

LemMA 4. There is an isomorphism

ke P" /Pn-l-l
of k-modules.
Proof. If p = Rr, then multiplication by =" induces such an isomorphism

Turning to the multiplicative group K* of non-zero elements of X, we
first note that the valvation gives rise to an exact sequence

L4
(5) 0-U->K*->Z~0,
where U is the group of units of R. For each n = 1 the set
(6} U,=1+9"

is an open subgroup of U, and N U, =1. The associated subgroup

n
topology of U coincides with that induced on the subset U of K by the
valuation. The quotient groups can again be described in terms of the
residue class field.

ProrosiTiON 4. (i) The residue class map R — k gives rise to an iso-
morphism

UjU, 2 k* (multiplicative group).
(i) For each n = 1 the map u+> u—1 gives rise to an isomorphism
UafUpsr 2 p7lp"
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Proof. Straightforward. Observe that for u;, u, € U,
(g3 —1)—(uy —1)— (1, — 1) = (, — 1) (u,— 1) e p*~.
COROLLARY, Forn=1
U U,y =k (additive group).
ProrosiTIoN 5. (i) If k is of prime characteristic p, then for n = 1
Ul = Upss

(ii) If K is complete and if the natural number m is not a multiple of the
residue class field characteristic, then for each n = 1, the map us " is
an automorphism of U,

Proof.. (i) follows from the preceding Corollary.

For (ii) we first note that by the same Corollary the endomorphism of
U,/Uyp+ 1, induced by the endomorphism f: u o™ of U, is bijective for
each g = n. Hence in the first place £ is injective. In the second place we
can find for each element u of U, elements vy e U,, wye U, so that
w=0vw,. Again we can find elements v, € U,4;, W€ U,z so that
w, = 7wy, i.e. u = (vov;)"w,. And so on, The sequence wy, w;,... will
tend to 1, and as U, is now complete the infinite product v,v,... will
converge to an element v of U,. But then u = v™e U, We have thus
shown that f is surjective, hence bijective.

2. Dedekind Domains

Throughout R is an integral domain, K its quotient field. If p is a prime
ideal of R, we define the local ring of fractions by

R,=[xy 'eK]|x,yeR,y¢pl
pR, is the only maximal ideal of R,. Cleatlyp c pR, nR. If xe R, x¢p
then x~' e R,, and so x ¢ pR,. Thus:
LEMMA 1. p = pR, n R.
Next we show
Lemma 2. If J is an ideal of R, then

J = nRR,.

Proof. Let x,yeR, y¢p and xy~'eJ. Then xeJ R, whence
xy"te(n R)R, Thus (Jn R)R, >J. The opposite relation is even
more trivial,

ProrosiTION 1, Each of the following conditions on an integral domain R
implies the others:

(i) R is Noetherian, integrally closed and its non-zero prime ideals are
maximal.
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(ii) R is Noetherian and, for every non-zero prime ideal p, R, is a d.v. ring.
(iii) Al fractional ideals of R are invertible,

(A fractional ideal I is invertible if II"* = R)

A domain R satisfying the conditions of the Proposition is a Dedekind
domain. E.g. a principal ideal domain is a Dedekind domain.

Proof. (a) (1) implies (ii).

We shall use 1. Proposition 3. By Lemma 2 every ideal of R, is of form
IR,, where I is an ideal of R. A finite generating set of J over R is also a
finite generating set of IR, over R,. Thus R, is Noetherian.

If x is integral over R, i.e. if

X+b7 g, x" 4 +bTgy =0,
with b, a; € R, b ¢ p then bx is integral over R. Hence if x lies in the quotient
field K of R then bx € R, whence x € R,,.

Let J be a non-zero prime ideal of R,. Jn R is certainly a prime ideal
of R, and is non-zero by Lemma 2. ButJ < pR,, this being the only maximal
ideal of R,, whence Jn R = p, by Lemma 1. Hence Jn R = p and so,
by Lemma 2, J = pR,.

(b) (i) implies (iii).

Let 7 be a fractional ideal of R with generators ay,...,d, Then for
some §, say i = 1, v,(a;) = inf y,(x), v, being the valuation with valuation

xel
ring R,. But then IR, = a, R,. Hence
al-lai = xiyi-.ls with x, y;e R,y ép (i=1,...,n).
Let y = [y, Then ya,~'a,e R, hence ya,"* eI~ and so yeII~*. But
i
yép. Thus II"! ¢ p. This is true for all maximal ideals p of R. Hence
I 1'=Rr,

{c) (iii) implies (i).

Let I be a fractional ideal of R. Then 3ay,...,a,€1, by,..., b,el !
with ) a;b;= 1. If xel then x =) afb;x), byxe R. Hence a,,...,q,
generate I, Thus R is Noetherian,

Let x € K be integral over R, By 1. Lemma 3, § = R[x] is a fractional
ideal. Itis also a ring, i.e. %2 = §. Hence

S=SR=S8S5"'=S8S"!=R.
Thus R is integrally closed.

Let I be a non-zero prime ideal, p a maximal ideal containing it. Then
Ip~*t is an ideal of R and (Jp~')p = L. Hence either Ip~* cTorp < ],
i.e. p = I. The first relation however would imply that

plel ptel Y I=R,
ie. p~! = Rand so p = R, which is nonsense.
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If p is a non-zero prime ideal of a Dedekind dom_a.in R we shall denote
by v, the valuation of its quotient field X with valuation ring R,. ‘

CoroLLARY 1. Let |x| be a non-trivial multiplicative valuation of K, with
|R] < 1. Then [x| = p™\™ for some p,0 < p < 1, and some non-zero prime
ideal p of R.

me:f.f The inequality |x| < 1 defines a non-zero prime idf:al » of R.
Hence R, is characterized in K by the inequality [x| < 1. This yields the
result.

If I is a non-empty subset of K, define
v,(I} = inf vy(x)
xel

(possibly v,(I) = —c0).

PROPOSITION 2. The fractional ideals of a Dedekind domain R form an
Abelian group S(R) under multiplication. This group is Jfree on the non-zero
prime ideals p. The representation of a fractional ideal Iin terms of these
generators is given by

I=]]p>®
)

Also then
IR, = (pR,)""“).

Proof. The first assertion follows from 1. Lemma 1 and from Proposition 1.

To show that the prime ideals p generate J(R) it suffices to show t.hat
every integral ideal I (i.e. I < R), different from R, is product of prl_l:nle
ideals. Such an ideal 7 is contained in a maximal ideal p. Hence 7 = p(I;t )
with I <« Ip~* = R. The ascending chain condition now yields the required
result, o

By 1. Lemma 1, (JR)(R,) = (I)R,. We thus obtain a surjective
homomorphism

(1) St SR~ F(R,)

which acts injectively on the subgroup generated by p. If p, # p, then
PR, = R,. Forifaep,, a¢pthen already aR, = R,. Thus the p, other

than p lie in Ker f,. As a first consequence we see that the noRn-zero prime
ideals form a free generating set of J(R). Secondly we see that if

I=]]p~

IR, = (pR,)™.

then

Hence
ro= t,(IR,) = v,(I)+v,(R,) = v,(]).
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CoROLLARY 1. If'a e K* then v,(a) = O for almost all p.
COROLLARY 2.

v,(I,13) = v, (1) +v,(15),
v, (") ==v,(D),
v,(I; + I,) = infuy(I,), v (1),
Iy 0 Ip) = sup v, (), vp(12).
CoROLLARY 3. The maps f, induce an isomorphism
F(R) g];[f (R,)-
(The symbol ]] stands for the restricted direct product (direct sum) of
groups.)
Let R, be the valuation ring of the completion of X at »,. By 1.
Proposition 1,
FRY=HFR) (=Z).
Hence:
COROLLARY 4.

£(R) gl;[f(R,).

3. Modules and Bilinear Forms

In this section we introduce some concepts, which will subsequently be used
in the discussion of ideal norms, of differents and of discriminants for
extensions of Dedekind domains. Throughout this chapter R is a Dedekind
domain, X its quotient field, U a finite dimensional vector space over X of
dimension n > 0. The symbol T always stands for R-submodules of U and
the symbols L, M, N for finitely generated R-submodules which span U,
i.e. contain a basis of U, If p is a non-zero prime ideal of R, then T,=1R,
is the R,-module generated by T.
LemMa l. NT, =T.

L
Proof. This is true for any integral domain R, not necessarily Dedekind,

provided only that p runs through a set of prime ideals containing the
maximal ideals.

Clearly T = N T,. For the converse we consider an element u of N T,
P
and show that the ideal ’
J,=[x€eR|xueT]

is the whole of R, i.e. is not contained in any given maximal ideal p. In fact
u=x"'wwith weT, xeR, but x¢ p. As xeJ, we now see that J, ¢ p.
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LEMMA 2. Given M and N, there is a non-zero element a of K with
aMc N.

Proof. Let {u;} be a basis of U, contained in N. For a given finite
generating set {w,} of M, choose the element a as a “common denominator”
of the coefficients of the w; with respect to the basis {u,}.

LeMMaA 3. For almost all p, M, = N,.

Proof. By the previous Lemma we can find non-zero elements a, b of X
with aM c N <« bM. Thus M, = N, whenever v,(a) = 0 = v,(b). By
2. Proposition 2, Corollary 1, this is the case for almost all p.

Now suppose for the moment that M and N are free R-modules. They
are both of rank n, hence isomorphic. Therefore there is a non-singular
linear transformation £ of U with M¢ = N. The determinant det () is
non-zero and, apart from a unit in R, solely depends on M and N. Hence
the fractional ideal

1 Rdet({)=[M: N],
solely depends on M and N.

If the restriction on M and N to be free is removed we still get, for each p,
a fractional ideal [M,:N,] of R,. Also whenever M, = N, then
[M,: N,] = R,. By Lemma 3, and by 2. Proposition 2, Corollary 3, there
is a unique fractional ideal

[M:N]=[M:N]g
of R, the module index, such that for all p
2 [M: NIR, =[M,: N,].
One verifies that definitions (1) and (2) agree when M and N are free. One
also sees that when R = Z and M > N then [M: N] is just the ordinary
group index, viewed as a Z-ideal.

ProrosimioN 1.
() [M:N][N:Lj=[M:L]
[M:M]=R

(if) Suppose that M > N. Then [M:N) is an integral ideal, and
[M:N] = R implies M = N.
Proof. Locally (i.e. for the R,) this is obvious. For the global form one
applies Lemma 1, and 2. Proposition 2.

PrOPOSITION 2. If t is a non-singular linear transformation of U, then
[Mt: Ni]=[M:N].
Proof. Localize and apply definition (1).

Cne can also show that M =~ N, if and only if [M: N] is a principal
fractional ideal.
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Now let B(u, v} be a non-degenerate, symmetric, K-bilinear form on U.
If {u;} is a basis of U, its dual basis {v;} is defined by
B(u;,v;) = d;; (Kronecker symbol).
The dual module of T is

3 D(T) = D(T) = [u € U|B(u, T) = R].

LemMMA 4. If M is the free R-module on {u;}, then D(M) is the free R-module

on the dual basis {v;}, and
D(D(M)) = M.

Proof. Obvious,

In what follows the symbol D stands for duals with respect to R and in
place of Dy, we shall write D,.

PROPOSITION 3.

() D(M) is a finitely generated R-module, spanning U,
(i) D(M), = Dy(M,),
(lll) DM) =n Dp(Mp)’
P
(iv) D(D(M)) = M,
) [D(M) : DINY] = [N : M].

Progf. (i) M contains a free R-module N, and by Lemma 2 is contained

in a free R-module L = bN, both L and N spanning U, Hence
D(N}) = D(M) = D(L).
By Lemma 4, D(L) and D(N) are free and span U. This gives (i).

(i) Let {w;} be a finite generating set of M. Suppose ve D,(M,). Then
foralli, B(v, w)) = b™'a,, witha, be R,b¢ p. Thusve D(M)b~! < D(M),.
We have shown that

D (M), c Dp(M),.
To get the opposite inclusion, observe that
B(DR(My)s Mp) < B(DR(M)’ M)Rp = Rp'
(iii) follows from (ii} and Lemma 1, {(iv) from (ii} and Lemma 4.
The proof of (v) reduces by (ii) to the case when M and N are free. We

then only have to recall that if {#;} and {v;} are dual bases and {«/} and
{v*} are dual bases then

det (£) det (£*) = 1.

We define the discriminant of M by
“) o(M) = b(M/R) = [Dp(M) : M],.
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ProposiTiON 4,
(i) b(N) = b(M)[M : N]*.
(ii) d(M,/R,) = D(M/R)R,.
(iii) If M is the free R-module on {u,} then d(M) is the fractional ideal
generated by
det Blu;, u;).
Proof. For (i):
[D(N) : N3 = [D(N) : DAMYI[D(M) : M][M : N] (Prop. 1))
= [D(M): M][M : N7}? (Prop. 3(v)).
(ii) follows from Proposition 3(ii).
For (iif) let {v,} be the dual basis of {u} and let #; = v,/. By Lemma 4,
[D(M): M] = Rdet(¢).
On the other hand
det B(u;, v;¢) = det(¢) det B(u;, v)) = det (/).

COROLLARY 1. Suppose M > N. Then %M ) divides b(N), andd(M) = d(N)
implies M = N.

The last proposition shows that when R = Z, our discriminant is the same
as the classical discriminant over Z (to within a sign).

Let now U = U, + U, (direct sum of vector spaces). Suppose that M,
and N, span U, and write M = M,+M,, N = N;+N,. For (ii) and (iii)

in the following proposition also assume that B(U,, U,) = 0, so that B gives
rise to non-degenerate bilinear forms on U, and U,.

PROPOSITION 5.
(@ [M:N]=[M,:N,][M;:N.].
(ii) D(M) = D(M )+ D(M).
(iii) (M) = d(M,)b(M>).
Proof. Obvious,

To make life easy, we shall for the next and final proposition consider
only free R-modules M and N, although it would remain true generally.
Let R be a Dedekind domain containing R, with quotient field K. We shall
view U as embedded in the vector space U = U ®¢ K over K. The bilinear
form B can uniquely be extended to a K-bilinear form B, which is again
symmetric and non-degenerate. The R-module MR generated by M is free
and spans U.
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PROPOSITION 6.
@ [MR: NRlz=[M: NIiE,
(ii) De(MR) = Dx(M)R,
(iiiy ®(MR/R) = b(M[R)R.
Proof Qbvious,

4. Extensions
Throughout R is a Dedekind domain, K is its quotient field and L is a finite
separable algebraic extension field of XK. The condition of separability is not
needed for part of Proposition 1, and for Proposition 2 (see Z.S., Ch. V,
Th. 19 and Serre, Ch. II, Prop. 3).f But we shall not here consider the
inseparable case,

The elements of L which are integral over R form a domain S, the infegral
closure of Rin L and § is integrally closed (in L) (see Z.5., Ch. V, § 1).

LemMA L. If p is a prime ideal of R then SR, is the integral closure of
R, in L.

Proof. The elements of SR, are obviously integral over R,. Conversely,
if x is integral over R, i.e.

D, X" L+ by =0

witha,e R, be R, b ¢ p, then bx e S, hence x € SR,.

A prime ideal P of S is said to lie over the prime ideal v of R if

PBnR=0p.
We then write Plp.

PROPOSITION 1. S is a finitely generated R-module which spans L over K
and is a Dedekind domain.

Every non-zero prime ideal B of S lies over a non-zero prime ideal of R,
and there is a prime ideal of S lying over every non-zero prime ideal p of R.

Proof. Applying Lemma 1 to p = (0) we see that S spans L over K.

The trace #;;z:L — K defines a non-degenerate, symmetric K-bilinear
form

B(u,v) = tx(uv)

on L. As SK = L, S contains a free R-module N spanning L. But then, in
the notation of § 3, D(N) is free and spans L. Also

D(N) = D(S).
The traces of integral elements lie in R, and hence
D(S)= 5,

T For the references “Z.5.” and “Serre™ see the literature list at the end of Chapter I.
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ie.
D(N)> 8.

Thus S is a finitely generated R-module. It follows that § is Noetherian,
and we have already noted that § is integrally closed,
Let P be a non-zero prime ideal of § and let

B 4+a b 14 . 4a,=0

be the minimal equation of the non-zero element b of PB. Then a;,e R, for
all 4, hence a;ep = PR Thus p is non-zero. Moreover P o ps,
Le. P/pSis a prime ideal of the commutative algebra S/pS over the field Rfp.
As §'is finitely generated over R, S/pS is a finite dimensional algebrc/t, and
the same is then true for (S/pSY(BlpS) = S/PB. Thus S/P is a field,
ie. P is a maximal ideal. We have now shown that §'is a Dedekind domain,
Let p be a non-zero prime ideal of R. S =S would imply
PIS=p"1pS) = 5, ie. P! = SAK =R, which is false. If now the
prime ideal P of S is a factor of pSthen P R o pie. PaR=7p.
CoroLLARY 1. (Used in Chap. 11,)
Every discrete (multiplicative valuation of a field K can be extended 1o a
finite, separable extension fleld L.
Proof. Take R as the valuation ring in K. A suitably normalized valuation
of L of form p*»™* will do.
COROLLARY 2, The map I'— IS is an injective homomorphism # (R) - #(3).
Proof. By the proposition, together with the observation that if 7, and I,
are integral ideals of R with I +I, = R then also LS+1,5=S.
Combining Proposition 1 with the theorems proved in Chap. IT (see § 10)

on the uniqueness and the completeness, for extensions of valudtions
with complete base fields, we have '

PROPOSITION 2. If R is a d.y. ring and K is complete, then S is a dv. ring
and L is complete.

In the remainder of the present section and the early part of the next one
we shall study a number of concepis, associated with the embedding of

Rin S, In each instance our aim is to obtain a reduction to the complete
local case,

A fractional ideal J of § is finitely generated over S, hence over R. Also

ifO#aeJthenJ > a5, hence J spans L over X, We can thus define the
ideal norm by

1) Nin)=[S:J Tz-
The connection to element norms is given by
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PROPOSITION 3. If a e L* then
N LIK(aS) = Ny x(a)R.
Proof. Ny x(a)is the determinant of the linear transformation x +— ax of L!

Note that when R = Z, and when J is an ideal of § the.n Nyx(D) 'is just the
number of residue classes of § mod J, viewed as a Z-ideal. Tl}ls follows
from our remark (cf. § 3} on the interpretation of the module index as a
group index in the case R = Z.

ideal norm commutes—in a sense to be made precise—with the
isoﬁ]:r;g?sm exhibited in 2. Proposition 2, Corollary 4. We ﬁ::st recall.ta
theorem, proved in Chap. IT (see §10). Let R be a d.v. ring, p its
maximal ideal, K the completion of K at v,. Let P, run through t_he non-z;ro
prime ideals of S and denote by L, the corresponding completions. Then
we can identify (as algebras and topological vector spaces over K)

@ L®xK =YL, (directsum of fields).

View L, L, and K as embedded in this algebra. Denote by R the valuation
ring of K and by §, tléat of L;, Then we have
A2. RS = .

Iﬁfﬁ. > 8 is t%: integral closure of R in.the algebra ' L. Hirﬁcct:
RS = 3 8, RS is complete, hence closed. Xt will thus suffice to show 2
Sisdense in ) S, As we have not stated or proved 1ihe general approx;:
mation theorem which would yield this result, we s-hall give an ad hoc proof.

From Chap. II we know that L is demse in Y L, and.so Y, S, is
the closure of (3. 5} n L. We shall show that the latter n;lodule is contained
in §. The minimal polynomial of an element x of (}' 5)) n L over K 1:1as
coefficients in R. But it coincides with the minimal polynomial over K, i.e.
its coefficients liein KA R = R. Thusxe S,

Now return to the case of an arbitrary Dedekjnc} domain R. ‘If pisa
non-zero prime ideal of R write K, for the associated completion of K
and R, for its valuation ring. For a non-zero prime ideal P of S denote
the corresponding objects by Ly and Sy,

ProrosiTiON 4. If J is a fractional ideal of S then
Nyx()R, = qg Nypox,(IS,)

Proof. In view of the definition of the module index and by Lemma 1
we may assume that R = R, is a d.v. ring. But then the Proposition follows
from Lemma 2 and from 3. Propositions 5 and 6.

COROLLARY 1. N, i is a homomorphism #(S) » S(R) of groups. ion 4

Proof. By 2, Proposition 2, Corollary 4 and by the above Proposition

2
ANT.
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the proof reduces to the case when R is a d.v. ring and K is complete. But
then every fractional ideal of § is principal, and the Corollary follows from
Proposition 3 and the multiplicativity of element norms.

By similar reasoning we get

COROLLARY 2. For Ie #(R)

N LIK(I S) =1,

where n = (L: K) is the degree.

CoROLLARY 3. IfL o F o K then

N LIK(J )= N .F/K(N LIF(J ))-
We can now return to the bilinear form defined by the trace. The dual

Dg(S) of Sis clearly an S-module. By Proposition 1 and by 3, Proposition 3
it is finitely generated over R, hence over S. As Dg(S) = S we have

3 Dg(S) ="}
where D = D(S/R) is an integral ideal of S, the different.
We write
b = b(S/R)

for the discriminant defined in 3(4). As Dg(S) > S, b is an integral ideal
of R, Moreover

@ b=N ij(b)-
In fact

b = [Dg(5): 5] = [S: D)}
= NL]K(D—I)_i = NL/K(D)-
PROPOSITION 5. In the notation of Proposition 4;
(@ D(S/R)Sy = D(Sp/R,)-
(i) D(S/RR, = ql}l (Se/R,)-

Proof. By Lemma 2 and 3, Proposition 4-6.

The next proposition establishes a connection between the discriminant
(S/R) and the discriminants of an integral generator of L. This proposition
is usually established via the theory of the “Noether conductor” of a ring,
but the concept of a module index will enable us to do without this.

Let x be an element of S so that L = Kl[x}, and let g(X) be the minimal
polynomial of x over K. The ring R[x] then spans L and is the free R-
module on 1, %,...,x" 1. In the next Proposition g'(X) is the derivative
of g(X).
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PROPOSITION 6.
. 1
@D (R[x]) = gj(xj R{x].

(i) DR[x]) = (Npxg'(NR.
(iif) R[x] = S if and only if D(S/R) = g'(x)S.
Proof. By Euler’s formulae,
tLIK(xi/g’(x))ER: fOl.'i‘-=0,..., n—1.
Hence

) DR[x]) > - R[x
] gl(x) [ ]‘
By 3, Proposition 4
B(R[x]) = det tx(x**)R,
but (any old-fashioned textbook on algebra)

detfyp(x") =+ Nylg'(x)),
and so

[DGRE<D : RET] = Nul' GIR = [ = RD]: R,
whence, by (5), in fact

D(R[x]) = g%x)R[x].

We have now established (i) and (ii), and i
. : ) the necessit ition i
(iii) is a trivial consequence. ity of the condition in

Suppose that D(S/R) = g'(x)S, then

g'(x)
Now take duals again, and apply 3, Proposition 3, to get § = R[x].
Finally we prove the fower fornula:
PRO-POS[TION 7. If L o F o K and if T is the integral closure of R in F then
() D(S/R) = DAS/T)D(T/R),
(i) D(S/R} = D(T/RY"(Np;x®(S/T)),
where m = (L F).
Proof. We shall show that
D(S/R)"! = D(S/T) ' D(T/R)"?,
then (ii) will follow from (4) and the Corollaries to Pr;)position 4,

D(R[x]) > D(S) = ——§ = g,:(l—x)R[x] — DR[x]).
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By the transivity of the trace we have
11x(Sx) = teltr(S¥)T].
Hence, writing Do = D(T/R),
t;x(Sx) € Re>t1(Sx) = Dyt
1 (SxDg) € T+ xDy < DS
<x e D ID(S/T)~ .

5. Ramification
We first consider a pair of Dedekind domains R, and R, with quotient
fields K, and K, and with R; = R,. Let p; be a non-zero prime ideal of
R, and suppose that the prime ideal
P1=p20R,

is also non-zero. Then the residue class field k = R,/p, is embedded naturally
in the residue class field k, = R,/p,. The degree

1) (Fey : k1) = f(p2/91)
is the residue class degree (possibly f = o). The ramification index e(P2/r)
is defined by the equation

2) v, (p1R2) = e(p2/p1)s
ie. by

3) Restriction of v, to KT = e(p2fp()v,,-
In the obvious notation we have

PROPOSITION 1.

Fslo) 2l =SP3/v1)s
e(pafp2)e(®alp1) = e(pa/vy)-
Proof. Obvious.
PrOPOSITION 2. Let § be the valuation ideal in the completion of K = K,
with respect to the valuation v, = v,. Then
J(Blp) = 1 = e(p/p).
Proof. Let R, be the valuation ring of v, in K. By 2, Proposition 2,
e(pR,fp) =1 and by 1, Proposition 1, e(f/pR,) = 1. By Proposition 1,

e(®/p) = 1.

Every element of R,/pR, is of form xy~! with x, y € Rfp. Hence the two
fields coincide, i.e. f(pR,/P) = 1. Also R, is dense in the valuation ring
R, of the completion. Hence the image of R /pR, is dense in the discrete

group R,/F, L. f(B/pR,) = 1. Thus f(F/p) = 1.

COROLLARY.
fp2fpy) =270
e(pafpy) = e(P2fP1)-
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The results of § 4, together with the last Corollary, show that differents,
discriminants, residue class degrees, ramification indices and ideal norms,
for extensions L{K, can be described locally in terms of the completions.
From now on, and up to § 10, we shall always assume R to be a d.v. ring,
and K to be complete in the valuation topology. This situation is inherited
by finite separable extensions (4, Proposition 2). The reformulation of our
results in global terms will mostly be left to the reader.

We shall now make some changes in the notation, which was introduced
in §4, and shall use for “relative” objects the symbols D(L/K), d(L/K),
F(LIK), e(L{K). vy is the valuation of L, k;, the residue class field. For k
we also write k. p is the maximal ideal of R, B the maximal ideal of the
integral closure S of R in L.

Except for § 9, all our results will be established without assuming a priori
that the residue class field extensions are separable.

PROPOSITION 3.

dLIKALIK) = (L : K).
Proof. The vector-space S{pS over k has the sequence of quotient spaces
SIP, BIP2,..., PP (B =pS),
and by 1, Lemma 4 these are isomorphic. The dimension of §/P over k is

_f = f(L{K), hence the dimension of S/pS is ¢f. On the other hand, as &
is a free R-module of rank (L: X), the dimension of §{pS is (L: K).

Let Uy and Uy, be the groups of units of R, and of § respectively. We
already know that the embedding j: K*—L* yields a commutative diagram
(with exact rows) (cf. 1(5))

Vg
0—>Uy—K*—Z 0

A
0— U, — I* 570

Now we get in addition
CoRrROLLARY. The element norn yields a commutative diagram
0—-U,—L*—>Z—0

I
. 0> Ug—K*—Z—>0
ie.
Jor(x) = vx(N LikX)
and
Ny(P) = .
Prooj: NL[K(UL) c UK and NL]K °j = (L: K).
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Interlude on traces: Let A be a finite dimensional commutative algebra
over a field k with the following properties: (i) If NV is its radical then 4/N = B
is a field. (i) N°= 0, N°~! 5 O and for i < ¢, B ~ N'/N'*! (isomorphism
of B-modules). Denote by a the image in B of an element a of 4. Then
we have

LEMMA 1. 1,,(a) = etg,(@).

Sketch of proof: #,,(a) is the trace of the linear transformation x > xa
of the k-space 4. Let B = B, = A/N,..., B, = N'/N**1,. .. be the suc-
cessive quotient modules of the 4-module 4 and let a; be the linear trans-
formation of B; induced by 4. Then

tyla) =}, trace(a,).

But the B, are isomorphic 4-modules and hence
trace (a;) = trace(a,) = tgu(@).
Therefore the Lemma.

Now write a+» & for the residue class map § — S/%}.
LEMMA 2. m) = ety ;1 (@)

" Proof. By Lemma 1, with 4 = S/pS, N = P/pS.
Remark: Analogously one can show that

4 Nyx(a) = Ny, u(a@).

PrOPOSITION 4. v;(D) = e~1.

Proof. Write again 4 = §/pS, N = $B/pS and denote by X the image
in 4 of an element x of §. Choose a k-basis {a,} of 4, so that for
1 <i < (e—1)fthe a; form a k-basis of N. We can lift {g,} back to an
R-basis {x;} of S, so that %; = a;. Forl <i < (e—1)fand for all j, %;.X;
will lie in N, i.e. x;x; = 0, whence by Lemma 2

t(xix) € p.
Hence each of the first (e~ 1)f rows of the matrix
(rrx(xix))
lies in p, and hence by 3, Proposition 4
vg(d) = (e—1)f,

i.e.

1
0(D) = }vK(Nm D) = 70c®) = e~ L.
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L is said to be non-ramified over K, if
() «(L/K) = L.
(i) K is separable over k.

TueoreM 1. L is non-ramified over K if and only if 0(L{K) = R.
Proof. By Proposition 4, d = R, i.e. D = S implies e = 1. Now suppose
that ¢ = 1. Let {x;} be a free generating set of S over R and let
d = det tL‘rK(xixj).
By 3, Proposition 4, b = R if and only if the residue class d is non-zero,

But by Lemma 2,
d =detf;, 4(%.X))

is the discriminant of the basis {X;} of k; over k, and this does not vanish
if and only if k;, is separable over k.

Let in the sequel y be the characteristic of k. L is said to be tamely
ramified over K if

@) 2he(LiK).
(ii) k, is separable over k.
Thus if ¥ = 0, L is always tamely ramified.
THEOREM 2. The following conditions are equivalent:
(i) L is tamely ramified over K.

(i) tx(S) =R.
(i) 0, (D) =e—1,

Note: tyx(S) is always a non-zero ideal of R.

Proof. The equivalence of (i) and (i) is immediate from Lemma 2.
For the equivalence of (ii) and (iii) first note that when ¢ € K, then

frx(Sa) = tx(S)a.
Hence )
() =D n K,
or writing v = v, (D), r = vg(tyx(S))

v
r<-<r+l.
e

Thus if v = e—1 thenr = 0. If r = 0, then v < e, and so by Proposition 4.
v=e—1.

Remark: If L is normal over X one can deduce from condition (ii) in the
last theorem a further criterion. For this purpose denote by R(I) the group
ring over R of the Galois group I'. One then has the
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Normal basis theorem: The R(D)-module S is isomorphic with R(T) if and
only if L is tamely ramified over K.T

The proof is left as an exercise. Hints: Interpret the existence of an
element of trace 1 in terms of endomorphism rings to deduce that when L
is tamely ramified over K then S is projective. Then use Swan’s theorem.}

Global Application

We shall explicitly restate Theorem 1 in terms of arbitrary Dedekind
domains. Let then just for the moment R be a Dedekind domain, not
necessarily a d.v. ring, X its quotient field, and 5 the integral closure of R
in a finite separable extension field L of K. A non-zero prime ideal B of S
is non-ramified (over K) if its ramification index over P n R has value 1
and if S/ is separable over R/} N R. A non-zero prime ideal p of R is
non-ramified (in L) if all prime ideals % in S, above p, are non-ramified
over K.

COROLLARY 1 TO THEOREM 1. v is non-ramified in L if and only if p does
not divide the discriminant » of S[R.

Proof. On the one hand we know (cf. Proposition 2) that both the
ramification index and the actual residue class field extension remain
unchanged on transition to the completions. Thus p is non-ramified in L
if and only if the completions Lg, for all P above p, are non-ramified over
the completion K, of K.

On the other hand it follows from 4, Proposition 5, and 2, Corollary 4
to Proposition 2, that p does not divide b if and only if the product of the
local discriminants is trivial. As each factor is an integral ideal, this is the
same as saying that each of the local discriminants is trivial.

Now apply Theorem 1.

(By replacing the discriminant by the different one can obtain a sharper
criterion for the individual B to be non-ramified.)

COROLLARY 2 TO THEOREM 1. Almost all non-zero prime ideals of R are
non-ramified in S.

In fact all those which do not divide the discriminant!

6. Totally Ramified Extensions
The notation here, and in § 7 to 9, is that introduced in § 5. R is always
a d.v. ring, X is complete and L is a finite, separable extension field of K.
A polynomial g(X) in K[X] is separable if (¢(X), g'(X)) = 1. An Eisen-
stein polynomial in K{X] is a separable polynomial
(1) E(X)=Xm+bm_1Xm_1+...+b1X+b0,
T See E. Noether, Normalbasis bei Kdrpern ohne héhere Verzweigung, Crelle 1931,

i See R. S. Swan, Induced Representations and Projective Modules, Ann. of Math.
1960, Corollary 6.4.
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with

) vg(b) = lfori=1,...,m—1, and vg(by) = 1.
(The conditiop of separability on either L or E(X) is not really necessary
for the following theorem. But as we are only considering separable exten-

sion fields, we had to impose the corresponding restriction on E(X)).
L is totally ramified over K if e(L{K) = (L: K), i.e. fILIK) = 1.

TueoReM 1. (i) Arn Eisenstein polynomial E(X) is irreducible. If Il is a
root of E(X), then L = K[I1] is fotally ramified and v,({I1) = 1.

(it) If L is totally ramified over K and v,(II) = 1, then the minimal poly-
nomial of Il over K is Eisenstein and

S=R(D, L=K[mO.

For the proof we shall need a proposition on the representation of elements
of a complete field X by convergent series. If, for all neZ, (Il,) = n,
v(a,) = p (constant), then the series

ag

»E a,I1, (i.e. a,=0for all n near — o)
R =

converges and thus has a sum in K. Suppose now that we are given maps
IM:Z - K* r:k — R, so that r{0) = 0, and that
n
Z—-sK* —”—>- z
r res. class
k—> R —k

are 11.:lhc identity maps. Writing IT, for the image of n under IT, and % = Im r,
we have

ProPOSITION 1. Every element of K has a unique representation of form

&

a= 3 aJ, a,eR.

R¥ —
The value of a is then given by
v{a) = inf n.
an*0

Proof. Standard.
lProof .of Theorem 1. First suppose that the polynomial E(X) in (1) is
Eisenstein and that L = K[IT], where E(IT) =0. Write n = (L:K)
e = e(L{K). ’
Clearly v,(IT) = 0. Hence
. v (I1") = oy (b IT" 7 4.+ b} 2 1,
Le. vy(IT) > 1. Let s be the integer with

e
§2 —— >s5—-1. .
v (IT)
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Then
3 mznz=e=x=s.
If m > s then v, (IT") > e. Also
vi(b)) = evy(b) = e.
and so
Vb II" .+ IT) > e

Hence vy(bo) > e, ie. vx(bo) > 1 contrary to (2). We have shown that
m < 5, and so by (3)

m=n=¢e=Ss.
Therefore

v (1) = 1.
All the assertions of (i) have now been established.
For (i) we apply Proposition 1 to L. As f(L/K) = 1 we may choose R
to be in K. Taking ¢ to be an element of X, with vg(c) = 1, we put

My, = IT (geZ, O=r<e)

A rearrangement of the sum Y a,I], now shows that in fact L = K[II]
and S = R[II].

Let now the polynomial E(X) in (1) be the minimal polynomial of IT
over K. Then it is also the characteristic polynomial. Therefore, in the
first place, by = & Npx(TI) and so, by 5, Proposition 3, Corollary 1,

vg(bo) = v, (I1) = 1.
In the second place, E(X) reduced mod p is the characteristic polynomial
of the nilpotent element II mod pS of the algebra S/pS over k. Hence
E = X™(mod p), i.e. vi(b;) > 0 for all i.
COROLLARY. K has a totally ramified extension of prescribed degree e.
Proof. Let vi{c) = 1 and

E(X)=X°~cX-c

It is worth mentioning some results, which follow on from Proposition I,
but which we shall not be able to give in this course. (See Serre, Ch. IL.)

If K is the field of formal series ) a,!" over a field F (sec example in § 1)

R¥»—om
then one can clearly take IT, = f"and R = F (i.e. F = k). Here the charac-
teristics of k and K coincide. Conversely if this is the case then K is (to
within value isomorphism) the field of formal power series over k.

There remains the case when y = p % 0 but the characteristic of K is zero.
(Typical example the rational p-adic field Q,.) If one assumes also that k
is perfect (e.g. k is finite) then one can at least choose R to be multiplica-
tively closed, and uniquely so. As for the existence problem, one can show
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that if k is perfect of characteristic p # O then there is one and (essentially)
only one discretely valued, complete field X of characteristic zero which
has k as its residue class field and for which vg(p) = 1.

7. Non-ramified Extensions

A separable extension L of K determines by transition to the residue class
fields an algebraic extension of k. If L is non-ramified over X then the
residue class field extension is separable. One of our aims in the present
section is to show conversely that each separable extension of k can uniguely
be lifted to a non-ramified extension of X (in a proper functorial sense).
We first established an analogue to the theorem of the last chapter, which
gives a description of non-ramified extensions as root fields of polynomials.
Notation: The image in k; of an element a of S will always be denoted
by 4, and analogously the image in the polynomial ring k;[X] of a polynomial
(X) e S[X] by F(X).

ProPOSITION 1. (i) Suppose L to be non-ramified over K. Then there exists
an element x of S with ky = k[X}. If x is such an element and g(X) is its
minimal polynomial over K, then S = R[x], L = K[x] and §(X) is irreducible
in k[X] and separable.

(i) Suppose g(X) is a monic polynomial in R[X], such that g(X) is
irreducible in k{X) and separable. If x is a root of g(X) then L = K[x] is
non-ramified over K and k; = k[X].

Proof. (i) As k, is separable over k it is of form k[Xx] with x e S. For every
such x the minimal polynomial G(X) of X over & is separable. Also

(L : K) = degree g(X) = degree G(X) = (k. : k) = (L : K).

Thus in fact G(X) = g(X), i.e. g(X) is irreducible, and L = K{x]. The
equation S = R[x] can now be deduced either from 6, Proposition 1, as
applied to L, or from 4, Proposition 6.

(ii) We have

(L:K) =degreeg(X) = (kix]: k) < (ky 1 k) < (L : K).

Hence in the first place (L: K) = f(L{K), i.e. e(L/K) = 1 and in the second
place k;, = k[X], i.e. k is separable over k.

Consider now a class of algebraic extension fields E, E;,... of a given
field F. A homomorphism ¢ : E — E; over F is a homomorphism of fields,
leaving F elementwise fixed. Example: The identity map £— E. If
¢:E—-E, and t:E, - E, are homomorphisms over F then so is
6o7:E— E,. In other words, we have a “category” (for those familiar
with the language). We denote by HomF (E, E,) the set of homomorphisms
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E — E; over F. If E is normal over F then Hom? (E, E) is just the Galois
group.

Let E° be the separable closure of F in E, i.e. the maximal subfield of E
which is separable over F. We then obtain maps

6} Hom* (E, E,) - Hom" (E*, E})

which preserve the compositions g o7 and also the identity maps of the
fields E, i.e. we have a functor. The maps (1) are moreover injective and
if E = E* also bijective.

Now we apply this formalism to the class of finite, separable, algebraic
extensions L of K. As L will vary, we shall now use the symbol R, for its
valuation ring and p,, for its valuation ideal.

PROPOSITION 2. Let o3 L — L' be a homomorphism over K, Then, for all
xelL
v {x0) = e(L{Lo)vy(x).
Proof. The function v on L defined by
e(L[Lo)o(x) = vy{x0o)
is a discrete valuation of L, which on K coincides with v,. By uniqueness
(see Chap. I) v = vy.

COROLLARY 1. Application to normal extensions L of K and their Galois
groups.

COROLLARY 2. A homomorphism ¢: L ~ L’ over K induces, by restriction
to the valuation rings and reduction modulo the valuation ideals, a homomor-
phism & : ky — ky, over k. The resulting maps

HomX (L, L) - Hom"* (k, k1)
preserve the identity maps of fields and map composition.

Thus the residue class fields k;, define a functor, and so do the separable
closures k3§ of k in k;. Our next theorem asserts, in the language of category
theory, that the functor &} has an adjoint. This will then in particular yield
an isomorphism between the category of separable extensions of k and tl?e
category of non-ramified extensions of K.

TueoReM 1. Let k be a finite, separable, algebraic extension of k. Then
there exists a finite, separable, algebraic extension L = L(k) of K, such that

(i) k ~ kg (over k),

(ii) L is non-ramified over K,

(i} the maps

HomK (L, B) - Homk (kL! kL’)

are bijective for all L'.

Properties (i), (i) or (i), (iii) determine L uniguely, to within isomorphism
over K,
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Note: In (iii) one may of course replace k; and k;, by &£} and k3.

For the proof we need the

LemMa 1. Let g(X) be a monic polynomial in R[X] such that g(X) is
separable, and suppose that the element o of k is a root of §(X). Then there
is one and only one element of R, such that

g(x)=0 and X=u

Proof. See Chap. II, Appendix C.

Proof of Theorem 1. We know that k = k[«], where the minimal poly-
nomial G(X) of & over k is separable. Choose any monic polynomial g(X)
in R[X] with G(X) = G(X) and let L = K[x], where x is a root of g(X).
By Proposition 1, L has properties (i) and (ii).

To show that L has property (iii) consider a homomorphism w: k; — k;.
over k. By the Lemma, L’ will contain a unique element y, so that g(y) = 0
and § = Xw. But then there exists a unique homomorphism ¢:L — L’
over K with xe =y, Clearly 6 =w. If also T = w then xv =y and
S0 T = 0.

Now suppose that L' is non-ramified over X and that w is an isomorphism
ky = ky. over k., Then (L': K) = (L: K) and therefore the lifted homo-
morphism ¢: L ~ L' over K must be an isomorphism, We have thus seen
that properties {i) and (ii) determine L uniquely, to within isomorphism
over K. The corresponding uniqueness result in terms of (i} and (iii) is
standard.

CoROLLARY. L(K) is normal over K if and only if k is normal over k, and
if so then the Galois groups are isomorphic.

In the sequel a “subfield” of a finite separable, algebraic extension L of K
is always one which contains K,

THEOREM 2. L has a subfield Ly, such that the subfields L' of L which are
non-ramified over K are precisely the subfields of L,. Also ky, = ki.

If L is normal over K with Galois group T then L, is normal over K and is
the fixed field of

Iy = [yeT|oy(xy—x) > 0 for all x € Ry]

Iy is called the inertia group of L over K.

Proof. The existence of a subfield L, which is non-ramified over X,
with k,, = ki, follows from Theorem 1. All subfields of L, are then also
non-ramified over K. In fact, from the definition of the term “non-ramified”
we see that, for any tower E » F o K of fields, E/K is non-ramified if and
only if E/F and F/K are non-ramified.

Conversely, let L' be a subfield of L, non-ramified over K. Then
k. c ki = ky,. By Theorem 1, as applied to k = k. we obtain a homo-
morphism ¢:L' - L, over K so that  is the inclusion map. Now let



28 A. FROHLICH

k;. = k[, with xeL’. Then x and xo are elements of L with the same
residue class and so, by Lemma 1, x = x¢. But, by Proposition I,
L' = K[x], and so L' < L.

Now suppose L is normal. The conjugate fields of L, in L are all non-
ramified over K, hence coincide with Lo, i.e. L, is normal. The inertia
group Ty by its definition is the kernel of the homomorphism

- I'IOH:I.I'c (kL! kL)'
As the maps (1) are injective, Ty is also the kernel of the homomorphism

from I into the Galois group Hom* (k3, k7)) of k. If 2 is the Galois group
of Ly/K, it follows from Theorem 1 that
Ty =Ker('- Q),

which is the required result.

COROLLARY 1. The composite field of non-ramified extensions L and L’
in a given separable closure of K is non-ramified.

The union X, of all non-ramified extensions L of X in a given separable
closure of K is called the maximal non-ramified extension of K.

COROLLARY 2. Every finite extension of K in K, is non-ramified. The
Galois group Y(K,,/K) is isomorphic (as a topological group) with the Galois
group T(]*[k) of the separable closure &° of k.

Application (see Chapters III and V). We suppose now that & is a finite
field of characteristic p with ¢ = p™ elements. Denote by Z the completion
of Z with respect to the topology defined by the subgroups nZ (n > 0).
Then T'(k¥/k) is an isomorphic copy of Z under the map

Vi Wy
where

Hence:

1. There is a unique element o, in T(K,/K) with the following property:
If L is a subfield of K,.{K, then for all ae Ry,

ac,=a' (modpy).
The map v o} is an isomorphism Z = Y(K,,/K) of topological groups.
(o, is the Frobenius substitution)

This result implies that for each integer # > 0 the field X has one and
(to within isomorphism over K) only on¢ non-ramified extension L of
degree n. Further L is normal over K with cyclic Galois group.

From the theory of finite fields and by Proposition 1 we also have

I1. K, is the union of the fields of m-th roots of unity (in a given separable
closure of K) for all m prime to p.
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In conclusion we consider the effect of the norm map on the groups of
units. (See the Corollary to 5, Proposition 3.) The subgroups defined in
§ 1(6) for the fields X and L will be denoted by Uy, and Uy .

PROPOSITION 3. If L is non-ramified over K then for alln = 1

NLIK(UL. n) = UK, "

Proof. Choose an element IT in K with v,(IT) = 1, i.e. v (IT) = 1. Then

U, . consists of the elements
u=1-TI"x, x € Ry.
If m = (L: K), the characteristic polynomial #(X) of II"x over K is of form
B(X) = X" =TIty () X" 4TI 1hy(X),  hy(X) € R[X].
Therefore
NL/K(u) = h(l) = 1-I~H"ILIK(JC) (mOd pn+1).

This implies in the first place that

NpyUp,n) © Ug e
By 5, Theorem 2, #;,x(R;) = R and hence also

N L/K(UL.n)UK,n+1 = UK,n'
Now one uses completeness, proceeding as for 1, Proposition 5, to finish
the proof.

COROLLARY. Suppose that L is non-ramified over K. Then a unit in Ug
is norm of Uy, if and only if its residue class mod p is norm of ky. In particular
if k is finite then

N LIK(UL) = Uk

Proof. By 5, (4).

8. Tamely Ramified Extensions

The notation is the same as in § 7. y is the characteristic of k. The term
“subfield” is used as in 7, Theorem 2. T, is always the inertia group defined
there.

Tueorem 1. (i) L has a subfield L, such that the subfields L' of L which
are tamely ramified over K are precisely the subfields of Ly, If x=p#0
then (L.: L,) is a power of p.

(i) Suppose that L is normal over K with Galois group . Then L, is normal
over K and is the fixed field of

Ty = [7 € Tloslxy—x) = vy(x)+1 for all x & R;].
If v (T) = 1, then the map
y= Iy



30 A, FROHLICH

defines a homomorphism 8, of T into kY., which is independent of the choice
of T1 and whose kernel is T'y. T/, is a cyclic group. If y = p # O then T,
is the (unique) p-Sylow group of T,

Note: If y = 0 then L is tamely ramified anyway. In this case, the theorem
just asserts the existence of the homomorphism 8, and the resulting fact
that I'y is cyclic.

Proof. We first consider the normal case, and begin by establishing the
properties of the homomorphism 6. T, is clearly a subgroup of T'y and 2
normal subgroup of I.

If yeI'y and if u is a unit of R, then uy/u = 1 (mod p,). Hence the

residue class fy(y) = ITy/IT in k¥ is independent of the particular choice
of I (within the condition o, (T) = 1). As I, acts trivially on k¥ one sees
that 0y(y, 72) = Oo(y.)0e(72). As Ty is a finite group, the 8,(y) are roots of
unity, and so lie in (k})* = kf,. Moreover, it follows that I'y/Ker 8, =~ Im 8,
is cyclic, and that its order is not divisible by y. Finally, as uy/u = 1 for
all units u, we have, for a e L*, the equation ay/a = 0o(y)™®. Hence in fact
I’y = Ker 8,.

Let now L, be the fixed field of I';. We have seen that if y = p # O then
the degree (Ly:Ly) is prime to p. As kg 2 k;, > k;, and as (R TARE
a power of p it follows that f{L,/L;) = 1. Also e(L,/L,) is prime to p.
Thus L, is tamely ramified over L,.

In the sequel we shall use repeatedly the fact that, for any tower
E > F o K of fields, E/K is tamely ramified if and only if E/F and F/K are
tamely ramified. This follows from the definition of tame ramification.
As a first consequence we conclude the L, and its subfields are tamely
ramified over K.

Let L’ be a subfield of L, tamely ramified over K. We shall now show
that L' < L,, Let L'Ly = E, L' "L, = F. Then L'(F is tamely ramified
and hence, by 5, Theorem 2, there exists an element a € R;. with ¢, @) = 1,
As T’y is normal, we then also have g (a) = 1, and so, again by 5),
Theorem 2, E is tamely ramified over L, i.e. over X, Hence kg < ki, ig.
kg = kz, and so E is also totally ramified over L,.

Let vg(c) = 1 and let g(X) be the minimal polynomial of ¢ over L,.
By 6, Theorem 1 and 4, Proposition 6, we have

D(EfLo) = Rgg'(c),
and hence by 5, Theorem 2,
vg(g'(C)) =e— 1, €= e(EILO)!

(0 v(g'(e)) = (e— Do (e).
Now let E be the fixed field of the subgroup A of I',. Choose in each
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right coset of I’y mod A, other than A itself, an element y. Then
g = 1:[ (c—en)
For each of the e—1 factors of the product we have

vife—cy) = v.(e),
and so by (D)

vi(c—ey) = v(c).
Hence y¢I',. This however implies that A o T";, i.e. that E < L,, and
SO L'cL 1e

Now suppose that y = p # 0 and that L”" is a proper extension of L, in L.
Then L” is not tamely ramified over L,, i.e. either ple(L"fL,) or p| f(L"[L,)
and so certainly p|(L”:L,). It follows that I'; coincides with its p-Sylow

oup.
nghI?: results for non-normal L. now follow by embedding L in a normal
extension of K. The details are left to the reader.

CorOLLARY 1. The inertia group Iy is always soluble. More precisely,
if x =0, then Ty is cyclic, and if y = p # O, then T’y is the extension of a
p-group by a cyclic group.

If k is finite then the Galois group of a normal extension is soluble.

COROLLARY 2. The composite field of tamely ramified extensions L and L'
in a separable closure of K is again tamely ramified.

The maximal tamely ramified extension K,, of K is the union of all tamely
ramified extensions in a separable closure of X.

COROLLARY 3. All finite extensions of K in K, are tamely ramified.
K, contains K,. If x=0 then T(K,/K,) 2 Z, if x=p#0 then
T, /K, = ]] 2,

Remark: The group T', has an interesting module theoretic characteriza-
tion. Ry, has the structure of a module over the group ring R(I'). For a
subgroup A of the Galois group T one can show that R; will be relative
projective with respect R(A) if and only if A = Ty,

From Theorem 1, one sees that in order to “catch” the tamely ramified
extensions one has to proceed in two steps. First construct a non-ramified
extension (dealt with in § 7) and then a totally and tamely ramified normal
extension. This last step can also be described explicitly.

We first recall a bit of Kummer theory (see Chap, IIT). Suppose that X
contains the primitive e-th roots of unity and that the element ¢ of K*
has true order ¢ modulo X**. Then the field XK(IT), TF* = ¢, is normal over
K of degree ¢ and the equations

¥ (y) = IIy/T1
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define an injective homomorphism ¥, of the Galois group into K*. We shall
then write

vdy) = y)-

ProPOSITION 1. (i) Let L be a normal totally and tamely ramified extension
of degree e. Then K contains the primitive e-th roots of unity and there is an
element ¢ € K* with vi(c) = 1 and L = K(c"'*).

Moreover , coincides with the homomorphism 8, of Theorem 1.

Also L = K(bY¢) with vg(b) = 1 if and only if

be™t e k*e

(i) If x ¥ e and if K contains the primitive e-th rools of unity, and if
vg(c) = 1, then the field L = K(c"'e) is normal, totally and tamely ramified
over K, of degree e.

Proof. (i) By Theorem 1, Im 8, is precisely the group of primitive e-th
roots of unity of k*. As the polynomial X *—1 is separable over k it follows
from 7, Lemma 1, that X contains the primitive e-th roots of unity and that
these are mapped injectively into k*. The Galois group T’ of L{K being
cyclic of order e it follows from Kummer theory that L = K(cY®), where
¢ is the order of ¢ mod K*¢. Moreover, both {, and 8, are now injective
homomorphisms I — k*, with the same image. Therefore

@ y.=606, (e=1
But as seen in the proof of Theorem 1,
(3) r = v,(c') = v,{c).

Thus (vg(c), €) = 1. We may now replace ¢ by ¢'a* with (s, ¢) = land ae K*,
and we can thus ensure that vg(c) = 1, and then by (2) (3) ¥ = bo.

If now also L = K(b'/) then, by Kummer theory, b = c'a® with a € K¥,
(r,e)=1and 0 <r<e If vg(h) = 1 then we must have r = 1, and so
the element a is a unit. The final form of our criterion will now fo}]ow
from 1, Proposition 5.

(ii) follows from Kummer theory and by 6, Theorem 1.

CoROLLARY 1. Let vg(c) = 1. Then K, is the union of fields K, (c!®),
for all e not divisible by y.

We finally turn again to unit norms. Using the notation of 7, Proposi-
tion 3, we have

PROPOSITION 2. If L is tamely ramified over K then
NL,rx(UL, 1) =Ug,1.

Proof. By 5(4) we know that always Nyx(Up) = Ug,y. In view of
7, Proposition 3 and the transitivity of the norm, we may also assume that
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L is totally ramified over K, say of degree e. But then we have by 1, Pro-
position 5,

UK,t = Uk, < NL]K(UL. 1)-

9, The Ramification Groups

Throughout this chapter L is normal over K with Galois group I' = I'(L/K).
The series of subgroups beginning with Ty, T’y {cf. § 7, 8) can be continued.
Apart from a brief indication of the general case, we shall from now on
always assume that %, is separable over k, i.e. that ky = k;,. This is
certainly the case whenever k is a finite field. Under this hypothesis we have
(irrespective of whether L is normal or not)

ProrosiTion 1. Ry = Rladl.

Proof. In the notation of 7, Theorem 2, and by 7, Proposition 1, there
exists an element b of L, so that k; = k[b] and so that the residue class
polynomial g(X) of the minimal polynomial g(X) of b over X is separable.
Thus g'(b) # 0.

Let now a = b+ h, with v, (1) = 1, Then we get from the Taylor expansion
of g(X) the equation

g(a) = hg'(b) +0(h?).
Hence

vifg(a)) = L.

Now we apply 6, Proposition 1 to L. As k; = kfd@] we can choose an
R consisting of “polynomials” in ¢ with coefficients in R. If n = me+r,
e=e(L{K), 0 < r < e, meZ we take IT, = g(a)c™, where ce K, ve(c)=1.
Re-arranging the series expansion for an element of R, one sees that
RL = R[a].

. With a as in the proposition we now define a functioni = iy x: I'=Z v ®
Y

(1 iLuc(}’) = i(y) = v (ay—a).
We furthermore define (for i = —1)

(3] T =[yeT|olxy—x) = i+1, for all x € R.].

Thus 1_"_1 =T. For i = 0 this was precisely the definition of the inertia
group in § 7. For i = 1 we shall subsequently see that this definition agrees
with that in § 8.

The following proposition connects the I'; with the function 7 g, and

shows incidentally that this function is independent of the choice of the
generator a. ’
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PROPOSITION 2.
() yeT=i(y)z i+l
(i) i(yd) = inf(i(»), #(9))-
(i) i(5ys™") = i(y).
Proof. Obvious.
COROLLARY 1. The T'; are normal subgroups of T with T'y,q = Ty, and
T, = 1 for large m.
In fact

m = supi(y)
y&l

will do.
COROLLARY 2. If i(y) # i(6) then
i(y0) = inf (i(y), i(9))-
The T, are the ramification groups (Hilbert).

If A is a subgroup of I, then it is the Galois group of L over the fixed
field of A. We have clearly:
ProposITION 3. A, =T;n A,

In the sequel U is the group of units of Ry, and the U, are the subgroups
defined in § 1(6) (with K replaced by L).
TueoreM 1. Let i = 1. Then veT; if and only if for all x e L¥, xy/x
lies in U}
Choose an element X1 of L with v, (I1) = 1. Then the map
ys ITy/Tlmod Uy

is a homomorphism
0;: Ty = UfUis1s
which is independent of the particular choice of I, dnd whose kernel is Ty y.
Note: We now know that I";(§ 8) = I";(§ 10).
Proof. If xy/x e U, for all x e L*, then y acts trivially on &, hence y € T'.
As ky = kg, the elements of R, are of form y+z, yep, ze Ry, But
then

o=t == =u(2 - 1)+ um z i+
Thus yeT',.
Suppose conversely that yeI',. Ifye U then
v (ply—1) =vyy—y) = i+1,
hence
3 iy e Uisy.
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Now let v, (IT) = 1. Then
o (MY~ 1) = o, (Tly—-I) -1 2§,
i.e. Iy/Tle U, Write
0.(7) =IIy/Ilimod Uy 4.
By (3) we see firstly that 8(y) is independent of the choice of I, and secondly
that if x € L* then
80" = xy/xmod U4 ;.
Hence in the first place
xy/xe U,
and in the second place—applying what we have proved already—
8{y)=1lifand onlyifye Ty ,.
Finally for v, é eI'; we have
TIp8/TI = (TIy/IL)S(TIS{IT).
As IIy/I1 € U, we know from (3) that
(Thy/IDé = IIy/TT  (mod U4 4)
and thus we have
8,(v8) = 0,(1)0,().

We know that if ¥ = 0, then already I'; = 1. On the other hand, if
x = p # 0, then by 1, Proposition 5, Uf < U,,,. Hence:

COROLLARY. If x =p # 0 then, for i = 1, TyT;s; is an elementary
Abelian p-group.

For the commutator properties of the ramification groups see Serre,
Ch. IV.

Note: If ky is not assumed to be separable over k, one has to define two
sequences of subgroups. One is given by (2) (for { = 0), and we shall denote
these groups for the moment by I'y,. On the other hand, the criterion of
Theorem 1: “xy/x € U, for all xe L*” defines a second sequence of sub-
groups I'¥ (i = 1). Corollary 1 to Proposition 2 and Proposition 3 remain
valid for each of the two sequences, and so does the Corollary to Theorem 1.
In other words, for i > 1the quotients I';, /T4 14 and I'F/TF ., areelementary
Abelian p-groups.

The two sequences are interwoven, i.e. for i > 0, I ® %y 2 Tisgue
If k, is separable over k then, by Theorem 1, I,y = I';y (4. On the other
hand if e(L/L,) = L then Ty = T7, (fori = 1).

From now on k; is again assumed to be separable over k. The ramification
groups yield an explicit determination of the different, which generalizes the
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ormula (cf. 5, Theorem 2) holding in the tamely ramified case. We shall
vrite
O] g; = orderI';.

Note that L/ L, is now totally ramified, i.e.
go = e(L{Lo) = e(L{K).

PRrOPOSITION 4.
0 (D) =Y, i) =2 (g:—1).
r¥1 i=0

Proof. Let R, = Rl[a] and let g(X) be the minimal polynomial of «
over K. By 4, Proposition 6,

b = g‘(a)RLa
and hence
v (D) = v fg'(@) = v (yl;fl(a -av))

=¥ i) = ¥ i@ 1=D~(g:—=1)
FERY i=0

= E (g;i—1).
i=o0
COROLLARY. Let A be a subgroup of T, F its fixed field. Then
e(L{F)o(D(F[K)) = E,Ait.m()’)-
v

Proof. By the tower formula (cf. 4, Proposition 7) we have
e(L{F)oe(D(F/K)) = vy(DLIK)) — v (D(L/F)).

Now apply the last proposition to evaluate the right-hand side, noting that
for & € A, iyx(8) = iy#(8) (by Proposition 3).

From now on we shall be concerned with the following situation: A s
a normal subgroup of I' with fixed field F. F is then normal over K with
Galois group I'/A. Our first aim is to determine the function ipx.

ProposITION 5. For w € T'/A
e(L{F)igx(w) = Z i (¥)-
yw

Proof. For o = 1 both sides are infinite. Assume now that w % 1. Let
R, = R[a] and let g(X) be the minimal polynomial of a over F. Acting
with @ on g(X) coefficientwise, we obtain a polynomial {gw)(X). Then

p;r/x(w) - pE(LIF)l'F;x(OJ)
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divides the coeflicients of (gw)(X)— g(X), and so divides
(go}(a)—g(a) = (gw)(a) = [ (a—ay).

¥

In other words
&) e(LIF)ig () £ 3, igw(y).
e

Now evalvate e(L/F)op(D(F/K)) first via Proposition 4 (with F in place
of L) and then via the corollary to that proposition. Comparing the results
we obtain the equation

Z e(L/F )iF]K(w) =0§1 1;‘2:.!4!((7)'

wFEl

But this implies that we must have equality in (5).

‘We now turn to the ramification groups of I'/A. Our results in § 7 and
§8 imply that ([JA); = T\/A/A for i =0,1. But the same is no longer
generally true for i > 1. To obtain an analogue to Proposition 3 for quotient
groups one has, following Herbrand, to introduce a new enumeration of
the ramification groups.

In the sequel x is a real variable > —1. We write

{(6) T, = I';, where i is the least integer = x.
We then define a function ¢ = ¢k by

xif—1<x=<0,

@ () = i[g1+...+gm+<x—m>gm+1]

if x = 0 and m is the integral part of x

(i.e. m the integer with m < x < m+1).

$(x) is a continuous, strictly increasing function and thus possesses a
continuous, strictly increasing inverse function ¥(») (—1 < y). The new,
“ypper” enumeration of the ramification groups is then given by

) DY=T,if x = y), ie y=¢().

We shall need some formal properties of the function ¢.
LemMa 1. The function ¢ is characterized by the following properties:

@ ¢© =0.
(i) ¢(x) is continuous.
(iii) If m is an integer =—1, then $(x) is linear in the closed interval
[m, m+ 1] and has derivative
¢'(x) = order T, /e(L/K)
in the open interval (m, m+1).
Proof. Obvious,
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Lemma 2. If ¢(x) is integral, then so is x.
Proof. For xe[—1,0] this is obvions. If xe[m, m+1] (m = 0) and

y = ¢(x), then
1
x = r [goy+m9:n+1—(gl+ L] +gm)]‘

mé1
The lemma now follows by observing that g, 4, divides go,. . ., Gm
LeEMMA 3,

P()+1= 1 Y, inf(i(y), x+1).
dover

Proof. We shall give the proof for x > 0 only. Let m be the integer
with m < x < m+1, Then
x+1 =inf(i(y),x+1}epel,eq.
Therefore
L 2 inf(i(y), x+1) = 1—( 5 i(y)+g,,,+1(x+1))
Fo\pelma

Joyer

1 m+ 1 .
=—{ ¥ (gt—l—Gi)l+9m+1(x+1))
do \i=0

1/m ‘
- .t;; (izogi_g"”' 1(m+ 1)'l"gm+ 1(?~+ 1))
= ¢p(x)+1.

The theorem we wish to prove is:
THEOREM 2.
@) Prx(x) = Pl Prip(x))
(ii) Forally=-1
(T[AY =TYA[A.
Proof. For weT /A define
) JH) = sup iy ().

i

Our first step is to prove that
(10) iF,!K(w)_ I= ¢L}‘F(j(w)'_’1)-
Choose 7, €T so that yo — 0 and that iy ;g(y,) = j{w). Then the equation
in Proposition 5 can be written in the form
(11) e(L{F )imc(m) =62AiLIK(}’0 %)

If i1,x(8) < j(w), then by Proposition 2, Corollary 2, ip;x(ve0) = irx(9).
If ir,4(8) 2 j(w), then by Proposition 2,
) J) Z iyx(y09) 2 inf (iyx(6), (@) = j(w),
ie.
iux(’l’oé) = j(w).
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Thus in all cases

(12) iL/K(?Da) = inf (i, £(8), j(w)),
(recalling that ip+(6) = i x(3) by Proposition 3). Now substitute (12)
into (11) and apply Lemma 3 (for L/F), to obtain (10).

Using (10) we now have:
welAlAex £ j(w)-1+ ¢L/F(x) = ¢L/F(.f(03) -1)
- ¢L;F(x) Sipxl@)—-lewe Iy A)y

with y = ¢,(x). In other words we have shown that

(13) L AJA = (T/A),, fory = dyp(x).

We now establish Theorem 2(i). Write 8(x) = ¢p/xl(Prr(x)). We shall
use the characterization of ¢ given in Lemma 1. 8(x) clearly has pro-
perties (i) and (ii), Moreover, if x varies over an open interval (m, m+1)
then, by Lemma 2, the interval (¢, ,¢(n1), ¢ r(m+1)) does not contain integral
values. Hence ¢px(y) is linear in the closed interval [¢pp(m), ¢p/r(m+1)]
and so 0(x) is linear in [m, m+1].

It remains to compare the derivatives for non-integral x, We have

(14) 0'(x) = prx(y). d1yp(x), with y = ().
By Lemma 1 (for FfK)
$(y) = order (T/8),/e(F/K)
and so by (13)
(15) Orx(y) = (T;A: A)/e(FIK).
By Lemma 1 (for L{F) and by Proposition 3
¢15(x) = order (I'; n A)fe(L/F).
Hence by (14), (15) and by Lemma 1 (for L/K)
6'(x) = pryx(x)
and so finally
¢L[K(x) = ¢ij(¢1./r(x))-
But this equation, in conjunction with {13) now implies that
TPAJA = (T/AY
(z = ¢px(y) = dx(x)). We have thus established the theorem.
For further properties of the Herbrand function see Serre, Ch, IV and V,

10. Decomposition

We now return to the global case. R is an arbitrary Dedekind domain, X its
quotient field, and S the integral closure of R in a finite separable extension
L of K. p is a non-zero prime ideal of R and ‘B a non-zero prime ideal of S.
The associated completions will be denoted by K|, and by Ly. For the
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ramification index of P over P n R we write ey and for the residue class
degree fy. Thus

M pS =] %

Blp
) Ny =p™ (p=%nR).
PrOPOSITION 1.
(L:K) =q§ en fo

Proof. By 4(2)
(L:K) =mzh;(L,, 1K)

and by 5, Proposition 3,

(Ly: K))=eqfy.

From now on suppose that L is normal over K with Galois group I
As Sy = S, the conjugate By (yeT) of the prime ideal P will again be a
prime tdeal of S, and if S|3|p then clearly also E|3y|p. Conversely one has

ProrosITION 2. All prime ideals in § Iying above p = B N R are conjugates
Py of P.

Proof. The proof involves a special case of the Chinese remainder theorem,
which we have not even stated earlier on. Let I be the product of the prime
ideals of S, above p and different from . Then P+7T = 5. Thus there
exist elements ae P, b e I with a+b = 1. But then

aeP, a¢P,if Bylp and B, #P.
More generally
ay € Py, ay ¢ B; of P, [p and B, # Py.
Taking the product over y € I" we see that
[1(ay) € B, if B,|p and P, # Py for all y.
But
[T@y) =Nya)ePnR=p.
Thus ‘.]31|p does in fact imply P, = Py.

COROLLARY. eq = ¢ and fy = f solely depend on p= PR If gis
the number of prime ideals of S, lying above p, then

3 efg = (L: K).
The elements y of I’ with Py = P form a subgroup I'y, the decomposition
group. They are characterized by the equation
Usa(x]’) = ”sp(x)
for all x e L (or for all x e §)). If y eI then clearly
(4) Ty, =7 'Tgy.
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PROPOSITION 3. Suppose B fies above p. Then Ly is normal over K,,. Denote
the Galois group by Zq. The restriction to L of the automorphisms o € Zy
then gives rise to an isomorphism

Tyl

Proof. Define in the first place Zq as the group of automorphisms of Ly
leaving K, elementwise fixed. An element ¢ of Zy maps L into the extension
field Ly of K and leaves the elements of X fixed. As L is normal it follows
that Le = L. In other words, there is a unique element & of I" whose action
on L coincides with that of 0. Moreover, by 7, Proposition 2, vy(x8) = vg(x)
forallxeL,ie. 6 ey, We thus obtain a homomorphism

) h:Zyg—Ty, h(g) = 8.
Let yeT'y. 7y acts continuously on L with respect to the vg-topology.

It then follows from the universal embedding property of completions that
there is an element y* = #(y) of Zg, making the diagram

¥

L —L

1 b l

Ly — Ly
commutative. We obtain a homomorphism
so that both ket and feh are identity maps, and thus % is in fact an
isomorphism.

We now only have to show that the order of Zy, i.e. of I'y coincides with

the degree (Lg:K)) = egpfy = ¢f = (L:K)[g (cf. Corollary to Proposi-

tion 2), i.e. that the group index (I': F'y) is g. This, however, isimmediate
from the definition of 'y and by Proposition 2.

Now we can get a definition for the ramification groups of L{K. Identify
I'y with the Galois group of Ly/K, and define the I'y, in the first place
locally as in § 9. As S is dense in each of its completions it follows then that
in fact

Ty.=[ve Fq,|v$(xy-x) >i+1, forallxesS].
For i = 0, one can moreover show that
Ty =[yeT|oglxy—x) = i+1, forallxesS].
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1. Valuations

We shall be concerned only with rank 1 valuations, so for brevity, valuation
will mean “rank 1 valuation™.

DEFINITION. - A valuation || on a field k is a function defined on k with
values in the non-negative real numbers satisfying the Jollowing axioms.

(1) |o| = 0 ifand only if e = 0.

@) |8} = [of|}.

() There is a constant C such that || +a| < C whenever [of < 1.

DEFINITION.  The trivial valuation of k is that for which o] = 1 for alt
a#0,

Note: This will often be tacitly excluded from consideration.

42
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From (2) we have
1= 1)1,

so |1} =1 by (1). If now some power of mek is 1, say " = 1 we have
|co] = 1by (2). In particular the only valuation of the finite fields is the
trivial one.

The same argument shows that [—1] = 1 and so

|-aj=|a|] allaek.

DEFINITION.  Two valuations | |, | |, on the same field k are equivalent if
there is a ¢ > 0 such that

lod2 = o5 (1.1

Note: If |a|, is a valuation then ||, defined by (1.1) is one also. Equivalence
is clearly an equivalence relation.

Trivially every valuvation is equivalent to one with C = 2, For such a
valuation it can be shownt that

€h) |B+7| < [8]+ ]

(The “triangle inequality”.) Conversely (1), (2) and (3') trivially imply (3)
with € = 2, We shall at first be almost entirely concerned with properties
of valuations unaffected by equivalence and so will often use {3') instead
of (3).

T We shall actually be concerned only with valuations with € = 1, for which (3") is
trivial (see mext section), or with valvations equivalent to the ordinary absolute value of
the real or complex numbers, for which (3°) is well known to hold: and we use {3) instead
of (3') (following Artin) only for the technical reason that we will want to call the square
of the absolute value of the complex numbers a valuation. For completeness, however,
we give the deduction of (3') from (3) with C = 2. First, ja; + o< 2 max lezl, lotz|, on
putting x; = ey if, say, |t = |eg]. Then, by induction,

or
|’ Zla,I < 2" max [a],
and so for any # > 0, we have
a
| 2 &) < 2"max |y < 2n max leesl,
F RS

where 2~ < n < 2, on inserting 2" — #» zero summands. In patticular
W) <281} =22 (n>0).
But now
I8+ y" = Ifl (1) By
< 2(n + 1) max [()] 181 {yl*~
< 4(n + 1) max (3)| Bl ly~?

< 4+ DB+ D
and (3') follows on extracting nth roots and making n - o0,
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For later use we note the formal consequence

|11~ | < 18—l
of (3') where the outside | | are the ordinary absolute value. For one need
only apply the triangle inequality to the identity

B=vy+pf-y, y=B+(~-p)

2. Types of Valuation

We define two important properties of a valuation, both of which apply to
whole equivalence classes of valuation.

DerNITION.  The valuation | | is discrete if there is a 8 > 0 such that
1-5 <o <145
implies |of = 1.

This is the same as saying that the set of log|a|, x€k, o 5 0 form a
discrete subgroup of the reals under addition. Such a group is necessarily
free on one generator, i.e. there is a ¢ < 1 such that [«], « # O runs through
precisely the set of ¢, me Z. If Ja| = ¢™ we call m = m(a) the order of a.
Axiom 2 implies

ord (af) = orda+ord §.

DEerINITION.  The valuation | | is non-archimedean if one can take C =1
in Axiom 3, i.e. if

|8-+7] < max {|g], [¥]}- (2.1)
If it is not non-archimedean, then it is archimedean.
‘We note at once the consequence

[B+y| =181 if o} < |l
of 2.1). For
|8] = |(B+1)—7| < max {|B+7], }.

For non-arch. || the « with [a] < 1 clearly form a ring, the ring o of
integers. Two non-archimedean valuations are equivalent if and only if
they give the same o: for |§| < |y| if and only if By~ €0, 7'y ¢ 0 (cf. § 4).

The set of « with |«| < I form an ideal p in o, clearly maximal. It consists
precisely of the a e o with ™! ¢ 0.

The notation » and p will be standard. The reader will easily prove the

LEMMA., Let I | be non-archimedean, A necessary and sufficient condition
for it to be discrete is that p is a principal ideal.

We need later the

LeMMA. A necessary and sufficient condition that | | be non-archimedean
is that |n| < 1 for all n in the ring generated by 1 in k.

Note: We cannot identify this ring with Z if & has a characteristic.
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Proof. Necessity is obvious, For sufficiency let |¢| < I, and then by
the triangle inequality

f1+of = fit-+oy]
2 fn
= j;o (1) 4

<1414, 4+1=n

so (n— 0), ll—l—a] <1

COROLLARY. If Chark =p # O then any valuation of k is non-
archimedean.

For the ring generated by 1 in k is the field F of p elements. If beF,
then b*~! = land so |5| = L.

3. Examples of Valuations

The archetypal example of an arch. valuation is the absolute value on the
field C of complex numbers. It is essentially the only one:

THEOREM (Gelfand-Tornheim). Any field k with an arch. valuation is
isomorphic to a subfield of C, the valuation being equivalent to that induced
by the absolute valuation on C.

‘We do not prove this as we do not need it. See e.g. E. Artin, “Theory of
Algebraic Numbers” (Striker, Gottingen), pp. 45 and 67.

The non-arch. valuations are legion. On the rationals Q there is one
for every prime p > 0, the p-adic valuation defined by

|ptufo], = p~*
fora,u,veZ,p Yu,p Yo
TueoreM (Ostrowski). The only non-trivial valuations on Q are those
equivalent io the | ‘ » or the ordinary absolute value | |m.
Proof. Let || be a non-trivial valuation on Q which (without loss of
generality) satisfies the triangle inequality.
Let a € Z be greater than 1. Every b e Z can be put in the shape

b=b,a"+b,,a™ ... +b,

where
0<bh;<a 0D<j<sm)
and
m < 1980
loga

By the triangle inequality

logh
|b| < # (% + 1) max{1,|a|l§:_a},
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where
S = max ]d[

1s5d<a
On putting b = ¢" and letting # — 0, we nave

loge
lef < max{t, wﬁ}. €3))

First Case. 3¢ > 1 in Z with |¢] > 1. Then |a| > 1 foreverya > 1in Z
and (3.1) gives
1 1
|e[Pse = |alos,
Hence | | is equivalent to the ordinary absolute value.

Second Case. |c| < 1 for all ¢ e Z so by a previous lemma | | is non-arch.
Since || is non-trivial the set a of ae Z with [a| < 1 is non-empty and is
clearly a Z-ideal. Since [be] = |b||¢| the ideal a is prime, say belonging to
p > 0 and then clearly | | is equivalent to | |,.

Now let k, be any field and let & = koff), where ¢ is transcendental.

If p = p(r) is an irreducible polynomial in the ring k,[f] we define a valuation
by
[(p(®) u(®fo(®)], = ¢™* (3.2)

where ¢ < 1 is fixed, ae Z and u(t), o(t) e kolt], p(2) ¥ u(t), p(t) ¥ o(t).
In addition there is the non-arch. valuation | |,, defined by

u(t)
v(1)
Note the analogy between ky(¢) and Q, which is however not perfect. If
s =171, 50 koft) = ko(s), the valuation | |, is seen to be of the type (3.2)
belonging to the irreducible polynomial p(s) = s.

The reader will easily prove the

LeMMA. The only non-trivial valuations on ko(t) which are trivial on k,
are equivalent to the valuation (3.2) or (3.3).

CoroLLARY. If F is a finite field the only non-trivial valuations on F(t)
are equivalent fo (3.2) or (3.3).

= cdegu-degu' (3'3)
©

4, Topology
A valuation || on a field k induces a topology in which a basis for the
neighbourhoods of « are the “open spheres”
Sye) = {fl ‘f—al <d}
for 4 > 0. Equivalent valuations induce the same topology. A valuation

satisfying the triangle inequality gives a metric for the topology on defining
the distance from a to § to be |«—f].
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Lemma. A field with the topology induced by a valuation is a topological
field, i.e. the operations sum, product, reciprocal are continuous.
Proof. For example (product) the triangle inequality implies that

[+ B} (B + ) - aB| < [6][| + el b} + | Blle]
is small when |0), |¢] are small (a, f fixed).

LemMa. If two valuations | |, | |2 on the same field induce the same topology
then they are equivalent in the sense defined above.

Proof. laf; < 1 if and only if «” — 0 (n — +o0) in the topology and so
o], < 1if and only if |#|, < 1. On taking reciprocals we see that [af, > 1
if and only if o], > 1 so finally |a|, = 1 if and only if |a], = 1.

Let now 8, y e k and not 0. On applying the foregoing to

a=f"" (mneZ)
we see that
m log|B|; +nlogly]; =0
according as
mlog|B|,+nlogly|.=0
and so
log |ﬂ]1 - log |?|1
log |ﬁl2 log h’lz-

5. Completeness

A field k is complete with respect to a valuation || if it is complete as a
metric space with respect to the metric |a—f§| (&, fe k) ie. if given any
sequence «, (n = 1, 2,...) with
ltm—0a] >0 (m,n— 00, 0)
{a fundamental sequence), there is an «* € &k such that
@, e*  wrt]|
(ie. o, —a*] > 0).

THEOREM. Every field k with valuation | ] can be embedded in a complete
field k with a valuation || extending the original one in such a way that k
is the closure of k with respect to | |. Further, k is unique (up to isomorphism).

Proof (sketch). We define & as a metric space to be the completion of &
as a metric space with respect to || Since the field operations +, x and
inverse are continuous on k they are well-defined on k. Q.E.D.

COROLLARY 1. || is non-arch. on k if and only if it is so on k. If that is
so, the set of values taken by | | on k and k are the same.

Proof. Use second lemma of §2. Alternatively, if k is non-arch., the
functional inequality

|B++] < max (8], [yD

ANT. 3
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holds also in k by continuity. If now ek,  # 0 there is a y € k such that
|8—1] < |B| and then |8] = |9} Converse trivial.

COROLLARY 2. Any valuation-preserving embedding of k in a complete
field K can be uniquely continued to an embedding of k.

6. Independence
The following theorem asserts that inequivalent valuations are in fact
almost totally independent. For our purposes it will be superseded by the

result of § 15.

Lemma (“weak approximation theorem”).  Let |l @ <n<N) be
inequivalent non-trivial valuations of a field k. For each n let k, be the topo-
logical space consisting of the set of elements of k with the topology induced
by | | Let A be the image of k in the topological product 1] = T k.

=

LER
(with the product topology). Then A is everywhere dense in 1.

The conclusion of the lemma may be expressed in a less topological
manner: given any ¢,ek (1 < n < N) and real ¢ > 0 there is a § € k such
that simultaneously:

l.—¢l. <& (A <n<N).

Note. If k = Q and the || are p-adic valuations this is related to the

“Chinese Remainder Theorem”, but the strong approximation theorem is

the real generalization.
Proof. We note first that it will be enough to find @, € k such that

s> 1, [Bln<l (n#m) 6.1)
where 1 € n < N,1 <m < N, For then as r — -+ we have

o 1 {1 w.rt. ||

—_— = — =)
1+6; 1+6,° Ow.r.t.“,,,, m#£n
and it is enough to take

N 6;
5"£§1+9;"

with sufficiently large r.
By symmetry it is enough to show the existence of § = 8; with

o} > 1 o<1 @<n<N)

and we use induction on N.
N = 2. Since ||; and ||, are unequivalent there is an « such that

lo]s <1, o] =1
and similarly a B such that

‘ﬁll =4 1’ lﬂ‘z <1
and then § = fa~* will do.
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N = 3. By the case N—1 there is a ¢ € & such that

el >1, |¢l.<1 @<n<N-1)
and by the case N = 2 there is a y € k such that

llllll > I’ h’le << 1.
Then put

¢ if gy <1
6= Y if|¢|N=1

lfww if o]y > 1

where r € Z is sufficiently large.

7. Finite Residue Field Case

Let k be a field with non-archimedean valuation | |. Then the set of xe k
with [¢| < 1 form aring o, the ring of integers for |1 The g€k with |¢] = 1
are a group uudt?r multiplication, the group of units. Finally, the set
of & with [o] < 1 is a maximal ideal p, so the quotient ring ofp is a field.
We consider the case when ofp has a finite number P of elements.
guppose flfrther, that | | is discrete. Then p is a principal ideal (n), say
2?05“1?);1“ is of t(he)fo;m o = n"¢, where g is a unit. We call v the orde;-
of a. s0 p = (r') then =/n’ is a unit and conversel
is independent of the choice of «. erecty s0 the order of a
Let 3, § be defined with respect to the completi
) ) de pletion &k of k. Th
o/ﬁL = po/p and § = (#) as an B-ideal. e clearly
EMMA. Suppose, further, that k is compl, i ]
et e e pos omplete with respect to || then o is

o
o= J
2w (7.1)

where the
vofoln, a; run independently through some set Y. of representatives in
By (7.1) is meant of course the limit of the fundamental sequence

J
Y am!asJ - . B

For there is i
 =n"'a—a )aE “m%};ely ddeﬁned %052, such that [oc--aol < 1. Then
THEOREM glnd:r: th e Zﬁne o ‘;Z Y [al_all Comnd s0 on.
. . e conditions of the precedin i
with respect to the | |-topology. p g lemma o is compact
Proof. Let O, (AeA) be some famil :
. / y of open sets cover .
show there is a finite subcover. We suppose not. ing 0. We must

Let 3’ be a set of representatives of o/p. Then v is the union of the finite
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number of sets ¢+ 7o (@ e Y). Hence for at least one a, € Y the set a5 +70
is not covered by finitely many of the O;. Then similarly there is an @, € Y
such that ao+a;n+n’0 is not finitely covered. And so on. Let
a = dyt+ayn+.... Then ae 0, for some loeA. Since 0, is open,
a+7’s = 0, for some J. Contradiction.

COROLLARY. k is locally compact.
[The converse is also true. If kis locally compact with respect to a non-arch. valuation ||
then

(1) k is complete;

(2) the residue ficld is finite;

(3) the valuation is discrete.
Yor there is a compact neighbourhood ¢ of 0. Then % < ¢ for sufficiently large » so
a% is compact, being closed. Hence o is compact. Since | | is a metric, o is sequentially
compact, i.e. every fundamental sequence in o has a limit, which implies (1). Let
a2 (1 € A) be a set of representatives in o of ofp. Then Oz : |t — aal < 1isanopen covering
of o. Thus (2) holds since o is compact. Finally, » is compact being a closed subset of o.
Let S, be the set of ¢k with |o] < 1 — 1fn. Then S (1 < n < ) is an open cover

of p, 50 p = S, for some n, i.e. (3} is true.
If we allow ] | to be archimedean the only further possibilities are k=Rand k=C

with | | equivalent to the absolute value.]

We denote by k* the commutative topological group whose points are
the elements of k, whose law is addition and whose topology is that induced
by ||. General theory tells us that there is an invariant measure (Haar
measure) defined on &+ and that this measure is unique up to a multiplicative
constant. We can easily deduce what that measure g is.

Since p is invariant

ulat+n’o) =,
is independent of @, Further

a+n’o= v (a+na;+x
1<jsP

where a; (1 <j < P)isaset of representatives of ofp. Hence
B = Pnuu+ 1

u+1D

If we normalize ¢t by putting
wo)=1, (1.2

we have
po=P7"

Conversely, without the theory of Haar measure, it is easy to see that there

is a unique invariant measure on k™ subject to (7.2).
Everything so far in this section has depended not on the valuation | |
but only on its equivalence class. The above considerations now single

out one valuation as particularly important.

GLOBAL FIELDS 51

DEFI.NITION. Let k be a field with discrete valuation | | and residue class
field with P < oo elements. We say that | | is normalized if
|n| = P~%,
where p = (z).
T.HEOREM. Suppose, further, that k is complete with respect to the nor-
malized valuation | |. Then
ple+fo) = 4]
where p is the Haar measure on k* normalized by (o) = 1.
We can express the result of the theorem in a more suggestive way, Let
B € k, B # 0 and let 1 be a Haar measure on k* (not necessarily normalized
as in the theorem). Then we can define a new Haar measure y; on k* by
putting. /,L,,gE) = u(BE) (E = k*). But Haar measure is unique up to a
multiplicative constant and so uy(E) = p(BE) = fu(E) for all measurable
§cts E, Yvhere the fact.or S depends only on 8. The theorem states that f s
just [B] in the normalized valuation.
[The theory of locally compact topological i i
groups leads to the
dual f(character) group of k*, It turns out that it is isomorphic to &+, c{,\?:lggrz(t;to:e:é- ltI}:i:
fﬁct. orC class field theory_so do not prove it here. For a proof and applications see Tate's
'tb?s:eg e?aili)zt:trigl{zg oé‘v tl}lls I‘:‘(X)(l]c)!or Lagg}:u“A!gebraic Numbers™ (Addison Wesley), and
3 Weil: eles an gebraic Groups” (Princeton lect X I
Godfn_lent: Bourbaki seminars 171 and 176. The determingion ofo &eeil:la?a;(;;es) e
of k&~ is local class-field theory.] groap
The set of.nc')n-z_ero elements of k form a group &* under multiplication.
Clearly multlphgatxon and taking the reciprocal are continuous with respect
tc" the tppology induced in k™ as a subset of &, so ™ is a topological group
with this topology.t We have
k* oEoE,
.wherlc-:l Eis the group of units of k and where E| is the group of einseinheiten
»
:;:k tx e ek with [E-—]l < 1. Clearly E and E, are both open and closed
Obyiously k*[E is isomorphic to the additive group Z* of integers with
the discrete topology, the map being
m’E—-v  (welZ).
F;urther, E[E| is 1s‘omorphic to the multiplicative group k™ of the non-zero
elements ?f the residue class field, where the finite group x* has the discrete
topology.} Further, E is compact, so k* is locally compact, Clearly the
t We shall later have to consider the situati i i i
generaxl i; giverf a different topology from th:asliglsietf ‘t);;:]%glyciglcat rings &, where R* in
{ «* is cyclic of order P — 1. It can be shown that & always contains a primitive

P — 1-th root of unity p and so the element x H uou . :
ditect product of Z, ZIP — DZ and B ¢ St the wpte, e By fie. ke is the

In fact let f(X) = XP-1 — 1 and let o be
/ such that « modp generates «*.
£l <1, | F(&)] = 1. Then by Hensel’'s Lemma (App. © theregis rek ’;uchTz:leaI:

Sf(p) =0, p = & (mod p).
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additive Haar measure on E, is also invariant under multiplication so gives
a Haar measure on E,: and this gives the Haar measure on k* in an
obvious way.

Finally we note the

Lemma. k* and k* are totally disconnected (the only connected sets are
points).

Beweis, Klar.

{It is perhaps worth mentioning that k¥ and k* are locally isomorphic if & has charac-
teristic 0. We have the exponential map

ot
a:—rexpacr-zﬁ

valid for all sufficiently small « with its inverse
(o RV

loga =X .

valid for all & sufficiently near to 1.]

8. Normed Spaces

DerNITION. Let k be a field with valuation | ] and let V be a vector space
over k. A real-valued function || | on ¥ is called a norm if

(1) Ja] > 0foraeV,a #0.
() [a+b] < |af +[8]-
@) Jlea] = o] |a]| @€k, a e K).
Dernvrion.  Two norms | |4 | |2 on the same space are equivalent if
there exist constants ¢y, ¢, Such that
Jals < cilal,  faz] < coal

This is clearly an equivalence relation.

LeMMA. Suppose that k is complete with respect to | ] and that V is finite-
dimensional. Then any two norms on V are equivalent.

Note. As we shall see, completeness is essential.

Proof, Let ay,...,ay be any basis for V. We define a norm I o by

1T &l = max 1&)-

It is enough to show that any norm || || is equivalent to | fo- Clearly
IZ &ual < Z ol e
< &2 Eatallo
with

€1 =2 Oy
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Suppose that there is no ¢, such thatf

oo < ez]a]-

Then for any & > 0 there exist &,,..., &, such that
0 < || &ua,]| < emax|g,).

By syminetry we may suppose that

max || = |&y]
and then by homogeneity that

éN =1.

Form = 1,2,..., we thus have &, ,, (I < n < N—1) with

N-1
"nZ.1 Cmtatap]| >0 (m— o0);

50

N-1
| %, Coe~lnmad =0 (£im > o0,00).

The lemma being trivial for N = 1, we may suppose by induction that it

is true for the (N—1)-di :
hence ( )-dimensional space spanned by ay,...,ay_; and

|§n.l_€n.ml_’0 (¢,m—> o0, 0)
for1 < n < N—1. Since k is complete there are &*  k with

{gu,m"f:‘l_"o (m—vco),
Then

N-1 N-1 N=1
AT enral sIT tnotal + T hi-tllad 20 (oo
in contradiction to (1).

9. Tensor Product
We need only a speci ive ri ini
Rkt £ and supposs hat B 5 of A, Amenciom W cu ey oo 2
1 =w,w,,...,0
Then B is determined up to isomorphism by the multiplication table
OB = Conn®y  Comg € k.
We can define a new ring C containing k& whose elements are expressions of

1 When £ is not merely com, i
s 1 plete with respect to | | but locally compact, whi i

;llllg ;gs:lgf gnmgry interest, one can argue more simply as follows, l..‘B_v ;vhatcga?]ge:;
ady, the function |jaf] is continuous in the || Ho-topology, and so attains its lower

bound & on [laflp = 1 v
geneity for a]ﬂ ‘l[o . Then & > 0 by condition (i), and then fjall, < &-1jal) by homo-
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the type

Y 4,0, Gn€A
where the m,, have the same multiplication rule

@@y = Z C i@
as the w,. There are ring isomorphisms
ira-aw
and
j : Z )”m Oy = 2 J'm'wm
of A and B respectively into C. It is clear that Cis deﬁneq up to isomor-
phism by 4 and B and is independent of the particular choice of basis w,,.
We write
C==146§kB

since it is, in fact, a special case of the ring tensor-product.

[The reader will have no difficulty in checking that C together with the maps i, f possesses
the defining Universal Mapping Property.]

Let us now suppose, further, that A4 is a topologigal ring, ie. has a
topology with respect to which addition and muliiplication are continuous.
The map

Y, 0y = (@15 - -5 4x)

ijs a 1—1 correspondence between C and N copiqs of A (cogsidered as
sets). We give C the product topology. It is 1:ead11y verified (i) t}_n'at this
topology is independent of the choice of basis @15 - OF and.({l)‘ that
multiplication and addition in C are continuous with respect to 1t; 1.e. C
is now a topological ring.

We shall speak of this topology on C as the tensor product topology.

Now let us drop our supposition that 4 has a topology but suppose
that 4, B are not merely rings but fields. .

Lemma. Let A, B be fields containing the field k and suppose that B is a
separable extension of degree [B: kl1= N < . Then F‘.= A Q,,B is fh‘e
direct sum of a finite number of ﬁel}ls K, each containing an isomorphic
image of A and an isomorphic image of B.

P‘?‘rooj"g.r By a well-known theorem (appendix B) we ha:ve B = k(}.’?) where
f(B) = 0, for some separable f(X) e k[X] of degree N irreducible in k[X).

Then 1, B,..., B%~! is a basis for Bjk and so A ®, B = A[B] where
1, B,..., B~ ! are linearly independent over A and f(B_) = 0.

Although f(X) is irreducible in k[X] it need not be in A[X], say

fX)= H g,X)
1si=t ) . ]
where g;,(X) e 4[X] is irreducible. The g/(X) are distinct because f(XYis
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separable. Let K; = A(f;) where g(#;} = 0. Clearly the map

"
A®,B—K;
given by

g
h(By—hp)y MX)eAX
is a ring homomorphism,
We thus have a ring homomorphism
"1 @... eﬂ,j’

A@B———> @ K, 0.1)
1<j=sJS
Let A(B), A{(X)e A[X] be in the kernel. Then A(X) is divisible by every
g;{X), so also by f(X), i.e. i(B) = 0. Thus (9.1} is an injection. Since both
sides of (9.1) have the same dimension as vector spaces over 4 it must be
an isomorphism, as required.

It remains to show that the ring homomorphisms

are injections. If () # O for any S e B then 1,(8,) # O for all §, # 0
because 1,(8) = A,(B)A,(86~"). Hence all we have to show is that 4; does
not map the whole of B onto 0: and this is trivial.

COROLLARY. Let a€ B and let F(X)ek[X], G(X)ed[X] (1 <j=<))
be the characteristic polynomial of « over k and of the image of « under

BoA@®B->K §
over A respectively. Then
F(X)= ] G/X). ©.2)
15j<t

Proof. We show that both sides of (9.2) are the characteristic polynomial
T(X) of the image of « in 4 ®, B over 4. That F(X) = T(X) follows at
once by computing the characteristic polynomial in terms of a basis
©y,... Wy, Where @y,...,®, is a basis for Bfk. That T(X) = IIG,(X)
follows similarly by using a base of

A@QB=0QK;

composed of bases of the individual X/A4.
CoroLLARY. For « € B we have

NOImB”‘a'.= H Norij[Aa
1=<j=7

Tracegya = ). Traceg,,a.
15jsJ

Proof. For the norm and trace are just the second and the last coefficient
in the characteristic equation. '
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10. Extension of Valuations

Let k < K be fields and | |, || | be valuations on k, K respectively. We say
that | || extends | | if {5] = [jb]| for all be k.

THEOREM. Let k be complete with respect to the valuation k and let K be
an extension of k with [K: k) = N < oo, Then there is precisely one extension
of | | te K namely

fo| = |Normyg /", (10.1)

Proof. Unigueness. K may be regarded as a vector space over & and then

| is a norm in the sense defined earlier. Hence any two extensions B
and || | of | | are equivalent as norms and so induce the same topology in K.
But as we have seen two valuations which induce the same topology are
equivalent valuations, ie. || |y = | |5 for some ¢. Finally ¢ = 1 because
6] = |6}, for alibe k.

Existence. For a proof of existence in the general case see e.g. E. Artin:
“Theory of Algebraic Numbers” (Striker, Gottingen) and for a proof
valid for separable non-arch. discrete valuations see Chapter I, §4, Prop.
1, Corollary. Here we give a proof (suggested by Dr. Geyer at the
conference) valid when k is locally compact, the only case which will be
used. In any case it is easy to see that the definition (10.1) satisfies the
conditions (i) that [l = 0 with equality only for a = 0 and (i) Jop] =
|| §B]]: the difficulty is to show that there is a constant C such
that [l < 1 implies |1+« < C. Let | |, be any norm on X considered
as a vector space over k. Then |« defined by (10.1) is a continuous non-zero
function on the compact set oo =1, s0 A = Ja} = & > 0 for some
constants A, §. Hence by homogeneity

AZT[IE“-25>O. (allx & 0).

J]lo
Suppose, now, that ] < 1. Then [af, < 67" and so
1+l < Aj1+eo

< A(1]o+ o)
< A(J1o4+6"1)
=C (say),

as required.

Formula. Geyer’s existence proof also gives (10.1). But it is perhaps worth
noting that in any case (10.1} is a consequence of unique existence, as
follows, Let L o K be a finite normal extension of k. Then by the above
there is a unique extension of || to L which we shall denote also by | |.
If ¢ is an automorphism of L/ X then

el = o=
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is also an extension of || to L, so || |, = [ |, i.e.
Joa] = [l«| (all e L).
But now .
Normg o =06,60,%. .. 6y
for « € K, where g,,.. ., oy are automorphisms of L/k. Hence
[Normp o = | Normy, «|

= 11 Joue]

I<nzN

= ]|,
as required.

COROLLARY. Let wy,..!, wy be a basis for Kjk. Then there are constants
¢y, €2 Such that

for by,. .., byek (not all 0).

Proof. For |}, b,w,| and max |b,| are two norms on X considered as a
vector space over k.

COROLLARY 2. A finite extension of a completely valued field k is complete
with respect to the extended valuation.

For by the preceding corollary it has the topology of a finite-dimension
vector space over k.

When k is no longer complete under | | the position is more complicated:

THEOREM. Let K be a separable extension of k of degree [K: k] = N < oo,
Then there are at most N extensions of a valuation || of k to K, say | |;

(l<j<J). Letk, K; be the completion of k resp. K with respect to [
resp. H I| s+ Then

kK= @ K, (10.2)

1siss

algebraically and topologically, where the R.H.S. is given the product topology.
Proof. We know already that £ @ X is of the shape (10.2) where the X

are finite extensions of £. Hence there is a unique extension | [} of || to

the K; and the K; are complete with respect to the extended valuation.

Further, by a previous proof, the ring homomorphisms

AJ:K""E®,¢K—’KI
are injections. Hence we get an extension || [|; of || to X by putting
18], = [4,B)]7-

Further, K = 1K) is dense in K; with respect to | ||; because K = k ®, K
is dense in k£ ®, K. Hence K ; is exactly the completion of K.
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It remains to show that the || |; are distinct and that they are the only
extensions of | | to K.

Let || || be any valuation of X extending | |. Then | [ extends by con-
tinuity to a real-valued function of £ @, K, a function also to be denoted
by || |. By continuity we have

oot B]| < max ., | 4]
g = Jlh 181
We consider the restriction of | || to one of the K. If [« # 0 for some
aeK; the Jof = |5 |ag=] for every § # 0 in K; so |B]| # 0. Hence
either || | is identically O on K; or it induces a valuation on K.
Further, || | cannot induce a valuation on fwo of the K;. For

(@06 . .. ®0). 00 D0. .. @0) = (0890. .. &0)

} a,fek®K.

and so
loeslfoa] =0 oKy, @2€ K.

Hence || || induces a valuation in precisely one of the K and it clearly extends
the given valuation | | of £. Hence || | = || |, for precisely one j.

Tt remains only to show that (10.2) is also a topological homomorphism.
For (B1,..., BN e K1®...®K; put

JBus- - B0 = max 18]

Clearly, || ||o is 2 norm on the R.H.S. of (10.2), considered as a vector
space over k and it induces the product topology. On the other hand, any
two norms are equivalent, since £ is complete, and so [ o induces the
tensor product topology on the left-hand side of (10.2).
CoROLLARY. Let K = k(B) and let f(x) € k{X] be the irreducible equation
for B. Suppose that
s =TI 90

<j=J
in k[X), where the g; are irreducible. Then K; = k(B)) where g} = O.

11. Extensions of Normalized Valuations
Let & be a field with valuation | ] We consider the three cases:

(1) || is discrete non-arch. and the residue class field is finite.
(2(i)) The completion of k with respect to is R.
(2(ii)) The completion of k with respect to is C.

[In virtue of the remarks in § 7, these cases can be subsumed in one: the completion k
is locally compact.]

In case (1) we have already defined a normalized valuation (§ 7). I_n
case (2(i)) we say | | is normalized if it is the ordinary absolute value and in
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case (2(if)) if it is the square of the absolute value. Thus in every case the
map

w:é—af Eeckt (uek)

of the additive group £* of the completion of k¥ multiplies the Haar measure
on k* by |a|: and this characterizes the normalized valuation among
equivalent ones.

Lemma. Let k be complete with respect to the normalized valuation | |
and let K be an extension of k of degree [K: k] = N < oo, Then the normalized
valuation | || of K which is equivalent to the unique extension of [{t0 Kis
given by the formula

l] = [Normgya]  (xe€K).
Proof. By the preceding section we have

o]l = |Normguof® (2eK) (11.1)

for some real ¢ > 0 and all we have to do is to prove that ¢ = 1. This is
trivial in case 2 and follows from the structure theorems of Chapter I
in case 1. Alternatively one can argue in a unified way as follows. Let
@,. .., wy be a basis for Kfk. Then the map

E=Y6w,o . 0&)  Eneelagk)

gives an isomorphism between the additive group K* and the direct sum
®"k* of N copies of k¥, and this is a homomorphism if the R.H.S. is
given the product topology. In particular, the Haar measures on K * and
@"k* are the same up to a multiplicative constant, Let b€ k. Then the
map

b:

{11

= b

(k4]

of K7 is the same as the map

(ST % Bl Ul ., by)

of @"k* and so multiplies the Haar measure by |5]", since | | is normalized.

Hence
6] = []"

But Normg, b = b" and so ¢ = 1 in (11.1).
In the incomplete case we have

THEOREM. Let || be a normalized valuation of a field k and let K be a
finite extension of k. Then

1;[5 J"“”I = |Normpgy o],

ivhere the || |; are the normalized valuations equivalent to the extensions of
] to K.
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Proof. Let
E ®k K = @ Kj,
tsjsy
where k is the completion of K. Then (§ 9)

Normgpo = ] (Normg ga).
1=jsJ
The theorem now follows from the preceding lemma and the results of § 10.

12. Global Fields

By a global field k we shall mean cither a finite extension of the rational
field Q or a finite separablet extension of F(#), where F is a finite field and
t is transcendental over F. We shall focus attention in the exposition on the
extensions of Q (algebraic number case) leaving the extension of F(¢) (func-
tion field case) to the reader.

LsmMA. Let « # O be in the global field k. Then there are only finitely
many unequivalent valuations | | of k for which

o] > 1.
Proof. We know this already for Q and F(z). Let & be a finite extension
of Q, s0
a0 Mk +a, =0

for some n and ay,. . ., @, If || is a non-arch. valuation of k& we have

off = ]—agat—...—ay

< max (1, |o]'" 1) max (ja,),. . ., |4
and so
|a| < max(l, lall,. vy |a,,|).

Since every valuation of Q has finitely many extensions to k and since there
are only finitely many arch. valuations altogether, the theorem for k follows
from that for Q.

All the valuations of a global field k are of the type described in § 11,
since this is true of Q and F(z). Hence it makes sense to talk of normalized
valuations.

THEOREM. Let a € k, where k is a global field and a # 0. Let | |, run through

all the normalized valuations of k. Then |a|, = 1 for all except finitely many
v and

Note. We shall later give a less computational proof of this.

1 Thig condition is not really necessary. If k is any finite extension of F(¢) there is a
“separating element” 5, i.e. an s ek such that & is a finite separable extension of F(s).
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Proof. By the lemma IO.'I,, < 1 for almost all ¢ {(i.e. all except finitely
many). Similarly J«~%|, < 1 for almost all v, so |«f, = 1 for almost all v.

Let ¥ run through ali the normalized valuations of Q [or F(r)]} and write
¢|V to mean that the restriction of v to Q is equivalent to ¥. Then

1:[ o, = IVI ( Elal”) = I';[ |Normyq aly,

by the preceding section. This reduces the theorem to the case kE=Q.
But if now

b= o H Pﬂ, € Q’
F
where p runs through all the primes and f, € Z, we have

bl = p~%
for the p-adic valuation | [, and
|blo =TT 2%
P
for the absolute value | . Q.E.D.

Let K be a finite separable extension of the global field k. Then for every
valuation v of & we have an isomorphism

ku®kK=K1®...®KJ

where k, is the completion of & with respect to v and KXj,..., K, are the
completions of K with respect to the extensions ¥;,..., ¥, of v to K (§ 10),
the number J = J(v) depending on ». We shall later need the

LemMA. Let @y, . . ., @y be a basis for Kfk. Then for almost all normalized
v we have

0 0P00®.. Qoyw=0,D... BY, (12.1)
where N = [K: k], 0 = o, is the ring of integers of k for ||, and O, = K,
is the ring of integers for ||y , 1 £j<J). Here we have identified a € K
with its canonical image in k, @ K.

Proof. 'The L.H.S. of (12.1) is included in the R.H.S. provided that
lov, <1 1 <n< N, 1<j<J). Since [oly <1 for almost all ¥ it
follows that L.H.S. < R.H.S. for almost all v.

To get an inclusion the other way we use the discriminant

D(y1s. . ., 7w} = dety, (tracegi Vm?¥a)s
where v4,..., vk, @ K. If 3,e RHS. (1 <2 < N) we have (§9)
tracey ) Ym¥a = 2, raceg z¥m¥n€0=0,
147=J

and so
D(?lv- . -)?N) € 0,.
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Now suppose that « ¢ R.H.S. and that
N
g=Y bw,eRHS. (bek,). (12.2)
1

Then for any m, 1 < m < N we have
D@1y s O 15 By Ot 1 - - Ox) = BED(@0y,. . ., 0y,
and so
dbieo, (1<m<N)
where
d = D(w,,...,oy) €k
But (Appendix B) we have d # 0, and so |[d], = 1 for almost all v. For
almost all » the condition {12.2) thus implies
byeo, (1<sm<N),
ie.
RHS. <« LHS.
This proves the lemma,
[CoroLLARY. Almost all v are unramified in the extension K[k,
For by the results of Chapter I a necessary and sufficient condition for v to be un-

ramified is that there are 74,..., v € R.H.S, with |D(y1,..., ¥x)ly = 1. And for almost
all v we can put ¥, = o®~1.]

13. Restricted Topological Product

We describe here a topological tool which will be needed later:

DerFINITION. Let €, (A € A) be a family of topological spaces and for almost
allf A let ©, = Q, be an open subset of Q,. Consider the space Q& whose points
are sets o = {tt;}1c0 Where o, € Q, for every A and a, € ©, for almost all 1.
We give Q a topology by taking as a basis of open sets the sets

IIT,

where T, = Q, iIs open for all A and T'; = ©, for almost all A. With this
topology S is the restricted topalogical product of the L, with respect to the ©,,

COROLLARY. Let S be a finite subset of A and let (kg be the set of a e Q)
with o, e ©,{1¢8), ie.

Qs = H & H 9, (13.1)
ies A¢s

Then Qg is open in QO and the topology induced in Qg as a subset of Q is the
same as the product topology.

Beweis. Klar.

The restricted topological product depends on the totality of The @,
but not on the individual @,:

1 i.e. all except possibly finitely many.
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LemMa. Let ©) < Q, be open sets defined for almost all A and suppose
that ©, = ©) for almost all A. Then the restricted product of the 2, with
respect to the @) is the same ast the restricted product with respect to the ©,.

Beweis. Klar.

LeMMa. Suppose that the S, are locally compact and that the ©, are
compact, Then Q is locally compact.

Proof. The Qg are locally compact by (13.1) since S is finite. Since
Q = u Qg and the Qg are open in Q, the result follows.

DEFINITION.  Suppose that measures p, are defined on the Q, with
1:(0,) = 1 when @, is defined. We define the product measure p on Q to
be that for which a basis of measurable sets is the

I
where M, = Q, has finite py-measure and M, = ©, for almost all A and
where

H (1;[ M).) = l:[ (M),
COROLLARY. The restriction of u to Qg is just the ordinary product measure.

14, Adele Ring (or Ring of Valuation Vectors)

Let k be a global field. For each normalized valuation | {, of & denote by
k, the completion of k. If ||, is non-archimedean denote by o, the ring of
integers of k,. The adele ring V), of k is the topological ring whose under-
lying topological space is the restricted product of the k, with respect to
the o, and where addition and muitiplication are defined componentwise:

(aﬁ)u =a,p, (G'i"p)., =a,+8, a,pe Ve (14.1)
It is readily verified (i) that this definition makes sense, i.e. if &, p& V, then
ap, 2+ § whose components are given by (14.1) are also in ¥, and (i} that
addition and multiplication are continuous in the V -topology, so ¥, is a
topological ring, as asserted.

¥, is locally compact because the k, are locally compact and the o, are
compact (§ 7).

There is a natural mapping of & into ¥, which maps « € k into the adele
every one of whose components is a: this is an adele because o €0, for
almost all ». The map is an injection, because the map of k into any %, is
an injection. The image of k under this injection is the ring of principal
adeles. Tt will cause no trouble to identify & with the principal adeles, so
we shall speak of & as a subring of V.

LemMma. Let K be a finite (separable) extension of the global field k. Then

V, @K = Vg (14.2)

T A purist would say “canonically isomorphic to*.
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algebraically and topologically. In this correspondence k @, K=K<V, ®: K,
where k < V,, is mapped identically on to K < V.

Proof. We first established an jsomorphism of the two sides of (14.2) as
topological spaces. Let @y,..., @y be a basis for K /k and let v run through
the normalized valuations of k. It is easy to see that the L.H.S. of (14.2),
with the tensor product topology, is just the restricted product of the

kK, K=ko @&...® k,oy (14.3)
with respect to the
0,00, ... D 0,0y (14.4)
But now {cf. §10), (14.3) is just
Ky, ®...®Kyp, (Mi|oseess V)lv) (14.5)

where Vy,. .., V5, J = J(v) are the normalized extensions of v to K. Further
(§ 12) the identification of (14.3) with (14.5) identifies (14.4) with
Oy, ®...® Dy, (14.6)
for almost allf ». Hence the L.H.8. of (14.2) is the restricted product of
{14.3) with respect to (14.4), which is clearly the same thing as the restricted
product of the Ky with respect to the Oy, where V runs through all the
normalized valuations of K. This is just the R.H.S. of (14.2). This establishes
an isomorphism between the two sides of (14.2) as topological spaces. A
moment’s consideration shows that it is also an algebraic isomorphism.
Q.E.D.
COROLLARY. Let Vi denote the topological group obtained from V., by
forgetting the multiplicative structure. Then
Ve =V'®...® Vit (N=[K:kD
\_—_\‘———’
N summands
In this isomorphism the additive group K * < Vit of the principal adeles is
mapped into k* @. .. @k*, in an obvious notation.
Proof. Vi = Vg, for any non-zero w e K, is clearly isomorphic to
¥ as a topological group. Hence we have the isomorphisms
Ve =V R K=0VF0.. . @onV = vie..on.
TugoreM. k is discrete} in ¥, and Vi'[k™ is compact in the quotient
topology.
Proof. The preceding corollary (with k for Kand Q or F(¢) for k) shows
that it is enough to verify the theorem for Q or F(¢) and we shall do it for Q.
To show that Q* is discrete in V¢ it is enough because of the group

t This was proved there only when @, = an=?, where K = k(o). We should therefore
take this choice of .

1 It is impossible to conceive of any other uniquely defined topology in k. This meta-
mathematical reason is more persuasive than the argument that follows!
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structure to find a neighbourhood U of 0 which contain
s no other
of k*. We take for U the set of @ = {&,} € V5 with e clements

[t o < 1

. |ocp| y <1 (allp),
where | [, | |.o are respectively the p-adic and the absolute values on Q.

If be Q n U then in the first place b € Z (because |b
then b = 0 because Ibloo <1 (becau I Ip < 1 for all p) and

Now let W < Vg consists of the & = {«,} with

lole <3 |ol,<1 (@l p).
We show that every adele § is of the shape

f=0b+a, beQ, acW. (14.7)
For each p we can find an

r, = z,/p*? (z,€Z, x,€Z, x,20)
such that

) ) |ﬁp" plp <1
and since & is an adele we may take

rp =0 (almost all p).
Hence r = . r, is well defined and

[Bo—r| <1 (all p).
Now choose 5 € Z such that

Bo—r—s| %

Then b = r+s, B = a—b do what is required.
VPTC; :I;(el foPtlnuqus map W~ V5 [Q* induced by the quotient map

° ° Is surjective. But W is compact (topological produ
el < % and the o,) and hence so is V4 /Q™. (topological product of
. As'already remarked, ¥} is a locally compact group and so it has an
;tl:z:nant. (tll-lIaar) dmeasure. It is easy to see that in fact this Haar
measure is the product of the Haar measures i i
in 1he srovione sortion. on the k, in the sense described
;y ;OEOTL;R‘g 1. ]Therg is al .;t:bset W of V, defined by inequalities of the

olo o Where 0, = 1 for almost
Pl gty o all v, such that every peV; can
=0+, 0eW, yek
Proof. For the W constructed in the i i
roof is clearl i

of the type described above, i fly contatned ia some I

COROLLARY 2. VW, f/kt h i
. V3 as finite measure in the quotient measure i
by the Haar measure on V,*. o re fndced
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Note. This statement is, of course, independent of the particular choice
of the multiplicative constant in the Haar measure on V,¥. We do not here go
into the question of finding the measure of ¥kt in terms of our explicitly
given Haar measure. (See Tate’s thesis, Chapter XV of this book.)

Proof, This can be reduced similarly to the case of Q or F(¢), which is
almost immediate: thus W defined above has measure 1 for our Haar
measure.

Alternatively finite measure follows from compactness. For cover vkt
with the translates of F, where F is an open set of finite measure. The
existence of a finite subcover implies finite measure.

[We give an alternative proof of the product formula IT [, = 1 for € k, &% 0
We have seen that if 8, € ky then multiplication by §, magnifies the Haar measure in &k,
by the factor {f,|.. Hence if 8 = {f} € Vi, multiplication by $ magnifies Haar measure
in ¥} by OB, In particular multiplication by the principal adele & magnifies Haar
measure by I7 €|, But now multiplication by & takes k+ < W, into k* and 50 gives a
well-defined 1 — 1 map of ¥;}/k* onto ¥} fk* which magnifies the measure by the factor
H |¢|,. Hence IT |£], = 1 by the Corollary.]

In the next section we shail need the

LeMMa. There is a constant € > O depending only on the global field k
with the following property:

Let o = {o,} = V, be such that

Till,> C. (14.8)

Then there is a principal adele ek < Vy, B # 0 such that

18l. < ots]o  (all B).
Proof. This is modelled on Blichfeldt’s proof of Minkowski's Theorem
in the Geometry of Numbers and works in quite general circumstances.
Note that (14.8) implies |, = 1 for almost all » because [ets]o < 1 for
almost all v.
Let ¢, be the Haar measure of V;'/k* and let ¢, be that of the set of
7 = {n} = Vi with
[ro|le = £ ifvisarch.
bl <1 ifwisif ois non-arch.
Then 0 < ¢, < 00 and 0 < ¢; < o because the number of arch. v’s is
finite. We show that
C = cofey
will do.
The set T of © = {r,} = Vi with
[to}o < 5lees]s if v is arch.

[r)e < fole  if v is non-arch.
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has measure
ey [T Jtufo > €1 C = co.
il

Hence in the quotient map V' — ¥} /k* there must be a pair of distinct
points of T which have the same image in ¥, /k*, say
t={1}eT, v ={}eT
and
v —1" = f(say)e k*.
Then
]ﬁlv = lf;—‘f:lu = l'xv!v
for all v, as required.
COROLLARY. Let vy be a normalized valuation and let 8, > 0 be given for
all v # vo with 8, = 1 for almost ali v, Then there is a fiek, B # 0 with
1Bls <8, (allv s o).

Proof. This is just a degenerate case. Choose «, € k, with 0 <
and ||, = 1if 8, = [. We can then choose «, €k, sothat []

allz inc. vy

ay
&y

Usav
o> C.

Then the lemma does what is required.

[The char_acter group of the locally compact group V' is isomorphic to ¥} and k*
playsa specre'tl role. See Chapter XV (Tate’s thesis), Lang: “*Algebraic Numbers” (Addison-
Wesley), lWCllE “Adeles and Algebraic Groups” (Princeton lecture notes) and Godement:
Bourba_kl seminars 171 and 176. This duality lies behind the functional equation of £ and
L-functions, Iwasawsa has shown (drrals of Math., 5T (1953), 331-356) that the rings of
adeles are characterized by certain general topologico-algebraic properties.]

15, Strong Approximation Theorem

The results of the previous section, in particular the discreteness of & in
V, depend critically on the fact that a// normalized valuations are used in
the definition of F.:

THEOREM. (Strong approximation theorem.) Let v, be any valuation of
the global field k. Define ¥~ to be the restricted topological product of the
k, with respect to the o,, where v runs through all normalized v # v,. Then
k is everywhere dense in ¥,

Proof.t It is easy to see that the theorem is equivalent to the following
statement. Suppose we are given (i) a finite set S of valuations v # v,,
(ti) elements «, e k, for all e S and (iii) ¢ > 0. Then there is a § € k such
that [f—a,| ,< ¢ for all ve S and |B], < 1 for all v € S, v # v,.

' By Corollary 1 to the Theorem of § 14 there is a W < ¥V, defined by
inequalities of the type val,, < &, (6, = 1 for almost all v} such that every

1 Suggested by Prof, Kneser at the Conference.
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@ € ¥} is of the form

Q=8+, deW, yek (15.1)

By the corollary to the last lemma of §14, thereisa ek, 4 % O such that
Wy <d,'e (ves),

Ae<dst (vé S # vp)

Hence, on putting @ = 1™ 'a in (15.1) and multiplying by A we see that every
o & V¥ is of the shape

(15.2)

a=¥+8, YeiW, fek, (15.3)

where AW is the set of 28, &€ W. If now we let o have components the
given «, at ve S and (say) O elsewhere, it is easy fo see that B has the
properties required.

[The proof clearly gives a quantitative form of the theorem (i.e. with a bound for 8].).
For an alternative approach, see K. Mahler: Inequalities for ideal bases, J. Australian
Math. See. 4 (1964), 425-448.]

16. Idele Group

The set of invertible elements of any commutative topological ring R form
a group R* under multiplication. In general, R™ is not a topological group
if it is endowed with the subset topology because inversion need not be
continuous. It is usual therefore to give R* the following topology. There
is an injection

x = (x,x"1) (16.0)

of R* into the topological product Rx R. We give to R* the corresponding
subset topology. Clearly R* with this topology is a topological group and
the inclusion map R* — R is continuous,

DerNITION. The idele group J, of k is the group V;' of invertible elements
of the adele ring V, with the topology just defined.

We shall usually speak of J, as a subset of V, and will have to distinguish
between the J,- and V,-topologies.{

We have seen that k is naturally embedded in ¥, and so &* is naturally
embedded in J,. We shall call £ considered as a subgroup of J, the principal
ideles.

LEMMA. k™ is a discrete subgroup of J,.

Proof. For k is discrete in V; and so &™ is injected into V, x ¥}, by (16.0)
as a discrete subset.

LemMA. J, is just the resiricted topological product of the k. with respect
to the units U, < k, (with the restricted product topology).

Beweis. Xlar.

1 Let & for a rational prime g be the element of J, with components a{? = g, af? =
1 (v # ¢g). Then ¢ - 1 (g -+ w} in the V,-topology, but not in the J,-topology.
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DEFINITION.  For o = {a,} < J, we define c(e) = [T [a,], to be the con-
all v

tent of a.
LeMMA. The map o — (%) is a continuous homomorphism of the topological

group Jy into the multiplicative group of the (strictly) positive real numbers.
Beweis. Klar,

[Lemma. Let @eJ,. Then the map § — af of V;} onto itself multiplies Haar measure
on V' by a factor c{u).
Beweis. Klar.

Note also that the Je-topology is that appropriate to a group of operators on V}: a
basis of open sets is the S(C, O) where C, 0 < V! are respectively Vi-compact and
Vi-open and S consists of theaeJy such that (1 —a)C <= 0, (1 —e~H)C < 0.]

Let J} be the kernel of the map o ~» ¢(o) with the topology as a subset
of J,. We shall need the

LeMMA. J} considered as a subset of Vy is closed and the V,-subset topology
on J} coincides with the J-topology.

Proof. Let aeV,, a¢Jt. We must find a V;-neighbourhood W of a.
which does not meet Ji,

Ist Case. Y] |ay]o < 1 (possibly = 0). Then there is a finite set S of v
such that

(i) S contains all the » with [«,|, > 1 and

(ii) Hsla,,L, < 1. Then the set W can be defined by

ve

|é,—a), < veS
lfp<1 v¢S
for sufficiently small .
2nd Case. [] |a], = C (say) > 1. Then there is a finite set S of v such

that (i) S contains all the v with |«,|, > 1 and (i) if v¢ S an inequality
[¢.]» < 1 impliest |&,|, < $C. We can choose ¢ so small that [¢,—a,|, < ¢
(ve S) implies 1 < | |&,| < 2C. Then W may be defined by

ves

léu-aulo <s (U € S)
[)<1 @¢s).

We must now show that the J;- and V,-topologies on J! are the same,
If o € J; we must show that every J,-neighbourhood of & contains a ¥,-neigh-
bourhood and vice-versa.

Let} W < J} be a Vi-neighbourhood of a. Then it contains a V,-neigh-

THEk = Q and v is a normalized extension of the p-adic valuation then the value group
of v consists of (some of the) powers of p. Hence it is enough for (ii) to include in S all
the arch v and all the extensions of p-adic valuations with p < 2C. Similarly if £ = F(¢).

1 This half of the proof of the equality of the topologies makes no use of the special

propertiee_‘. of id;les. It is only an expression of the fact noted above that the inclusion
R* — R is continuous for any topological ring R.
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bourhood of the type
léu"’avlu <& (U € S)}
), <1 (0¢5)
where § is a finite set of ». This contains the Ji-neighbourhood in which
< in (16.1) is replaced by =.
Now let H < J! be a J-neighbourhood. Then it contains a Jy-neigh-

bourhood of the type
Igv_aulo <& (0 € S)}
|€vlu =1 (vé S)
where the finite set S contains at least all arch. v and all v with loto]o # 1.
Since [] |a], = 1 we may also suppose that & is so small that (16.2) implies

TT1E), < 2.

Then the intersection of (16.2) with J§ is the samef as that of (16.1) with
JL, ie. (16.2) defines a V-neighbourhood.

By the product formula we have k* < Ji. The following result is of vital
importance in class-field theory.

THEOREM. Jii/k* with the quotient topology is compact.

Proof. After the preceding lemma it s enough to find a Fy-compact set
W < ¥, such that the map

(16.1)

(16.2)

W gL - JHE™
is surjective.
We take for W the set of & = {£,} with

"Eviv < ‘mulv
where o = {&,} is any idele of content greater than the C of the last lemma
of § 14.
Let p = {f,} €J¢. Then by the lemma just quoted thereisa e k* such

that
nf < 185 '], (all 0)-
Then np € W, as required.

[Ju/k* is totally disconnected in the function field case. For the structure of its connec;ted
component in the number theory case see papers of Artin and Weil in the “Proceedings

of the Tokyo Symposium on Algebraic Number Theory, 1955 (Science Council of J_apan)
or Artin-Tate: “Class Field Theory”, 1951/2 (Harvard, 1960(7)}). The determination of
the character group of Ji/k* is global class field theory.]

17. Ideals and Divisors

Suppose that k is a finite extension of Q. We define the ideal group 7, of
k to be the free abelian group on a set of symbols in 11 correspondence

+ See previous footnote.
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with the non-arch. valuations v of k, i.e. formal sums
Y Hy.v (17.1)
v non-arch.
where n, € Z and #, = 0 for almost all », addition being defined component-
wise. We call (17.1) an ideal and call it integral if n, = 0 for all ». This
language is justified by the existence of a 1—1 correspondence between
integral ideals and the ideals (in the ordinary sense) in the Dedekind ring

0= N D,
non-arch,

cf. Chapter I, §2, Prop. 2.
There is a natural continuous map

Jo— Iy
of the idele group on to the ideal groupt given by

« = {o,} = (ord,a).v.
The image of k™ < J; is the group of principal ideals.

THEOREM. The group of ideal classes, i.e. I, modulo principal ideals, is
finite,

Proof. For the map J§ — I, is surjective and so the group of ideal classes
is the continuous image of the compact group Ji/k™ and hence compact.
But a compact discrete group is finite.

When k is a finite separable extension of F(r) we define the divisor group
D, of k to be the free group on all the v. For each v the number of elements
in the residue class field of v is a power, say ¢* of the number ¢ of elements
in F. We call d, the degree of v and similarly define }’ n,d, to be the degree
of ¥ n,.v. The divisors of degree 0 form a group Dj. One defines the prin-
cipal divisors similarly to principal ideals and then one has the

THEOREM. DY modulo principal divisors is a finite group.

For the quotient group is the continuous image of the compact group
SR,

18.” Units
In this section we deduce the structure theorem for units from our results
about idele classes.
Let S be any finite non-empty set of normalized valuations and suppose
that S contains all the archimedean valuations. The set of 1 € k with
lfl.=1 (@¢5) (18.1)
are a group under multiplication, the group Hy of S-units. When k£ = Q

and S is just the archimedean valuations, then Hj is the group of units
tout court.

t I being given the discrete topology.
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LemMMA 1. Let 0 < ¢ < C < . Then the set of S-units 5 with

csll,<C (ves) (18.2)
is finite.
Proof. The set W of ideles a0 = {o,} with
lofo=1 (¢5), c<xl.<C @eS) (18.3)

is compact (product of compact sets with the product topology). The
required set of units is just the intersection of W with the discrete subset &
of J, and so is both discrete and compact, hence finite.

LEMMA 2. There are only finitely many & € k such that |s],, = 1 for every v.
They are precisely the roots of unity in k.

Proof. If eis a root of unity it is clear that |e|, = 1 for every v. Conversely,
by the previous lemma (with any § and ¢ = C = 1) there are only finitely
many ¢ € k with |e], = 1 for all o. They form a group under multiplication
and so are all roots of 1.

TheoreM. (Unit theorem.) Hy is the direct sum of a finite cyclic group
and a free abelian group of rank s—1.

Proof. To avoid petty notational troubles we treat only the case when
Q < k and S is the set of arch. valuations,

Let Jg consist of the ideals & = {&,} with |}, = 1 (v ¢ §) and put

Ji=JsnJi.
Clearly J is open in J§ and so
Ji/Hs = J5{(J5 n k) (18.4)

is open in Ji/k*. Since it is 2 subgroup, it is also closed, and so compact
§ 16).

Consider the map

L:Js»RYORYD.T.ORY,
) 5 times -
where R* is the additive group of reals, given by
o~ (log || 1,108 J02) .. - -, 10g [e]),

where 1, 2,..., s are the valuations in S. Clearly 4 is both continuous and
surjective.

The kernel of 1 restricted to Hy consists just of the & with [}, = 1 for

every v, so is a finite cyclic group by Lemma 2. By Lemma 1 there are only
finitely many 5 € Hg with

3<|nl.<2 veS. (18.5)
Hence the group A (say) = A(Hy) is discrete.
Further, T = A(J2) is just the set of (xy,..., x;) with

X +x+...+x, =0,
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i.e. an s—1 dimensional real vector space. Finally, T/A is compact, being
the continuous image of the compact set (18.4). Hence A is free on s-—1
generators, as asserted.

Of course this structure-theorem (Dirichlet) and the finiteness of the class-
number (Minkowski) are older than ideles. It is more usual to deduce the
compactness of J}/k* from these theorems instead of vica versa.

19, Inclusion and Norm Maps for Adeles, Ideles and Ideals
Let K be a finite extension of the global field k. We have already seen
(8 14, Lemma) that there is a natural isomorphism
Vi@ K =Ty (19.1)
algebraically and topologically. Hence Vi = V; ®;k can naturally be
regarded as a subring of ¥y which is closed in the topology of Fg. This

injection of ¥} into ¥y is called the injection map or the conorm map and
is written

con: e-—rcona=congeeVy (xel}).
Explicitly if A = con ¢, then the components satisfy
Apy=o,ek,c Ky (19.2)
where ¥ runs through the normalized valuations of K and v is the normalized
valuation of k& which extends to V. If k = L = K it follows that
cong,y & = cony (cong;y ). (19.3)

Finally, for principal adeles the conorm map is just the usual injection of
k into K.

It is customary, and usually leads to no confusion, to identify cong, «
with a.

One can also define norm and trace maps from Vy to V; by imitating the '
usual procedure (cf. Appendix A). Let w,..., @, be a basis for K/k. Then
by (19.1) every A & Vg is uniquely of the shape

A=Y a0; a;eV, (19.4)
and the map A — &; of ¥ into V} is continuous by the very definition of
the tensor product topology (§ 9). Hence if we define

ay=a,{A) eV,
by
A(DI = Z uuwj (19.5)
i

the nxn matrices («;;) give a a continuous representation of the ring Vx
over V,. In particular, the

SgpA = P (19.6)
NK];,_A = det (uu) ’ (19.7)
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are contimuous functions of 4 and have the usual formal properties

Sep(As+Az) = Sgpdy +Skpda (19.8)
lekconxlka = n& (19-9)
Ni(AjAz) = NipAy NgpAs (19.10)

NK,UL coﬂxﬂ‘m = ﬂn. (19.11)

Further, the norm and trace operations are compatible with the embedding
of k, V in V,, Vg respectively, ie. if 4e K < Vi we get the same answer
whether we compute Nyy 4, Sgpd in K or in Vy, so there is no ambiguity
in the notation.

Finally if K > L o k we have V, < ¥V, < Vg {on regarding conorm as
an identification), and so the usual relations (cf. Appendix A)

SL,U&(SKILA) = SKJI’(A (19.12)
and
NL,”( NK]LA = = NKHCA‘ (19.13)
We can express the maps (19.6), (19.7) componentwise if we like. Let
V,,. .., V; be the extensions of any given valuation v of k to K. Then (§9)
K,(say)= @ K;=k,® K= @ ko, (19.14)
1=j=sJ 1<i<n

where k,, K; are the completions of k, K with respect to v, V; respectively.
Any A e ¥y can be regarded as having components
Ay, ®... @Ay, =4, {19.15)

in the K, and then the components in the matrix representation (19.5) of A
are just the representations of the 4,. In particular

Sen(A) = {Sg,m, 40} (19.16)
and
NipA = {Ng,p, Ao} (19.17)
Finally, making use of the final remarks of § 9, we deduce that
SK/kA = {VZwwak,(Av)}o (19.18)
and
NgpA = {lvl Ng, ,k“Ay}; (19.19)

where V]v means “¥ is a continuation of »”.
We now consider the consequences for ideles. If & is an idele, it is clear
from the definition (19.2) that congy, « is an idele, so we have an injection

COHK”‘:J,‘_’JK

which'_is:clearly a homomorphism of J, with a closed subset of V. Further,
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ifAeJg © Vg, 0 Aisinvertible, it follows from (19.9) that Ny, A is invertible,
i.e. is an element of J,. Hence we have a map

N Kik : J K b d J k
which is continuous by the definition of the idele topology (§16) and which
clearly satisfies (19.10), (19.11), (19.13) and (19.19). On the other hand,
the definition of trace does not go over to ideles.

Finally, we consider the conorm and norm maps for ideals, where k is a
finite extension of Q. The kernel of the map (§17)

Jk—PIk

of the idele group into the ideal group is just the group U, (say) of ideles
a = &, which have |o,|, = 1 for every non-archimedean v. If X is a finite
extension of k, it is clear that

cong, U, = Uy
and from the Lemma of §11 and (19.17) we have
NgpUg = Uy
Hence on passing to the quotient from J; we have the induced maps
congy : L= Ig
Ngw:Ixg = Iy

with the usual properties {19.10), (19.11) and (19.13); and these maps are
compatible with the norm and conorm maps for elements of K and k on
taking principal ideals. By definition (19.2} we have

Conxﬁcv = 2 ey V (19.20)
¥iv
where the positive integers ey are defined by

|y = iy |5, (19.21)

x, and II, being prime elements of k,, K respectively. Similarly, it follows
from (19.19) that

NKH(V zfy v, (19.22)

fvhere fv is the degree of the residue class field of ¥ over that of v. We note
in passing that (19.11), (19.20) and (19.22) imply that

E eyfy=mn,
¥le
as it should since
eyfpr = [KV . ky].

Si.m.ilarly, when k is a finite extension of F(#) one defines conorm and norm
of divisors, with the appropriate properties. "
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APPENDIX A

Norms and Traces
Let R be a commutative ring with 1. By a vector space V over R of dimen-

sion n we shall mean a free R-module on n generators, say @i,..., @,
(a basis). If of,..., !, is another basis, there are t,;, vy € R such that
m‘=zj',uuco},w_’, =Y v, (A.D)
and
);, uyvp =, Oyt =0y (A.2)
(Kronecker d).

The set of all R-linear endomorphisms of V is a ring, which we denote
by Endg V. The ring Ris injected into Endg V if we identify b € R with the
module action of b on V, and we shall do this. The ring Bndp ¥ is isomor-
phic but not canonically, to the ring of all nx # matrices with elements in R.
The isomorphism becomes canonical if ¥ is endowed with a fixed choice
of basis. In fact if § € Endg (V) and

Box; =§, bywp (bi;eR) (A.3})

the 1—1 correspondence between f and the transposed matrix (b;;) is a
ring isomorphism.
For f e End, we denote by
F ﬁ(X) = det (x&; T b bi j) (A .4)
the characteristic polynomial of R. On using (A.2) it is easy to see that Fy(x)
is independent of the choice of bases of ¥, The Cayley-Hamilton theoremfj
states that

Fyp)=0. (A.5)
We define further the #race
Swn(ﬁ) =SB = ; bu
= —coefficient of x" ™! in Fyg(x) (A.6)
and the norm
Ny,x(B) = N(B) = det (b)) (A7
= (—)" constant term in F #(X),
t Proof. Write (A.3) in the form
I}(auﬁ — by =0,

Working in the commutative ring R[A] multiply the equations (*) by the cofactors of ghe
“coefficients” of ey, and add. Then cg,..., @ AIC “gliminated” and one obtains
Fa(Byw, = 0. Similarly Fe(f); =02 =] < n) and so Fp(8) = 0.
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which are independent of the choice of basis because Fy(x) is. Clearly

S(By+B2) = S(B1)+S(B2) (A.8)

S(bp)=nb (beR) (A9)

N(B,B) = N(B,)N(B2) (A.10)

N{)=5b" (beR), (A.11)

becau.se the correspondence (A.3) between f € Endg (V) and the matrix b,
is a ring isomorphism. ’
LeMMA A.l. Let t be transcendental over R, Then
. N(t—p) = Fy(®). (A.12)
Pedantically, what is meant is, of course, that we consider a vector space V

with basis @,. .., ®, defined over R[¢] and a f given by (A.3).
Proof. We have

(t—Byow, =Y, (16;;— byjo;
and so ’
N(t—p) = det(td;;~b,)
=Fy1)
by (A.4) and (A.7).
CorOLLARY. (A.12) holds for any te R.

ThLEMMA A2, Let By,..., BieEndg V and let t be transcendental over R.
en

NE+B 7+ B =g " T L g (A.13)
where gy,. .., gu € R and in particular
g1 =5B4); Gu = N(B)- (A.14)

Proof. Similar to that of Lemma A.1 and left to the reader.

Now let R and P < R be commutative rings with 1 and suppose that R
regarded as a P-module is free on a finite-number, say, m of generators
Q,,..., Q, (i.e. an m-dimensional P-vector space). Let ¥ be an n-dimensional
R-vcgtor space with basis ®,,..., w,. Then V can also be regarded as an
mn-dimensijonal P-vector space with basis

Quw; ((A<i<m, 1<j<n)

.and there is an obvious natural injection of Endg (V) into Endp (V). We

have now the key
TueoreM A.l. Let

B € Endg (V) = End, (V). {A.15)
Then

S wfﬁ = SR;P(SV,mﬁ)s (A.16)
N V[rﬂ =N R}P(N YIR ﬂ)' ’ (A.17)
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Further
@(x) = Ng;pF(x), (A.18)
where ®(x) e P[x], F(x)€ Rix] are the characteristic polynomials of B in
End, (V) and Endg (V) respectively. '
Pioof. If B is given by (A3) let y € Endg (V) be given by

Yooy = Oy — Y, by
=1

(A.19)
'ywjzbllw‘ (i>1).
Then for ¢ = 7 we have
oy = b]_lwl
o = by oy + zl(bu by;—bu by o,
i=
= by, + 3, a0 (s2y)- (A-20)
J=1
Hence
NV[R“ == bllNWIRa* (A'zl)

where W is the n—1 dimensional R-vector space spanned by wz,. .., 0,
and a* is the R-linear map
o, Y ayo; (i>1).
FED !
Consequently
N R]P(N wx“) = Npsp b1y -Nn,rr(N WjR“'*)- (A.22)

We now use induction on the dimension #, since the_ Thegrem is trivie.ll
forn = 1. Since W has dimension #-—1 we have by the induction hypothesis

Ngp(Nywret¥) = Nypo*. (A.23)
On the other hand, it follows directly from (A.20) that

NV/P“ = NR,ern NW’I.PC‘*
and so

Nypot = Ngsp Nypo. (A.24)
Further, clearly

Nyppy = NppNyp? = (NRIPbll)"—l-

Since « = By and both Ny,p and Ngs;pNyp ate multiplicative (by (A.10)),
it follows from (A.24) that

(N RiP b: 1)"‘ N wrﬂ = (N RiP b1 1)"“ N R[P(N V/nﬁ)- (A-25)

If Ngpby; were invertible, this would give (A.17) at once. In general,
however, this is not the case and we must use a common trick.
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Let ¢ be a transcendental over R and let f, be the transformation obtained
from B by replacing b,, by b,, + but leaving the remaining ;; unchanged.
Then (A.25) applied to B, gives

(Ngsp(by +0)'~ !NV/P By = Npp(by +1Y~ INR/P(NV]R B).  (A20)

All the norms occurring in (A.26) are polynomials in z. On comparing
coefficients of powers of ¢ in (A.26), starting at the top, we deduce that

Nypf = Np;p(Nyr ) (A.27)

because the coefficient of the highest power of ¢ in Ngp(b;; +¢) is 1. Then
(A.17) follows on putting ¢ = 0.
We now prove (A.18). By Lemma 1 we have
O(x) = Nyp(x— ), F(x) = Nyja(x—B)
and 50 (A.18) is just (A.17) with x—§ for §.

Finally, (A.16) follows from (A.18) on using (A.6) and the first half
of (A.14).

When R = k is a field there is some simplification, since every finitely-
generated module V over k is free, i.e. is a vector space. Further each
B e End, (V) has a minimum polynomial, i.e. a non-zero polynomial f(x)
of lowest degree, with highest coefficient 1, such that f(f) = 0. Then
g(B) = 0 for g(x) e k[x] if and only if f(x) divides g(x) in k[x]. In particular
the Cayley-Hamilton theorem (A.5) now states that f(x) divides the charac-
teristic polynomial Fg(x).

Finally we have

THEOREM A.2. Let K be a field of finite degree n over the field k and let
Be K. Then the degree m (say) of the minimum polynomial f(x) of § over k

divides n and

F(x) = (fex))™,

where F(x) is the characteristic polynomial of B. In particular
n
Skn(B) = = B+ ... +Ba)

Nx;k(ﬁ) = (Bl:ﬂZs- . wﬂm)"’m,

where fiy,. .., B, are the roots of f(x) in any splitting field.

Proof. Suppose first that X = k(f). Then the minimum polynomial f{x)
and the characteristic polynomial F(x) of § have the same degree and highest
coefficient, so F(x) = f(x) by the remarks preceding the enunciation of the
Lemma.

The general case now follows from Theorem A.1, with V' = K, R = k(p),
P = k on using (A.1]).

ANT. 4
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APPENDIX B

Separability
In this book we are primarily interested in separable algebraic field exten-
sions. Here we recall their most important elementary properties.

Lemma B.1. Let K, M be extensions of finite degree of the field k. Then
there are at most [K: k) injections of K into M which leave k elementwise
fixed.

Proof. Trivial when K = k(o) for some a on considering the minimal
polynomial for «. For general K we have a chain

k=K°CKlCK2...CKJ=K (B.].)
where K; = K _,-__l(otj_l) and use induction on J.

DerniTioN.  The finite field extension K|k is separable if there is some
finite extension M |k such that there are [K: k] distinct injections of K into k
which leave k elementwise fixed. If K[k is not separable then it is said to be

inseparable.
CoroLLaRY 1. Let K= L > k. IfKlkis separable then so are K/L

and Lik.

Proof. By Lemma 1 there are at most [L: k] distinct injections of L
into M and by Lemma 1 again each of these can be extended in at most
[K: L] ways into injections of K into M. By definition, there are

[K:k]=[K:L][L:k]
injections of K into M, and so there must be equality both times.

CoROLLARY 2. Lef zeK where Kk is separable and let oy,. . ;O D€
the roots in M of the irreducible polynomial f(x) for o over k. Then the
o (I1<isn= [K: k]) are just the 0qy. .- Om each taken nfm times,
where Gy, . -s O 1€ the injections of K into some M.

Proof. ForputL = k() in the preceding argument.

COROLLARY 3.

Su(@) = ; 0,0

Proof. Follows from Theorem A.2 and the preceding Coroliary.

Lemua B.2. Let K[k be a finite field extension and let ¢ be an injection of k
into some field M. Then there is a finite extension M, of M and an injection
o, of K into My which reduces to ¢ on k.

Proof. Trivial if K = k(z), and then follows for general K on using 2
chain (B.1).

Tueorem B.1. Let K/L and LJk be separable extensions. Then K[k is @
separable extension.

Proof. Let U/Lbea finite extension and

7, K->U (1<i<[K:LD
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be injections extendin i i
- g the id -
extension and entity on L and similarly let V/k be a finite

o;: L=V (1<j<[L:K])

extend the identity on k. B
_ . By repeated icati i
finite field extension M /¥ and [Lp: k] inj:c!:)tri);ﬁ: tlom of Lemma 2 there Is &

. o;t UM (I<j<[L:k])
which extend the ¢;. Then the o}z, give :

A [K:LHL:k]=[K:k]
u‘;:lg:::) I1“[11']‘:cl:10115 of K into M extending the identity on k
Proof: Fora Sl et Koy s s il ensensios o egerable
: ension ; '
(o 2 tower of simple extensions. (a)/k clearly is, and then apply the theorem

THEOREM B.2. Let Kfk b
o e d i -
K = k(y) for some 7. / separable extension. Then it is simple, i.e.

Note. The converse is, of course, false.

Proof. . .
som,:if _ sz ‘i:hls a ﬁn}te field fhen s0 is K and so indeed K = II(e) f:
o Her:ce “?erengdlsc ;E:i C{Je]:melﬁelg, by the structure theory of ﬁnic':;
only the cas infini
;Icr:llfnts._ S‘.,upp9s? first that K = k(a, B) and leet ‘:hen kcrhas hmﬁrlltely g
e the distinct injections of K into M (say). If 42} itinetne ='[K:'k]
. i # j, distinctness implies

either c,a# o0 or 6 f#0;p

{or both). Hence we

it may find a,bek to satisfy the finitely many
¥ a(o;0—0 ;00 + bloyf— o f) % 0 (i # j).

A y = an+bf,

oy # a5y (i#]))
Th i Y .
e a;y are all roots of the irreducible equation for y over & and so
[k(¥) : k] = n.
Bulg k(y) < K, s0 K = k(y).
T t
> nﬁ: tioge Og]:n;ral gg.se hWhen K = k(ay, a5,..., ;) with J > 2 one uses
. e have k(o,...,a;) = k(f) for some B and then

k(ﬂ%;l B) = k(y).
EOREM B.3. Let K/k be a separable extension. Then
S, p) = Sx,rk(“ﬁ)

q . ofs K 'd . d f
f .
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Proof. Only the non-degeneracy needs proof. Let wy,..., W, be a base
of K/k. The statement of the Theorem is equivalent to

D (say) = det {SK,k(wia)j)},Sis,, # 0.
1=jsn

Let 0y,. .., 0, be distinct injections of K into some M. By Lemma B.l,

Corollary 3 we have
D=A*

where
A= det((r;a)j)l <isn
1<jzn

By Theorem B.2 we have K = k(y) and so can take w; = pi~1. Then

A= ﬂ_(o'j')"‘o'i?)
L]
#0,
as required.f
We now consider when a simple extension k(«)/k is separable. Let f(x)
be an irreducible polynomial in kix] and let f'(x) be its derivative. If
f/(x) # 0 it must be coprime to f(x), since it is of lower degree, and so there
are a(x), b(x) € k[x] such that
a(x)f(x)+ b(x)f'(x) = 1.
Hence f(f) = 0 for f§ in any extension of k, implies that f'(8) # 0, and
so B is a simple root. Hence the number of roots of f(x) in a splitting field
is equal to the degree. On the other hand, if f'(x) = 0, every root of f(x)
is muitiple, and so the total number of roots is less than the degree. In the
first case we say that f(x) is separable, in the second inseparable. The second
case occurs if and only if f(x) = g(x?) for some g(x) € k[x], where p is the

characteristic.

Lemma B.3. A necessary and sufficient condition for k(a)fk to be separable
is that the irreducible polynomial f(x) € k[x] for « be separable.

Proof. Clear.

CoroLLARY 1. Let K o k, and suppose that k(e)fk is separable. Then
K(o)/K is separable.

Proof. For the irreducible polynomial F(x) € K [x] over K divides f(x).

COROLLARY 2. A necessary and sufficient condition that K[k be separable
is that every element of K be separable [k.

Proof. Suppose that every element of K is separable and that K is given
by a chain

k=K,cK,c...cK;=K

+ Instead of using the fact that K = k() we could have used Artin’s theorem that any
set of injections of one field into another is linearly independent. See Artin: *“Galois
Theory” {Notre Dame) or Adamson: “Introduction to Field Theory” (Oliver and Boyd).
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where K; = K;_;(«;_y). Then K;/K;_, i
- —1) JK:_ 158 i
and so K/k is scparlable by Theolren; ll. eparable by the previous corollary
The converse follows from Lemma I Corollary.
’Irn striking contrast to Theorem B.3 we have
HEOREM B.4. Let K[k be i
i ek [k be inseparable. Then the trace Sy,(B) vanishes

Proof. Suppose, first, that K =

 Troo). SuPRose, k(o) where af ek, a¢ k and p is the

. . oy =lo,=a...,0,=a""!

is a basis for Kfk. If f§ = by +bya+... +b,a°"" with b, € k, then
ﬁw;=zbijQ)j bl-jEk

where clearly
by=b, (1<i<p)

Hence )

SguB = ; by=pb, =0

Now let Kk be any inse i
; _ parable extension. By the latest C
oroll
is an inseparable x € K. Put L = k(a), M = k(a®), so L/M is afﬁ :;t);rtxlslii)r;

lekﬁ = SMI&{SL/M(SK]L ﬁ)}-

APPENDIX C
Hensel’s Lemma

:‘:attfli lilste:'ral.::r:ha vz&nety of results go u_nder this name. Their common

ot of somat :n:xilstence of an approximate solution of an equation or

ystom of Squations rla1 a cfomplete valped !ield implies the existence of an

general effect that tl(ie lgggri?ci?:t?);ﬁs:ilgn’ _S“bjeCt (tio ™ oy e

: ‘ n is “good enough®.

::srl:rl:; iaI;e tx?ssentlal!y just examples of the process of solution tgai: succz:s‘ia:ee

2ppre ation, whnch_ goes back to Newton (at least). In thi i
give a typical specimen, * appendix

AX)eo[X]

‘ ' . , C.1

where o < k is the ring of integers for | | Let wg € 0 be such that b
| o) < | f (@) (C2

where f(X) is the (formal) derivative of f(X). Then there is a sohution of
f@) =0,  |a—ao| < |f@|f}/ @) (€3)
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Proof. (Sketch) Let f;(X ) e o[ X] be defined by the identity

f(X+Y)=f(X)+f1(X)Y+...+f,~(X)Y’+..., (bC.4)
where X, Y are independent variables, so f(X) = f'(X)- Define B, é'S
f(eo)+ Bof1(@o) =0- (C.3)

Then by (C.4) and since f (o) € 0 we have -
" lf(“o‘*‘ﬁo)l < max lf j(ao)l%l
Jj&2
ool
< | fo) /| f1xo
< | flaol. (C.6)

On using the analogue of (C.4) for f1(X), it is easy to verify that

|f1(°‘o +ﬁo)“f1(°‘o)‘ < if:(“o)‘-
Th putting o, = oo+ Po, we have 2
o | flen)) < | feol*] FACH
If 1(“1)‘ = lf 1(“0)‘

and

|y S ‘f(“o)l”ﬁ(%)l-

On repeating the proce ;
ich is easily seen to be a fu )y the co
‘Ifgfer; is anz,c = lim «, € k, which clearly does what is required.

utic i i i For if
i C.3) not merely exists, but 1s unique. _
In fact, the solulon & on dily gets a contradiction by putting

a+f, B # 0 is another solution one rea
X =« ¥Y=fin(CH).

ss with «;, etc., we get a sequence do, &y, %2, - -
ndamental sequence. By the completeness of
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1. Cyclotomic Fields

Let K be any field of characteristic zero, and i > 1 be an integer, Then there
is a minimal extension L/K such that ¥ —1 splits completely in L, The zeros
of x™—1 form a subgroup of the multiplicative group of L; this subgroup is
cyclic (since every finite subgroup of the multiplicative group of a field is).
The generators of this subgroup are called the primitive mth roots of unity.
If { is a primitive mth root of unity then every zero of (x™—1) is a power of
{,and L = K({). Clearly, L is a normal extension of K; we write L = K(ﬂ 1).

If ¢ is an element of the Galois group G(L/K), then o{ must be another
primitive mth root of unity, so of = {* for some integer k, (k,m) = 1. If{*
is another primitive root of unity then o(* = {**; accordingly, ok is a
canonical map of G(L/K) into the multiplicative group G(m) of residues
modulo m prime to m. In particular, [L : K] < ¢(m).

If m = rs where (r,5s) =1 then there exist integers a,b with ar+bs =1,
{= (L), so K({) = K({",[%); one obtains the extension X({) by com-
posing K({") and K{({*). So to some extent it is enough to consider K(ﬂ 1)
when s is a prime power. If p is odd then the group G(p") is cyclic, so if
m=p", L=K(/1), then G(L/K) is cyclic; on the other hand G(2") is
generated by —1 and 5, so if we write §={+{"! where {*"=1 then
K({) = K(i,n) and G[K(n)/K] is cyclic.

We are particularly interested in the extensions Q(%/1) and Q,(/1); by
Chapter I (Section 4 and start of Section 5) the study of the factorization of
the prime p in the extension Q(ﬂ 1)/Q is essentially the same as the study of
the extension Q,(%/1)/ Q,. As one of my jobs is to supply explicit examples
for abstract theorems, I will prove things several times over by different
routes. Good accounts of cyclotomic extensions are given by Weyl:
“Algebraic Theory of Numbers” (Princeton U.P., Annals of Math. Studies

85
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No. 1), pp. 129-140, and by Weiss: “Algebraic Number Theory” (McGraw
Hill), Chapter 7.

LemMa 1. Q@) isa normal extension of Q of degree ¢(m); its Galois
group is naturally isomorphic to G(m).

Proof (after van der Waerden). Let { be a primitive mth root of unity;
after what has been said already, it is enough to show that an equation of
minimal degree for { over Q has degree ¢(m) so we need to show that if
f(x)eZ[x] and f({} =0 then f({*) = 0 whenever (a,m) = 1. For this, it is
enough to show that f({F) =0 whenever p is a prime not dividing m.

Consider the field k, with p elements; if f(x) € Z[x}, denote its natural
image in k,[x] by f*(x). Let L*, a finite extension of k,, be a splitting field
for (x"—1); (x"—1) is prime to its derivative mx™"*, so has distinct roots.

Suppose that the factorization in Z[x] of (x"—1} is fi(x). F(x). . S(x), s0
that the f;(x) are irreducible. Then in k,[x], x"—1} = [1/7(x), and all the
zeros in L* of all the f*, being roots of x™ = 1, are distinct. Choose the
numbyering so that { is a root of f,(x), and suppose that {? is a root of f{x).
Then ,(x) divides f3(x"), sof *(x) divides f 3 (x7). Let {* be a zero of £(x);
then fF({*") = 0, and on the other hand fX(*) = [fI(EMF=0. So 1y is
the same as f7.

COROLLARY 2. If p ¥ m there is a unique element o, of the Galois group
GIQ(/ 1)/Q) such that 0,0 = o«#(p) for all integers a € QY1). In fact, if L is
a primitive mth root of unity then ¢, is given by o,y ail’)= Sa{? for a,€ Q.
(o, is the Frobenius automorphism.)

Proof. The field basis 1,¢,..., (P~ has discriminant prime to p, so by
Chapter I, Section 3, certainly every integer can be expressed as ¥, a;{ ‘b with
ay,. .., qp.2,b€L and (b,p) = 1; so a, defined above does what is wanted.
We need to show that it is unique. The effect of an element & of the Galois
group is clearly determined by its effect on {; and clearly every o takes { to
another primitive root, {* say, with (a,m)=1. We need to show that
" = ((p) only if {* = {*; that is, 1—{*=0(p) only if £* = 1.

First method. Suppose {* 1. We know

=1 =i=1_]-i(x—gj)’

S0

mx" =Y H‘(x— ),

FEREY
and
m=1
m= 1-[1 (=)

So (1—{?) divides m, so p does not divide (1 -
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Second method. Take the completion Q, of Q, and form the extensi
Q% 1). Let L* be the residue class field of Q (%/1). Then L* is a ﬁn'c;n
extension of k, and is a splitting field for x™— f Q1) = Q(1), so tlhe
resxduc_ class map makes a root of x™—1 in L* cofrespong topeach’root oet:'
Aa™—1in -Q({'/l). Conversely, the roots of x™ = 1 in L* are distinct, and each
of them is the residue class of an element of Q (3/1), by Hensel,’s Lemnia
(Chapter I, Section 7, Lemma I, or Chapter II, ;\ppct;dix C). So we have a

one-one correspondence between the mth roots of unity in L in Q
. t * m
and everything follows. nity in L* and in (\/1)’

LemMA 3. If g = p! is a prime - ] jmiti
’ ime power and { is a primitive gth root of wni
then the prime p is totally ramified and in fact (p) = (1 —()"’(g). /iy

First Pf'ooﬁ Write A=1~{. Then{?=1but {#? £ 1,50 A1
polynomial F(x) = [(1+x)7—1)/[(1+x)7"—1]. (F h?&as ’le:cﬁrifgacgchgcgn:h‘;
and c.o'nf,tant term p, and it is readily verified that all the other coefficients
are divisible by p. So Fis an Eisenstein equation, and by Chapter I, Ssction
6, Theorem 1, Q,,(E/ 1) is a totally ramified extension of Q, of de’gre; o)
gu(i) f(;;l; é;l);‘("’j (Going back to Q(3/1), we see that Q(¥/1) is an extension gf
50 we i i i
oty fin o e ;iitniinoc:.her proof of Lemma | in this case) and p is

Second Proof. We can see all this more ici
then we can solve a = bs(g), so plietty. i@ =G =1,

A=A ) = U= YA=L) = 1L 40D

is an integer, and similarly so is (1—{*)/1~¢%; so (1—{9)/(1—%) i _
whenever (a,p) = (b,p) = 1. Also, }; so (1-{)/(1-{") is a unit

p=tlim 5L 1—go

= = lim Y = (LY@ T

m oy = hm E;';E[“(x )= (1-0*@ ] =
a<gqg

so (p) is simply the ¢(g)th power of (1) = (1-0).

LeMMA 4. Let { be a primitive mth root of Y. If p is a prime not dividing m

then it is unramified in Q(Y/1) and its resi
. - residue clgss degree
Section 5) is the least integer £ > 1 such that p’ = I(mf Ty (poe Chaptec T

Proc.:f [after Serre: “Corps Locaux” (Hermann, Paris)]. Consider th
extex?smn 2,0 of Q,,; the residue class field k, has p elements. The pol ?
n;)n_ual x"—1 splits in k,, if and only if m|(p —1). Take the least f wi:’h
g = 1(m), and construct the unramified extension L of @, with residue class

eld kif (seexChapter I, Section 7, Theorem 1). There pis a multiplicative
map k,; — L™ as in the second proof of Corollary 2, so x™—1 splits ip L,and
clearly L is minimal with this property. So L = Q,:(t,’). ' A
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Going back to Q({), we see that p is unramified in Q({) and has residue
as described. .
CIEl(iidleirtfit{; lemma is an immediate consequence of the properties of the
Frobenius automorphism obtained in Corollary 2) .

COROLLARY. If p X m, then p splits completely if and only if p = 1(m). .

LeMMA 5. If g =p' is a prime power and { is'a primiti:;e gth raot‘ of unity,
the discriminant of the extensiont %(C) ofC 4% )151 g? @ pi'?; a basis for the

- integers of Q) is 1,{,0%,. .., . .
z ?r(:i;{e (‘)Zj‘;nsidir ﬁrg:c?lfe)case t=1. By Lemmas 3 ar}d 4, the only prime
ramified in Q() is p, and the ramification of p is_ ta'me w1fch e fzp-— 1. Hence
by Chapter I, Section 5, Theorem 2, the discpmman-t is pP~%. Hence by
Chapter ¥, Section 4, Prop. 6, 1,0,8%. .., {2 is a.ba31s as asserted.

In case ¢ = 2, the ramification is wild, so all that is obvious from Chapt:{q)l
(until the final section) is that the discriminant is a power_of p, at le:_;tst pHe.
We give a direct proof that the powers of ¢ form a basis for the integers,
which works for all ¢. Consider the Z-module Z[{]. By Chapter I, Section 4,
Prop. 6, Z[{] has discriminant Ngoyalg'(©)), where

g =TI =%
(k.p)=1
after dull computation this turns out to be ¢*@/p®”.

We want to show that Z[{] is the whole ring of integers of Q(); after

Chapter I, Section 3, Prop. 4 it remains to check that

a:t‘
osisHn-1 o ‘
with ¢, € Z is divisible by p if and only if all the g; are divisible by p; that is,
that
b(1-{)
0si<da) -1

is divisi if and only if all the b, are. To check this, suppose that
E{glz:(sib—leﬁ]));y Irjecollect thgt (p) = (1-0*@, and suppose that plb; for
i=1,...,5—1. Then
(1=0P@|b (A~ 0+ by a1~ 1., 50 (1=0|bs s0 plbs;
so by induction we get what we want. The conclusions of the Lemma follow.
LeMMA 6. If L is a primitive mth root of unity, then Q() is an extension of
Q of degree (m); the discriminant of Q({) over Q is

,n#(m)/ l_I p¢(m)l(l’_' 1) ;
pim

a basis for the Z-module of integers of Q) is 1,3, ... 0¥ Y pis ramified
if and only if pim.

Most of this has been proved already (Lemmas 1, 3 and 4); .the extra
assertions about the discriminant and the basis for integers are equivalent to
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each other, and may in fact be proved directly (see Weiss, Section 7.5). One
may also pick up the assertions about Q(%/1) by fitting together the extensions
Q(%/1) where g runs through the prime power factors of .

First, remark that if ¢,¢" are powers of different primes,

QYD N QE/1H=Q.
Now work out the discriminant. Suppose p*|lm. By Lemma 5 the dis-
criminant of Q,(p"/1) over Q,, is p*"~**+1F""*_ There is no further ramifica-
tion of p in Q,(3/1), so by Chapter I, Section 4, Prop. 7, the discriminant of
Q,(/1) over Q,, is p*™)—¢t=itr=1) " By Chapter I, Section 4, Prop 6, the
discriminant of Q({) over Q is

) / [ p*erce=1,

pim

By computation this is the discriminant of Z[{], so by Chapter I, Section 3,
Prop. 4, 1,{,2,...,¢%™"! really is a basis for the Z-module of integers.

Remark. All assertions about factorization of primes in Q(3/1) may be
regained from Lemma 6, by using Kummer’s theorem (see for instance Weiss,
Section 4.9; or the Appendix). “If Z[{] is the complete ring of integers of
Q({), and g(x) = 0 is the characteristic equation of { over Q, then 2 prime p
factorizes in Q({) in the same way as g(x) factorizes modulo p, and in fact
if () = [] 0:(x) (mod p) then (7) = [][p, 9:(0)).”

It is, of course, perfectly possible to work out the ramification groups
explicitly in this case—for this we refer to Serre: “Corps Locaux” (Hermann,
Paris), pp. 84-87.

To conclude. We have shown that every cyclotomic extension, and so
every subfield of a cyclotomic extension of Q has abelian Galois group. The
converse is true—every abelian extension of Q is a subfield of a cyclotomic

extension (Kronecker’s Theorem); but that is Class Field Theory (Chapter
VIIL § 5.7.)

2., Kummer Extensions

Throughout this lecture, X is a field of characteristic prime to » in which
x"—1 splits; and £ will be a primitive nth root of unity. It will be shown that
the cyclic extensions of K of exponent dividing » are the same as the so-called
“Kummer” extensions K(%/a).

Let a be a non-zero element of K. If L is an extension of X such that
X" =a has a root « in L, then all the roots o, {a, {%at,...,t" ‘o of x**=a
are in L, and any automorph of L over K permutes them. We denote the
minimal splitting field for x"—a by K({/a). If ¢ is an element of the Galois
group G[K({‘,f'a)/K], then, once we have chosen a root of x" = a, ¢ is deter-
mined completely by the image oa = {*«. In particular, if a is of order n
in the multiplicative group X™{(K*)", then 4" is a nth power only if a|r, so
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the map o'+ (" gives an isomorphism of the

—aisi ible; in this case .
x* —a is irreducibl e ardur . Let us state all this as a lemma,

Galois group on to a cyclic group o

Lemma 1. If a is a non-zero element of K, there is a weIl-aiel?ﬁned :;ormcfl
extension K(%/a), the splitting field of X" —a. Hois a.root of_ A.! = ajr ae;: ;}
a map of GIK(Y/a)/K] into K> given by o> oafa; in particuiar, 1 @
order 1 in K™ {(K*)', the Galois group is cyclic and can be generated 0y ©
with 6o = {a. . o

Lemma 2. If L is a cyclic extension of K (i.e.x (“?(L/K) is cyclic) then
L = K(%/b) for some be K. (bmust generate K JKY)
is by direct construction, which is providentia}lly possible. Igt
o be a generator of G(L{K); then L = K(y) for some y, since al(lTns_ePar?s z
extensions are simple, and we can choose y so that y,07,... Y
basis for L over K. Form the sum

=1
ﬁ = zo CSO'SY.
5=

Then off = ¢ 18, and f#0 since 7,- . .,a" 'y are lineal.'ly independel.-lt
over K: so gre K and f" ¢ K for 0 <r<n Thus g"=>0is of orde.r n in
K*|(K ’:)"' by Lemma 1, K(%/b)isa eyclic extension of degree n contained in
L, so L = K(}/b). )

LEMMA 3.\/Two cyclic extensions K(*/a), K(3/b) of K of the same deirele
are the same if and only if a=1b"¢" for some ce K am'z' r’"e Z with (.r, {1) =1

In fact, “if " is obvious; we have to prove the “only if”* part. This is easy

by elementary Galois theory. Suppose that K_(a) = K(p) with o" = cf 5;&!;:
Let o be a generator of the Galois group with oo = {a, then 6ff =

some i. Suppose

The proof

n—1 )
B=12 %,
[]
then _
af =Y c;ied,
so we can only have i
B =
CoROLLARY. Let L be a finite extension of K with abelian Ga{ors group G
of exponent dividing n. Then G is the direct product of cyelic subgroup.'t'
G,....,G.. Foreachi,letL, be the fixed field of Gy X ... X Gy X . X Gy
f.hle,n G(L;/K) = Gi’ Li = K(ai) H’ith Ot',-' =a € K, andL = K(al!' vy ot,.).
We may approach the last couple of lemmas via Galois cohomology (see
Serre, p. 163). We quote a generalization of Lemma 2.

LemMa 4. If L is a normal algebraic extension of K with Galois group G then
HYG,L*)=0.
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[A 1-cocycle is a “‘continuous” map G—L* in which ¢ —a, with ofe) =
o5 Letge} “continuous” means that the map may be factored through a finite
quotient G’ of G. Form the sum 8= X o,o(y); by the lincar independence

el

-]
of automorphisms [Artin: “Galois Theory”, (Notre Dame), Theorem 12 and
Corollary and Theorem 21], we may choose y so that § % 0; and then «; = e 8.]

Apply Lemma 4 taking L as the (separable) algebraic closure of X. There
is an exact sequence 0 —» E, % L* — L™ — 0 where v is the map x+ x" and
E, is the nth roots of unity. Taking homology, we get

H%G,E,) - H%G,L*) ¥ H%G,L*) - H'(G,E,) - HY(G,L*) —...
Since G acts trivially on E,, H'(G, E,) is Hom(G, E,), and of course H%G, L")
is the part of L™ fixed under G, so this is

E,—- K* X K" > Hom(G,E,)) -0,
ie.
K*(K*)" = Hom(G, E,).

One can make the isomorphism explicit. Recollect thatif0 >4 -+ B—- C—=0
then an element ¢ € C® gives a map G — 4 by taking & with b — ¢, and then
g blob is a map G — 4. In our case, we start with ¢ e K™ ; take y so that
9" = ¢; and then o+ y/oy is a map G — E,. Conversely, if ¢ € Hom(G, E,),
let G’ be the kernel of ¢. Then G/G’ is the Galois group of a cyclic extension
K’ of K of exponent dividing », and if ¢ € G is such that ¢(¢) = {, there is
an element y € K’ such that oy = {y; then " € K*, so determines a class of
K*[K™,

The elements of & whose exponent divides n are preserved in Hom(G, E,).
Let K, be the union of the abelian extensions of K whose Galois groups have
exponent dividing »; then Hom[G(K,/K),E,1 =~ K*/(K*)Y". In particular
the finite abelian extensions of G whose exponents divide » correspond to
finite subgroups of K™ /(K™ )"

Finally we want to look at the factorization of primes p of X in the
extension K({/a); by Chapter I, as before, this is the same as the study of the
extensions K, (%/a) of the local field X,.

LEMMA 5. The discriminant of K(3/a) over K divides n"a" '; p is unramified
ifpXna. Ifa’ is the least power of a such that a’ = x"(p) is soluble, then f is
the residue class degree.

Suppose o" = a; then, if o is the ring of integers of K, o[«] is a submodule
of the ring of integers of K(x), and by Chapter I, Section 4, Prop 6, its
discriminant is (no" ') =n"a""'; so the discriminant of K(x) over K
divides n"a"!. In particular, by Chapter I, Section 5, p is unramified if
ptna, and indeed by Kummer’s theorem (or by Chapter, IT Section 16
and Hensel’s Lemma) the factorization of p then mimics that of x"—a
modulo p. Hence, if ¢/ is the least power of a such that x” = a/(p) is soluble,
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then p factors as the product of njf prime ideals in K(«), and the residue class
degree is f. Alternatively, this last bit can be proved like Lemma 4 of the

cyclotomic lecture, by forming the unramified extension of K, in which
x"—a splits.

LemMa 6. If pla, p.yn and p"fa then p is tamely ramified in K(Ya); if
pla and p ¥ a then p is totally ramified in K(3/a).

Let o be a root of x" = a. The second part of the lemma is easy; if pla but
p? ¥ a then, quite explicitly, p = (p, ). The result can also be obtained from
Chapter I, Section 6, Theorem 1, since in this case x"—a is an Eisenstein
polynomial,

If p t'n, so that p does not divide the degree of the extension then any
ramification must certainly be tame (see Chapter I, Section 5). On the other
hand, if pla but p” Y a then p is certainly ramified, since (p, a)ipi(p, 2)", but
o ¢ p.

There remains the case where p'la, priia, pynwith 2<r<n— 1. If
(r,n) = 1, we have k,m so that rk+nm = 1, and choose g€ K with plg, pirq.
Then K[I/(d*¢™")} = K(%/a), and we have got back to the case r=1. If
(r,n)=s>1, the ramification is no longer total, and there may or may not
be splitting as well. The ramification index is #/s:p is unramified in the
extension K(5/a) of K, and then the factors of p are totally ramified in the
extension K(%/a) of K({/a).

APPENDIX

Kummer’s Theorem

Throughout this appendix, K is an algebraic number field with ring of
integers o, and L = K(6) is an extension of degree n; we suppose that 8 is an
integer and that f(x) & o[x] is the characteristic polynomial of 8. p is a prime
ideal of o, v is the associated valuation, K, is the completion of K at p, o, is
the ring of integers of K, and K7 is the residue class field. The prime ideal
factorization of pin L is p = H qf; the associated valuations, completions,
rings of integers, and residue class fields are ¥}, L;, 0j, L¥. If f, g are poly-
nomials in ofx}, o,[x] their images under the residue class map are denoted
by f*, g*.

In Chapter II, Section 10, it was shown that, if the irreducible factorization

of f(x) in o[x] is
se9 =TI a9

then L; = K,(0;) where g #8;)=0. There is an injection map p;: L— Ly
with ;0 = 8;; and a residue class map W :0;—L}.

We wish to relate the factorization of p in L to the factorization of (%)
in K¥[x]. First we need a lemma.
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LEMM:?. With* the above notations, gf(x) is a power of an irreducible
polynomial of K}[x], say g}(x) = [G}(x)1, and {r;0; is a zero of GJ(x).

. This )vill be clear (?nough if we show that the modulo p reduction of every
1rr:duc1ble polynomial of o [x] is a power of an irreducible polynomial of
K3[x]. Put another way, we wish to show that if A(x) € o,[x] and

B*x) = h¥(x). h5(x) with (R3(x), B30) =1,

Fh.en we can find Ay (x), 21,(x) from o,[x] such that A{x} = k,(x).h,(x). This
isjust a version of Hensel's Lemma (see Chapter II, Appendix C; Weiss 2.2.1.).

KummMer's THEOREM. Suppose that p, 8 have the property that
n—1
Y. af'eK[d]
)
is an i{:tegter only if v(a) = 0 for i =0,...,n—1. Suppose that the irreducible
factorization of f*(x) in K}[x] is f*(x)=[[[GJ()I*, and for each j let
gi(x) & o[x] be a monic polynomial whose image by the residue class map is
Ji:(:.c).ci‘hen the prime ideal factorization of p is p = [ [ a5/, with q; = (p, G,(8)).
of, Chapter IT, 19.20; p = II g is equivalent to saying that the valuation:
; + ] sof L
extending v are ¥, for j = 1, ..., J, the corresponding ramification indices are

the e,, and the set of integers « of L with ¥, > 0 .
V() > 0if w0 = 0] {®) > 0is q.. In our notation,

We have to check that the ramification indices are correct and that
q; = (p,G,0)); also, that different polynomials G} come from different
polynomials g;.

We !cnow already.that L;= Kpﬂ[x]/(g 4(x)). By the hypothesis of the theorem,
?Verfolﬂtegg o’f'( lf éS'OF forfn > 4,8 with v(a)) = 0, so every element of L}
is of form Y af(y;6)'; so L} = KF[xINGF(x)), and e; = [L; : K,J/IL}; K]
the correct ramiﬁc;ation index. ’ e 1= W IGUET £ s

If ae(p, Gy o=
ven tehg; (0)) then clearly w,x =0, so aeq;. Conversely, suppose

n—-1
a=Y a0,
0
and by the hiypothesis of the theorem v(a) >0 for i=0,...,n—1. Write
h(x) =3, a;x' so that h(x) e o,[x]. Since aeq; ¥;a=0 so F*@,0)=0.
We can express A(x) = G{(x)g,(x)+r;(x), with g;, r; € o,[x] and
deg(r)) < deg(G));
and then rf(y;6) =0, so rf(x) is identicall
A y zero, and A{) e (p, GLO).
Hence q; = (p, G(8)), as required. ©)¢ .60

Finally, if G = ,GIJ!‘ with 7 5 j, then g; = q;, 50 g,(x) would be the same as
g{x), a contradiction.
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1. Definition of Cohomotogy

Let G be a group, A = Z[G] its integral group ring. A (left) G-module is
the same thing as a (left) A-module. By G-module we shall always mean
left G-module. Note that if A is a left G-module we can define a right

G-module structure on 4 by puttinga.g = g~ '.a.

If A, B are G-modules, the group of all abelian group homomorphisms
A — B is denoted by Hom (4, B), and the group of all G-module homo-
morphisms by Homg (4, B). Hom (4, B) has a G-module struc_tljre defined
as follows: if ¢ € Hom (4, B), g.9 is the mapping a g.qogg a) (ae A).

For any G-module 4, the subset of elements of A invariant under the
action of G is denoted by AS. A€ is an abelian group which depend§ func-
torially on A. It is the largest submodule of 4 on which G acts trivially.
If A, B are G-modules then

Homg (4, B) = (Hom (4, B))®; (1.1
in particular,
Homg (Z, ) = (Hom (Z, 4))° = 4%,
regarding Z as a G-module on which G acts trivially. Since the functor .1-10131
is left-exact, it follows that A% is a left-exact covariant functor of 4, i.e. if
0 A-+B-C—0 (1.2)

is an exact sequence of G-modules, then
0 A > B~ C¢

is an exact sequence of abelian groups.
94
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If X is any abelian group we can form the G-module Hom (A, X).
A G-module of this type is said to be co-induced.

By a cohomological extension of the functor 4° we mean a sequence of
functors HYG, A) (g =0,1,...), with H%G, A) = A%, together with
connecting (or boundary) homomorphisms

5 HY(G, C) = HI* (G, A)
defined functorially for exact sequences (1.2), such that

(i) the sequence

&
... = HYG, Ay = H%G,B) » HY(G,C) » H"*}(G,A) -~ ... (1.3)
is exact; and

(ii) HYG, Ay =0forall g = 1if A is co-induced.

THEOREM 1. There exists one and, up to canonical equivalence, only one
cohomological extension of the functor A°.

The groups H%G, A), uniquely determined by Theorem 1, are called the
colomology groups of the G-module A.

The existence part of Theorem 1 is established by the following con-
struction. Choose a resolution P of the G-module Z (G acting trivially on Z)
by free G-modules:

.2 P 5Py Z-0
and form the complex K = Homg (P, A), i.e.
0 - Homg(Py, 4A) = Homg (P, A)— .. ..
Let HYK) (¢ = 0) denote the gth cohomology group of this complex.
Then HYG, A) = HYK) satisfies the conditions for a cohomological
extension of the functor A®. For by a basic theorem of homological algebra,
the HYG, A) so defined satisfy the exactness property (1.3); also
H%G, A) = H%K) = Homg (Z, 4) = A%; finally, if 4 is co-induced, say

A = Hom (A, X) where X is an abelian group, then for any G-module B
we have

Hom; (B, A) ~ Hom (B, X)
(the isomorphism being as follows: if ¢: B — A is a G-homomorphism,

then ¢ corresponds to the map B — X defined by & s @(b)(1), where I is
the identity element of G). Hence the complex K is now

0 - Hom(Py, X) = Hom(P,,X)— ...

which is exact at every place after the first, because the P, are free as abelian
groups; and therefore H4G, A) = O forallgq = 1.

To prove the uniqueness of the cohomology groups we consider, for each
G-module 4, the G-module 4* = Hom (A, 4). There is a natural injection
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A — A* whichmapsae 4 t0 @u where @, is defined by ¢g) = ga. Hence
we have an exact sequence of G-modules

0 A+ A*—> A -0 (1.4

where A’ = A*/A; since A* is co-induced, it follows from (1.3) that
§: HYG,A") - H" (G, A) (1.5)
is an isomorphism for all g = 1, and that ’ y
HY(G, A) = Coker (H%G, A*) - H%G, 4")). (1.6

- - 0
The HYG, A) can therefore be constructed inductively from H”, t?nd sg ‘
are unique up to canonical equivalence. This procedure could also be use

as an inductive definition of the H.

Remark. Tt follows from the uniqueness that the H%(G, A) are independent
of the resolution P of Z used to construct them. So we may take any con-

venient choice of P.

2. The Standard Complex »
As a particular choice for the resolution P we can take P; = Z[GT),

i.e. P, is the free Z-module with basis Gx ... x G ((i+1) factors), G acting -

on each basis element as follows:
s(gl]sgl:' . "gi) = (390»591!' . -asgi)'
The homomorphism d: Py — Py_q is given by the well-known formula

i
dgg,. .90 = 20(—1)’(90,- crGjmrsGiete 1 Gid (2.1)
jn

and the mapping &: Py~ Z is that which sends each generator {go) to
1eZ. (To show that the resulting sequence

d ]
...iPl-—rPo-—rZ-—-)O (2.2)
is exact, choose an element s€ G and define h: P, = Py, by the formula
hgos- - >80 = (5,90, 915+ -, 91)-

It is immediately checked that dh+hd = 1 and that dd = 0, from which

actness follows.) _ L
exAn element of K = Homg (P;, A) is then a function F:1 Gt - A such

that
J(sg0s5g15- - o 5g) =5fgo, 91, - G-
Such a function is determined by its values at elements of G'*! of the form
(, gy G125+ -2 G192 - - - - g+ if we put
P CTIY ) =fll,g1,9192: - -9 40
the boundary is given by the formula

e ———— e e e
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(do)(g1s- -1 141) i
=g1.0(g2. s Gis+1) +jzl("1)j§°(9‘u- NI BT UYoUYL

+(=D"9(gs,. .90 (23
This shows that a 1-cocycle is a crossed homontorphism, i.e. a map G — 4
satisfying
olgg) = g.9(g)+9(9)
and ¢ is a coboundary if there exists ae 4 such that ¢(g) = ga—a. In
particular, if G acts trivially on A then
HY(G, 4) = Hom (G, A). (2.4)
From (2.3) we see also that a 2-cocycle is a function ¢ : Gx G — A such
that
919(92:93)— (9192, 93) + 9(91,9293)—9(91,92) = 0.

Such functions (called factor systems) arise in the problem of group exten-
sions, and H?(G, A) describes the possible extensions E of G by 4, i.e. exact
sequences 1 -+ 4 —+ E— G — 1, where 4 is an abelian normal subgroup
of E, and G operates on 4 by inner automorphisms. If Eis such an extension,
choose a section ¢ : G — E (a system of coset representatives). Then we have

o(g:).0(g,) = ¢(g1,92)0(g192)

 for some ©{g1, g2) € A. The function ¢ is a 2-cocycle of G with values in 4;

if we change the section o, we alter ¢ by a coboundary, so that the class
of @ in H*(G, A) depends only on the extension. Conversely, every element
of H%(G, A) arises from an extension of G by 4 in this way.

For later use, we give an explicit description of the connecting homo-
morphism §: HYG, C) » HY(G, A) in the exact sequence (1.3). Let
ce H%G, C) = €%, andlift c up to b € B. Then db is the function s > sb—b;
the image of sb—b in C is zero, hence sb—be A and therefore db is a
I-cocycle of G with values in 4. If we change b by the addition of an
element of 4, we change db by a coboundary, hence the class of db in H'(G, 4)
depends only on ¢, and is the image of ¢ under é.

3. Homology

If A, B are G-modules, 4 ® B denotes their tensor product over Z, and
A ®; B their tensor product over A, A4 ® B has a natural G-module
structure, defined by g{a ® b) = (ga) @ (gb).

Let I; be the kernel of the homomorphism A — Z which maps each

seGtoleZ, I;isanideal of A, generated by all s—1 (se G). From the
exact sequence

0=Ig—>A—Z—>0 G.1)
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and the right-exactness of ® it follows that, for any G-module 4,
Z®cA= AflGA.

The G-module A/I;A is denoted by Ag. It is the largest quotient module

of A on which G acts trivially. Clearly Ag is a right-exact functor of A.
For any two G-modules A, B we have

A®gB = (A® B)g. (3.2)
A G-module of the form A ® X, where X is any abelian group, is said

to be induced. By interchanging right and left, induced and co-induced,
we define a homological extension of the functor Ag.

TueoreM 2. There exists a unique homological extension of the functor Ag

The homology group H,(G, A) given by Theorem 2 may be constructed
from the standard complex P of § 2 by taking

HG,4d) = H(P ®gA).
Uniqueness follows by using the exact sequence
0 A 2d,—»A-=0 (3.3)

where 4, = A ® A. The details are exactly similar to those of the proof

of Theorem 1.

The connecting homomorphism é : H,(G, C) = Hy(G, A) may be described
explicitly as follows. A 1-cycle of G with values in C is a function {1 G =+ C
such that f(s) = 0 for almost alls€ & and such that df= ¥ (s7' = 1) f(s) =0.

seG

For each se G lift f(s) to f(s)e B (if F(s) = 0, choose f(s) = 0). Then
df has zero image in C, hence is an element of 4. The class of df in Ho(G, 4)
is then the image under § of the class of f.

ProvosiTioN 1. H, (G, Z) = G/G', where G’ is the commutator Subgroup
of G.

Proof. From the exact sequence (3.1) and the fact that A is an induced
G-module, the connecting homomorphism

g Hl(G,Z)"’ Ho(G,Ig) = IGII%;

is an isomorphism. On the other hand, the map s+ s—1 induces an
isomorphism of G/G’ onto Ig/IZ.

4, Change of Groups

Let G’ be a subgroup of G. 1If A’ is 2 G'-module, we can form the G-module
A = Homg. (A, A'): A is really a right G-module, but we turn it into a
left G-module as described in § 1 (if p € 4, then g.¢ is the homomorphism
g — @(g'g™"). Then we have
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PRrOPOSITION 2 {Shapiro’s Lemma).
HY(G,A)=HYG',A") forallg>0.

Proof. If Pis a free A-resolution of Z it i
t is also a free A'- i
Home Pt} = Homer (hoon resolution, and

NThe analogous result holds for homology, with Hom replaced by ®
thote :‘hat Prop. 2 may be regarded as a generalization of property (ii) of.'

e cohomology groups (§ 1): if G’ = (1), then A’ = Z and A is a co-induced
module, and the H¥G’, 4’) are zero forg > 1.

If f: G’ = G is a homomorphi it i
’ phism of groups, it induces a homomorphi
P’ — P of the standard complexes, hence a homomorphism rphiom

f*: HYG, A) - HYG', A)

for any G-module 4. (We regard 4 as a G’-module via ) In particular,

taking G =H to be a Subgfou
p of G, and f to be th i
we have restriction homomorphisms y ¢ the embedding # - G,

Res : HY(G, A) - H%(H, A).

If H is a normal subgroup of G we consi
sider f: G = G/H. For any G-
A we have the G/H-module 47 and hence a homomorphism y Gmodule

4, H
'Hd(G/H, A7) : HYG, A"). ‘ Composing this with the homomorphism
induced by A" — A we obtain the inflation homomorphisms

Inf: HYG/H, A) - HYG, A).

Similarly, for homol ; . . .
homomorghism ology, a homomorphism f: G’ — G gives rise to a

Ja t H(G', A) = H (G, A);

in particular, taking &' = H to be a sub
NN group of G, and /1 H
embedding, we have the corestriction homomorphisms JiH =G the

Cor : H(H, A) > H (G, A).

Consider the inner automorphi -
phism s 15t~ of G. This turns 4 int
. oa
new G-module, denoted by A4', and gives a homomorphism

HYG, A) — HY(G, A"). 4.1
Now @+ ¢t~ !q defines an isomorphism A — A and hence induces
H%G, A) - HYG, 4). 4.2)

ProprosITION 3. T i ;
of HY(G, A). he composition of (4.1) and (4.2) is the identity map
The proof employs a standard technique, that of dimension-shifting: we

verify the result for g = 0 and then pr . .
. oceed i
to shift the dimension downwards. P by induction on g, using (1.5)
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For q = 0, we have H%G, 4) = (49€ = 1. A% and (4.1) is just multi-
plication by #. Since (4.2) is multiplication by ¢, the composition is the
identity.

Now assume that g > 0and that the result is true forg — 1. Corresponding
to the exact sequence (1.4) we have an exact sequence

0= A= (A% =AY -0

Since (A*) is G-isomorphic to A*, it is a co-induced module, hence we
have functorial isomorphisms

HYG, 4') = H"'(G,(4Y) (@22
and
H(G, A") = Coker (H*(G, (4*)) ~ H(G, (A

Now apply the inductive hypothesis.

5. The Restriction-Inflation Sequence

PrOPOSITION 4. Let H be a normal subgroup of G, and let A be a G-module.
Then the sequence

Inf Res
0 — HY(G/H,A™) ~ H'(G, A) ~ H'(H, 4)
is exact.

The proof is by direct verification on cocycles.

(1) Exactness at H'(G/H, A"). Let f: G/H — A" be a l-cocycle, then
f induces f: G = G/H - A" — A, which is a 1-cocycle, and the class of f
is the inflation of the class of f. Hence if f is a coboundary, there exists
ae A such that J(s) = sa—a (se G). But T is constant on the cosets of
H in G, hence sa—a = sta—a for all te H, i.e. ta = a for all e H. Hence
ac A¥ and therefore f is a coboundary.

(2) Reso Inf = 0. If o:G—- A is a l-cocycle, then the class of
:pIH . H — A4 is the restriction of the class of ¢. But if ¢ = J, it is clear
that f|H is constant and equal to f(1)y = 0.

(3) Exactness at H G, 4). Letp:G— Abea 1-cocycle whose restriction
to H is a coboundary; then there exists a€ 4 such that @(¢) = ta—a for
all e H. Subtracting from ¢ the coboundary s+ sa—a, we are reduced
to the case where |H = 0. The formula

o(sr) = ¢(s) + s-0()

then shows (taking ¢ € H) that ¢ is constant on the cosets of H in G, and
then (taking s € H, t € G) that the image of ¢ is contained in AY. Hence ¢
is the inflation of a 1-cocycle G/H — A", and the proof is complete.
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PROPOSITION 5. Let ¢ = 1, and suppose that HH, A} = 0 for 1<i<q—1.
Then the sequence

Inf Kes
0— HYG/H, A"y = HY(G, A) -» HY(H, A)
is exact.
This is .ano_ther example of dimension-shifting: we reduce to the case
g = 1, which is Proposition 4. Suppose then that ¢ > 1 and that the result
is true for g—1. I_n the exact sequence (1.4), the G-module A* is co-induced
as an H-module (since A = Z[G} is a free Z[H}-module), hence
H(H,AY ~ H*'(H,A)=0 for1<i<q-2
Also, since H!(H, A) = 0, the sequence
OﬂAH—P(A*)H#(A')H-ﬁO
is exact, and (4*)" is co-induced as a Gf/H-module (because AHT =~
Hom (Z[G/H], 4)). Hence in the diagram B
0— HOY(GIH, (4)") > HA"X(G, 4') - H'™'(H, 4')
1 15 ls
0—+ HYG/H,A¥) — HYG,A) — HYH,A)
the three vertical arrows are isomorphisms, the diagram is commutative,

and by the inductive assumption applied to 4, the top line is exact. Hence
50 is the bottom line.

COROLLARY. Under the hypotheses of Prop. 3,
HY(G/H,A") =~ H'(G,4), 1<i<qg-1

6. The Tate Groups

From now on we assume that G is finite, and we denote by ¥ the element

‘EZGs of A. For any G-module A4, multiplication by N defines an endomor-

phism N: 4 -+ A, and clearly

IgA=Ker(N), Im(N)c A4S
Hence N induces a homomeorphism
N*: H(G, A) = H(G, A)

and we define
Ay(G,4) =Ker(N*),  H°G, A) = Coker{N*) = A°|N(A).

§ince G is finite, we can define a mapping Hom (A, X) - A @ X (where
X is any abelian group) by the rule

@ H,:‘:es ® (s),

and it is.immediately verified that this is a G-module isomorphism. Hence
for a finite group the notions of induced and co-induced modules coincide.
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PrOPOSITION 6. If A is an induced G-module, then Ho(G, A) = H%(G, A)=0.
i Since A is Z-free, every
Proof. Let A=A ® X, Xan abelian group. = Z-Aree, e
elemen{of A is uniquely of the form Y s@x,. If this element is G-invariant,
seG .
then Y g5 @ x; = Y s ® x, for all g€ G, from which it follows that all

the x: are equal. Hence such an element is of the form N.(1 ® x) and
therefore lies in N(A). Hence A%G, A) = 0.
Similarly, if N.Y,s® x, =0, we find that ¥ x, =0, and therefore
Ts@x=26-D1e® x) eIz A. Hence Hy(G, 4) = 0.
Now we define the Tate cohomology groups HYG, A) for all integers ¢ by
%G, A) = HY(G, 4) forgz1
074G, A) = Ao(G, 4)
A~%G,A) = H,_1(G, 4) forg = 2.
THEOREM 3. For every exact sequence of G-modules
0—-A—+B—->C=0

we have an exact sequence

s
_. = A%G, A) ~ A%G,B) - A{G,C) — At G, A) > ...
Proof. Wehave to splice to gether the homology and cohomology sequences.
Consider the diagram

..—rHl(G,C)iHO(G,A)—rHO(G,B)aHO(G,C)—b 0

! s v Wy 5,

0 — HY%G,A)—H%G,B)—HG,C)~ HYG,4A)— ...
where N* is the homomorphism N* relative to 4, and so on. It is clear that
the inner two squares are commutative, and for _t}}e oute; t}.vo squares
commutativity follows immediately fror; thg 3exp11c1t descriptions of the

ing homomorphism & given in §§ 2 and 3.
Conwnzﬁéﬁic 5: ﬁO(G,pC) - A%G, A) asfollows. Ifce H_O(G, C)_=Ke: (N9,
lift ¢ to be Hy(G, B), then N3(b) e H (G, B) has zero image in H G, 0)
and therefore comes from an element a € H%G, 4), whose 0unage in
BYG, A) is independent of the choice of b; this elf?ment of H%G, A) we
define to be (¢). The definitions of the other maps in the sequence

Hl(Ga C) - HO(G: A) - HO(G: B) - HO(Gs C)
—5> A°G, 4) - B%G, By~ A%G,C)— H' (G, 4)

are the obvious ones, and the verification that the whole sequence is exact

is a straightforward piece of diagram-chasing.
The Tate groups can be considered as the cohomology groups of a
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complex constructed out of a complete resolution of G. Let P denote a
G-resolution of Z by finitely-generated free G-modules (for example, the
standard resolution of § 2), and let P* = Hom (P, Z) be its dual, so that
we have exact sequences

&
=P 5Py Z-0

z‘
0—+Z->Ps->Pf— ...
(the dual sequence is exact because each P; is Z-free). PuttingP_, = P¥_,
and splicing the two sequences together we get a doubly-infinite exact
sequence

L: .= PP, P =P ,— . ...

The Tate groups are then the cohomology groups H%Homg (L, 4)) for
any G-module 4. This assertion is clear if ¢ > 1. If ¢ < —2 we use the
following fact: if C is a finitely generated free G-module, let C* = Hom(C, Z}
be its dual; then the mapping ¢: C® 4 —» Hom (C*, A} defined as
follows:

o(c® aymaps fe C*to flc).a
is a G-module isomorphism. Hence the composition
N* a

1:C®gA=(C® A)g — (C® A - (Hom(C*, 4))° = Homg (C*, A4)
is an isomorphism (N* is an isomorphism because C @ A is an induced
G-module). From this it follows that Homg (P_,, 4) = P,_, ®¢ 4, and
hence that H ~%(Homg (L, A)) = H,_,(G, A) forg = 2.

Finaily, we have to consider the cases ¢ = 0, 1. The mapping

Hol'nc (P_ 13 A) — HOrﬂG (Po, A) (6-1)

ek

is induced by the composition P, — Z — P_,. If we identify Homg (P _,, 4)
with P, @; A by means of the isomorphism 7, the mapping (6.1) becomes
a mapping from Py ®g A to Homg (P, A), and from the definition of
it is not difficult to see that this mapping factorizes into

Nt
Py ®¢A— Ag — A% - Homg (P, A) 6.2)
where the extreme arrows are the mappings induced by & From this it
follows that H%(Homg (L, A)) = HYG, 4) forg = 0, 1.

Remark. Since any G-module can be expressed either as a sub-module
or as a quotient module of an induced module, it follows from Prop. 6 and
Theorem 3 that the Tate groups H can be “‘shifted” both up and down.

If H is a subgroup of @, the restriction homomorphism
Res : HY(G, A) » HY(H, A)
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has been defined for all ¢ > 0. Itis therefore.deﬁned for the Tate groups
A%, g > 1, and commutes with the connecting homomorphism 4. By
dimension-shifting it then gets extended to all A? (use the EXE‘:I.Ct‘ lse?uenﬁe
(3.3) and the fact that Ay is induced as an H—modu]g). Strflll ?.r y,>t le
corestriction, which was defined in the first place for H, _(1.e. H ,q=z1)
gets extended by dimension-shifting to all A7 (use (1.4) likewise).

PROPOSITION 7. Let H be a subgroup of G, and let A be a G-module. Then
@) Res: Ho(G, A - Ho(H, A) is induced by N Ag — An, where

Ngm(@) =2 si'a

and (s)) is a system of coset representatives of GIH,; .
(i) Cor: A°(H, 4) ~ A%G, A) is induced by Ngpm: A¥ — AS, where

Ngm(a) = Ei: S5 €l

i ii der. First of all, since
We shall prove (i), and leave (ii) to the rea i
$: A%G, A) = H'(G, 4') is induced by 6: HYG, A) - H 1(G,‘.A), and since
Rlzs . H(G, A) - H°(H, 4) is the embedding 4% — {IH and is co:gpatlb}ie
with 3, it follows that Res: H%G, 4) - A °(H,_ A) is mduced’by A% AH,
Now let v: Ho(G, A) - Ay(H, 4) be the map induced by N4z We have
to check that the diagram

3

B,(G, 4)—»A°G, 49

v} 3 JRes

A, (H, A~ A°H, A)
is commutative. Let aed be a representative of & EHO(C_;, A)., 80 'that
Ngla) = 0. Liftato b e 4y, then Ng(b) has zero image in A and 1s‘G-mvar1a11t,
h:nce belongs to (4)° € (4)". The class of Ng(b) mod. Ny(4') is Res o 8(a).
On the other hand, ¥(@) is the class mod. Ty A of N§u(a), which lifts to
N&u(B), and 8 o v(@) is represented by Ny o Ngu(b) = Na(b).

Note: For g = —2 and A = Z we have H™%G, Z) = H,(G, Z) = GIG';
Res: G/G' = H[H' is classically called the transfer and can be defined as
follows. G/G’ is duval to Hom (G, C*), hence the transfer will be dual to a
homomorphism

Hom (H, C*) » Hom (G, C*).

This homomorphism is given by
piodet (igp)/det (1:1),

where i,p is the representation of G incluced by P> and det dt?notes the
corresponding one-dimensional representation obtained by taking deter-
minants (Hom (G, C*) is here written multiplicatively).
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ProPOSITION 8. If (G: H} = n, then
Coro Res = n.
Proof. For H° this follows from Prop. 7(ii}: Res is induced by the embed-

ding A » A", and Cor by Ngy:AY — A% and Ngyy(a) = na for all
ae A%, The general case then follows by dimension-shifting.

COROLLARY 1. If G has order n, all the groups H%G, A) are annihilated
by n.

Proof. Take H = (1) in Prop. 8, and use the fact that A%H, A) =0
for all g.

COROLLARY 2. If A is a finitely-generated G-module, all the groups
BYG, A) are finite.

Proof. The calculation of the H%G, A) from the standard complete
resolution L shows that they are finitely generated abelian groups; since
by Cor. 1 they are killed by n = Card (@), they are therefore finite.

CorOLLARY 3. Let § be a Sylow p-subgroup of G. Then
Res : A%(G, 4) - A%S, A)
is a monomorphism on the p-primary component of H%G, A).

Proof. Let Card (G) = p”.m where m is prime to p. Let x belong to the
p-primary component of B%G, 4), and suppose that Res(x) = 0. Then

mx = Cor , Res(x) =0

by Prop. 8, since m = (G: §). On the other hand, we have p°x = @ by
Cor. 1; since (p° m} = 1, it follows that x = 0.

COROLLARY 4. If an element x of H%(G, A) restricts to zero in HY(S, A)
Sor all Sylow subgroups S of G, then x = 0.

7. Cup-products

THEOREM 4. Let G be a finite group. Then there exists one and only one
Jamily of homomorphisms
B*(G,4) ® A%G,B)~> A**(G,A® B)

(denoted by (a ® b) — a.b), defined for all integers p, q and all G-modules
A, B, such that:

(i) These homomorphisms are functorial in A and B;
(i) For p = g = O they are induced by the natural product
A°® B~ (4® B)®;
(i) If 0+ A > A" > A" - 0 is an exact sequence of G-modules, and if

0 AQR@B—- A @B— A" @ B~ 0 is exact, then for a'e A7 (G, A"
and b e HYG, B) we have

(6a™).b = 8(a”.b) (e A**1* (G, A @ B));
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(iv) If 0 » B> B' » B" - 0 is an exact sequence of G-modules, and if
0> A®R®B—-A®@B - A® B"— 0is exact, then for a € H*(G, A)
and b € HYG, B") we have

a.(5b") = (—1)%3(a.b™) (€ A**** (G, A ® B)).

Let (P,).z be a complete resolution for G, as in §6. The proof of

existence depends on constructing G-module homomorphisms

®p.a: Ppig= P, ® P,
for all pairs of integers p, g, satisfying the following two conditions:
Ppgod=(d® 1) o @puy,, +(—DA@d) s @pg415 (1.1)
(c®e)o @o,0=25 (1.2)
where £: Py — Z is defined by e(g) = 1 forallge G.
Once the ¢,, have been defined, we proceed as follows. Let

feHomg (P, 4), g Homg (P, B) be cochains, and define the product
cochain f° g€ Homg (P4, A ® B) by

f.9=(/®@9) cpq
Then it follows immediately from (7.1) that

(f.-9)=(d). g+(=1D*f.(dg). (1.3)
Hence if f, g are cocycles, so is f. g, and the cohomology class of f. g depends
only on the classes of fand g: in other words, we have a homomorphism

A%G, A) ® A%G,B) - A**%G,A® B).

Clearly condition (i) is satisfied, and (ii) is a consequence of (7.2). Consider
(iii). We have an exact sequence
0 — Homg (P, 4) ~ Homg (P, A")~ Homg (P,, 4") = 0.

Let a” € Homg (P,, A") be a representative cocycle of the class a”, and lift
«” back to o’ € Hom (P, 4); de’ has zero image in Homg (Pp41, A") and
therefore lies in Homg (P44, 4). The class of do’ in PTG, A) is 6(a").
Hence if § € Homg (P, B) is a cocycle in the class b, then o”. B represents
the class a’.b; d(«’.p) represents 8(a”.b); and (da’).f represents (0a”).b.
But (since df = 0) we have d(o'.f) = (do').f from (7.3); hence
8(a”.b) = (6a").b. The proof of (iv) is similar,

Thus it remains to define the ¢, ;, which we shall do for the standard com-
plete resolution (P, = Z[G**'] if ¢ > 0; P_, = dual of P,_, if g > 1).
Ifg » 1, P_, = P,*, has a basis (as Z-module) consisting of all (g%, ... ap)
where (g%,....g)) maps (g,...,9)€P,., to 1€Z, and every other
basis element of P,_; to 0. In terms of this basis of P_,, d:P_, > P_, 4
is given by

g .
digh- gD =3, 3 (=1t o0t gn 0D
5€ =
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and d: Py = P_, by d(g,) = ¥, (s%).
selr

We define ¢, ,: P, = P, ® P, as follows:
(1 ifpz0andg >0,

. (pp,q(gﬂ"'"9p+q)=(9’o:---agp)®(gp,...,gp+q);
@ ifpzlandgz1,

R RO I ) 1 (AT N
(3 ifp>0andg>1,
Pr-p=a01s - G =T G151 ) @ (e o5E g%, 0 02);
Pop-as0 9 =T (0h o glste S ® (5 5100,
Prota,~00r - 2 G0) = X G0r -1 G S1se - > 5) ® (3., 81);
Qg p+qbos---,9,) = E(Sf,. . .,S:)®(sq,. 351805+ -5 8 p)

(In the sums on the right-hand side, the s, run independently through G.)

The verification that the i ; . d !
forward. ®p.q satisfy (7.1) is tedious, but entirely straight-

This completes the e)fistence part of the proof of Theorem 4. The unique-
ness is prgved by starting with (ii) and shifting dimensions by (iii} and (iv):
the point is that the exact sequence (3.3), namely .

0—-Ad' w4, > 40,
splits over Z, as the Z-homomorphism 4 — Ay = A® A defined by
:u;? 1 ®ta shgu::; hence the result of tensoring it with any G-module B is
exact, and 4, @R B=AR AR B=(A® B),. Simi
iy (4 ® B),. Similarly for the exact
Note the following properties of the cup-produc i i
: : - t, which
by dimension-shifting: P 1o e caslly proved
PROPOSITION 9.

(}) (a.b).c = a._(b.c).(idemifying (AR B)® CwithA® (B® C))
(u) a.b = (=1)%"= 9™ g (identifying 4 ® B with B ® A) .
(1.11) Res (a.b) = Res (a). Res (b). ‘

(iv) Cor (a.Res (5)) = Cor (a).b.

As an example, let us prove (iv). Here H is a subgro P
beﬁ"(G, B), so that both sides of (iv) are elemgnt;l I:)?flg ;f"?GHA(Ié; g;,
‘If P =g =0, ais represented by say ae 4", and by Prop. 7(ii’) Cor (a).
Is represented by Ngyy(w) = ), s, € A%; b is represented by f e B, hence

Cor (a).b is represented by ,

Ne@®@B=F s0)@f =Y s(®p) = Neme® f).
On the other hand, a.Res (b) is represented by «a ® fe(4 ® B!, hence
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Cor (a.Res (b)) by Ngul(a ® B). This establishes (iv) for p = g = 0. Now
use dimension-shifting as in the proof of the uniqueness of the cup-products
and the fact that both Cor and Res commute with the connecting homo-
morphisms relative to exact sequences of the types (3.3) and (1.4).

We shall later have to consider cup-products of a slightly more general
type. Let A4, B,C be G-modules, p: A®@ B~ Ca G-homomorphism. If
we compose the cup-product with the cohomology homomorphism ¢@*
induced by ¢, we have mappings

(G, 4) ® BY(G, B) > H”*4(G, C);
explicitly, a ® b+ o*(a.b). @*(a.b)is the cup-product of a, b relative to @.

8. Cyclic Groups; Herbrand Quotient
If G is a cyclic group of order n, and s is a generator of G, we can define a
particularly simple complete resolution K for G. Each K; is isomorphic
to A, and d: K;; = Kj is multiplication by T = s—1 if i is even (resp. by
N if i is odd). The kernel of Tis A® = N.A = image of N, and the image
of T is I; = kernel of N. Hence for any G-module A4 the complex
Homyg (K, A) is
N T N T
A A A—A— ...
and therefore
A*(G, A) = B%(G, 4) = A°[NA4,
A2YG, A) = Ho(G, A) = yAll 4,
where yA is the kernel of N: 4 — 4.
In particular, H%(G, Z) = Z°/NZ = Z{nZ is cyclic of order ».
THEOREM 5. Cup-product by a generator of H*(G, Z) induces an iso-
morphism
A%G, A) » B**%(G, 4)
for all integers q and all G-modules A.
Proof. The exact sequences
0-Ig2A—Z—0, (8.1)
OaziA:IGeO, (8.2)
give rise to isomorphisms
B%G,Z) 5 HY(G,Ip) 5 H*(G,Z).
Since both (8.1), (8.2) split over Z, they remain exact when tensored with 4,

and we are therefore reduced to showing that cup-product by a generator
of A%G, Z) induces an automorphism of AYG, A). By dimension-shifting
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again, we reduce to the case g = 0. Since HY%G, Z) = Z/nZ, a generator
b of H%G, Z) is represented by an integer § prime to », and cup-product
with b is muitiplication by p. Now f is prime to #, hence there is an integet y
such that By = 1 (mod. n); H%G, A) is killed by », hence multiplication
by B is an automorphism of H°(G, A).

Let /1,(4) denote the order of H%G, 4) (g = 0, 1) whenever this is finite.

If both are finite we define the Herbrand guotient
h(A) = ho(A)/h,(4).

ProposiTioN 10. Let 0 - A — B C— 0 be an exact sequence of
G-modules (G a cyclic group). Then if two of the three Herbrand quotients
IA), K(B), W(C) are defined, so is the third and we have

h(B) = h(A). K(C).

Proof. In view of the periodicity of the H79, the cohomology exact sequence

is an exact hexagon:

HA4) > H%(B)
A ™
HY(C) HY(C)
LY ¥
H'(B)« H'(A4)
where H°(A) means H°(G, 4), and so on. Suppose for example that H°(4)
HY(A), H(B), H'(B) are finite. Let M, be the image of H°(4) in HO(B),
and so on in clockwise order round the hexagon. Then the sequenc;
0— M, » HYC) » M, - 0 is exact, and M;, M, are finite groups (M,
because it is a homomorphic image of H°(B), M; because it is a subgroup
of H'(A)). Hence H°(C) is finite, and similarly #'(C) is finite. The orders of
the groups H°(A),..., H'(C) are respectively mgmy, mym,,. .., msmg
(m; = order of M), hence (B) = h(A).h(C).
ProposiTION 11, If A is a finite G-module, then h(A4) = 1.
Proof. Consider the exact sequences

T
0-A2 4> A 450,

NO
0— H'(A) > Ag— A% — H%(A) - 0.
The first one shows that 4% and 44 have the same order, and then the second
one shows that H°(4) and H'(4) have the same order.

CoROLLARY. Let A, B be G-modules, f: A - B a G-homomorphism with

finite kernel and cokernel. Then if either of h(A), h(B) is defined, so is the
other, and they are equal. ’
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Proof. Suppose for example that h(A) is defined. From the exact
sequences
0-Ker(f)—+ A= f(4)-0
0 - f(4) = B - Coker (f)—0

it follows from Prop. 10 and 11 that k(f(4)) is defined and equal to A(A),
then that #(B) is defined and equal to A(f(4)).

ProposiioN 12. Let E be a finite-dimensional real representation space
of G, and let L, L’ be two lattices of E which span E and are invariant under G.
Then if either of h(L), W(L') is defined, so is the other, and they are equal,

For the proof of Prop. 12 we need the following lemma:

LemMa. Let G be a finite group and let M, M' be two finite-dimensional
Q[G)-modules such that My = M @ R and Mg = M’ ®q R are isomorphic
as R[Gl-modules. Then M, M" are isomorphic as Q[G]-modules.

Proof. Let K be any field, L any extension field of K, A a K-algebra. If
V is any K-vector space let V; denote the L-vector space V ®x L. Let M, M’
be A-modules which are finite-dimensional as K-vector spaces. An A-homo-
morphism ¢: M — M’ induces an 4 ,-homomorphism ¢ ® 1: M, — M,
and ¢ — ¢ ® 1 gives rise to an isomorphism (of vector spaces over L)

(Hom, (M, M"), = Hom,, (M, M}). (8.3)
In the case in point, take K=Q, L =R, 4 = Q[G], so that 4; = R[G).
The hypotheses of the lemma imply that M and M’ have the same dimension
over Q, hence by choosing bases of M and M we can speak of the determinant
of an element of Homgg; (M, M’), or of Hompgg) (Mg, My). (It will of
course depend on the bases chosen.)

Erom (8.3) it follows that if &; are a Q-basis of Homgg (M, M’), they
are also an R-basis of Homggg) (Mg, Mg). Since My, My are R{[G]-isomorphic,
there exist ; € R such that det (), a;£;) # 0. Hence the polynomial

F(t) = det(z ri:i) € Q[‘l" HE) rm],
where 1; are independent indeterminates over Q, is not identically zero,
since F(a) # 0. Since Q is infinite, there exist b; € Q such that F{b) # 0,
and then ¥ b,¢, is a Q[G-isomorphism of M onto M’

For the proof of Prop. 12, let M =L ® Q, M’ = L' ® Q. Then My
and My are both R{Gl-isomorphic to E. Hence by the lemma there is a
Q[G)-isomorphism ¢: L® Q- L' ® Q. Lis mapped injectively by ¢ to
a lattice contained in (1/N)L’ for some positive integer N. Hence f=N.¢
maps L injectively into L'; since L, L' are both free abelian groups of the
same (finite) rank, Coker (f) is finite. The result now follows from the
Corollary to Prop. 11.
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9, Cohomological Triviality

A G-module A4 is cohomologically trivial if, for every subgroup H of G,

H%H, A) = 0 for all integers g. For example, an induced module is
cohomologically trivial.

LemMMA 1. Letf p be a prime number, G a p-group and 4 a G-module such

that p4 = 0. Then the following three conditions are equivalent:
(i A=0;
(i) H%G, A) = 0;

(iii) Hy(G, 4) = 0.

Proof. Clearly (i) implies (ji) and (iii).

(ii) = (i): Suppose 4 # 0, let x be a non-zero element of 4. Then the
submodule B generated by x is finite, of order a power of p. Consider the
G—orl?its of the elements of B; they are all of p-power order (since the order
of G is a power of p), and there is at Ieast one fixed point, namely 0. Hence
there are at least p fixed points, so that H%(G, 4) = 4% # 0.

(iif) = (i). Let A" = Hom (4, F,) be the dual of A, considered as a
vector-space over the field F, of p elements. Then

HG, 4") = (4))¢ = Homg (4, F))
is the dual of Hy(G, 4). Hence H%(G, 4") = 0, so that A’ = 0 and therefore
A =0.

LemMma 2. With the same hypotheses as in Lemuna 1, suppose that
H{(G, A) = 0. Then A is a free module over F [G] = A[pA.

. Proof. Since pd = 0, we have p.Ho(G, A) = 0 and therefore Hy(G, 4)
is a vector space over F,. Take a basis e, of this space and lift each ¢, to
a,ed. Let A" be the submodule of 4 generated by the a;, and let
A" = AjA’. Then we have an exact sequence

Hy (G, 4') = Hy (G, 4) > Hy (G, 4) > 0

in which by construction « is an isomorphism. Hence Hy(G, A") = 0 and
therefore 4" = O by Lemma 1, so that the a, generate 4 as a G-module.
Hence they define a G-epimorphism ¢@:L —+ 4, where L is a free
F,[G]-module. By construction, ¢ induces an isomorphism

ﬁ : HD(G’ L) i HO(Gs A)
Let R = Ker (¢). Then since H,(G, 4) = 0, the sequence

8
0— Hy(G,R) = Hy(G,L)— Hy(G,A)—~ 0

is exact; since § is an isomorphism, Hy(G, R) = 0 apd therefore R =0
by Lemma 1. Hence ¢ is an isomorphism.
AMNT. 5
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TueoreM 6. Lel G be a p-group and let A be a G-module such that pA = 0,

Then the following conditions are equivalent;
(i) Aisafree F,[G-module;

(i) A isan induced module;;

(iii) A is cohomologically trivial;

(iv) A%G, A) = 0 for some integer q.

Proof. Clearly (i) = (ii) = (i) = (iv).

(v) = (). By dimension-shifting we construct a module B such that
pB = 0 and H7(G, ) = A*(G, B) for all . Hence H,(G, B) =0 and
therefore (Lemma 2) B is free over F,[G]; hence

A%G,A) = A" %G, B)=0
and therefore (Lemma 2 again) 4 is free over F,[G].

Tueorem 7. Let G be a p-group and 4 a G-module without p-torsion.

Then the following conditions are equivalent:
(i) A is cohomologically trivial;
(i) A%G, 4) = H*NG, 4) = 0 for some integer q;

(iii) A/pA is a free F,[G)-module.

Proof. (i) => (ii) is clear.

(ii) = (iii): From the exact sequence

P
0>A—->A—>Alpd—0

we have an. exact sequence H%(G, A) - H(G, A[pA) - B Y(G, A), hence
HYG, Alp4) = 0. Hence, by Theorem 6, AJpA is free over F [G].
(iii) = (i): From the same exact sequence it follows that

p

A%(H, A)—~ H%H, 4)
is an isomorphism for all integers g and all subgroups H of G. But B4H, 4)
is a p-group (Prop. 8, Cor. 1), hence HYH, 4) = 0.

CoROLLARY. Let A be a G-module which is Z-free and satisfies the equivalent
conditions of Theorem 1. Then, for any torsion-free G-module B, the G-module
N = Hom (4, B) is cohomologically trivial.

Proof. Since A is Z-free, the exact sequence

B
0—-B—B-B/pB~0

gives an exact sequence

P
0— N—> N - Hom(A,B/pB)—~0,

so that N has no p-torsion and N/pN = Hom (4/pA, BfpB). Since AfpA
is a free F,[G]-module, it is induced, hence is the direct sum of the
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5.4’ (s€ G), where 4’ is a subgroup of 4/pA. Hence N/pN is the direct
sum of the subgroup 5. Hom (4’, B/pB) and is therefore induced. Therefore
N is cohomologically trivial by Theorems 6 and 7.

A G_-mo@ule A is projective if Homg (4, ) is an exact functor, or equiva-
lently if A is a direct summand of a free G-module. A projective G-module
is cohomologically trivial.

THEOREM 8. Let G be a finite group, A a G-module which is Z-free, G, a
Svlow p-subgroup of G. Then the following are equivalent:

(i) For each prime p, the G module A satisfies the equivalent conditions
of Theorem 7T;
(i) A is a projective G-module.

Ifroof. @) => (i) is clear.
(i) = (ii): Choose an exact sequence 0 - Q — F— 4 — 0, where F is
a free G-module. Since A is Z-free, this gives an exact sequence

0 - Hom (4, Q) -+ Hom (4, F) —» Hom (4, 4) » 0

By the Corollary to Theorem 7, Hom (4, Q) is cohomologically trivial as
a G,-module for each p, hence H'(G, Hom (4, Q)) = 0 by Prop. 8, Cor. 4.
Bearing in mind that H%(G, Hom (4, Q)) = (Hom (4, O))® = Hom, (4, Q)
and_so on, it follows that Homg (4, F) » Homyg (4, A) is surjective, hencé
thc;-: lden_tlty map of 4 extends to a G-homomorphism 4 — F. Consequently
A is a direct summand of F and is therefore projective.

THEOREM 9. Let A be any G-module. Then the following are equivalent:
(i) For each prime p, H(G,, A} = 0 for two consecutive values of q (which
_may depend on p);

(11) A is cohomologically trivial,

(ili) There is an exact sequence 0 — B, — By — A — 0 in which B, and

B, are projective G-modules.

Proof. (i.i) = (i) is clear; so is (iii) = (ii), since a projective G-module is

cohomologically trivial.

(i) = (iii}: Choose an exact sequence of G-modules

0B, —+B;—~A4A-0,

with B, a free G-module. Then H%G,, B,) = H* '(G,, A) for all ¢ and
all p, hence H"(Gp,. B,) = 0 for two consecutive values of g. Also B is
Z-free (because B, is); hence, by Theorem 8, B, is projective.

10, Tate’s Theorem

THEOREM 10, Le't G be a finite group, B and C two G-modules and f: B = C
a G-homomorphism. For each prime p, let G, be a Sylow p-subgroup of G,
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and suppose that there exists an integer ny, such that
fx: A%G,, B)~ A%(G,,C)
is surjective for g = ny, bijective for g = n,+1 and injective for g = ny+2.
Then for any subgroup H of G and any integer g,
£+ AYH, B)~ A(H, )
is an isomorphism. o

Proof. Let B* = Hom (A, B) and let i: B — B* be the injection (defined
by i(b)(g) = g.b). Then (f,)):B— C @ B* is injective, so that we have
an exact sequence

0B+ C®B*->D-0.
Since B* is cohomologically trivial, the cohomology of C@ B* is the
same as that of C. Hence the cohomology exact sequence and the hypotheses
of the theorem imply that H%G,, D) = 0 for g=n, ar.lc! qg=mn,+1 1t
follows from Theorem 9 that D is cohomologically trivial, whence the
result.

TueoreMm 11. Ler A, B, C be three G-modules and p: A @ Bq—-) Ca
G-homomorphism. Let q be a fixed integer and a a given element of HYG, A).
Assume that for each prime p there exists an integer 1, such that the map
A™G,, B) » A"*4G,, C) induced by cup-product with Resggp .(a') (r:elatwe
to go)p is sutjective for n = n, bijective for n = n,+1 and injective for
n = n,+2. Then, for all subgroups H of G and all integers n, the cup-product
with Resg,y (a) induces an isomorphism

A°(H,B) - A"*Y(H, C).
(Explicitly, this mapping is b @}, (Resgn (a).b).)

Proof. The case g = 0 is essentially Theorem 10. We have ae B%G, A):
choose a e A% representing a (then « also represents Resgy ’(a) for every
subgroup H of G). Define f: B — C by f(ﬂ) =l @ P); fis I:?HG-homo-
morphism, since « is G-invariant. We claim that, for every b e H"(H, B),

¢*(Resgyu (0).b) = 1¥(b). (10.1)
Indeed, this is clear for n = 0 (from the definition of f), and the general
case then follows by dimension-shifting. To shift downyvardg, for example,
assume (10.1) true for n+1, and consider the commutative diagram
0— B —~B,»B-=0
rlers] s
0-C->C,—»C-0
where B, =A® B, C, =AR®C, and the rows are ‘exact. By, Cy are
induced modules and therefore cohomologically triv1?.1, hence the con-
necting homomorphisms & are isomorphisms, and the diagram

(10.2)
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2
A"H,B) - A"*Y(H, B")
e Lrs
AYH,C) - A Y(H,C")
is commutative. Moreover, the rows of (10.2) split over Z, hence (10.2)
remains exact (and commutative) when tensored with 4 (over Z). Let
¢ A®B - C’ be the homomorphism induced by ¢: 4 ® B— C.
Then using the inductive hypothesis and the compatibility of cup-products
with connecting homomorphisms, we have
o f*(B) =1 5 8(b) = ¢"*(Resgyn (a) . 3(B)
= " o (Resgu(a).b) = § o p*(Resgp(a).b).
Since & is an isomorphism, (10.1) is proved.

Now f satisfies the hypotheses of Theorem 10, hence £* is an isomorphism.
This establishes Theorem 11 for the case ¢ = 0.

The general case now follows by another piece of dimension-shifting. To
shift downwards from ¢+ 1 to ¢, for example, consider the exact sequence
04 24,240
where 4, = A ® A4; this gives rise to isomorphisms §: BYH, 4)—» A1 '(H, 4.
Let u = Resgy (@) € A(H, A); then u' = (u) = Resgy (5(a)).  Also
¢:4® B- Cinduces ¢’ : 4’ ® B — C’. Consider the diagram

a"(H, B)"—} A"9(H, 4 ® B) 5 A" 4H, C)
. . 3
R B Aot 4 oB) e A, o
it is commutative, because
8 o @*(u.b) = @™ o 8(u.b) = 0" (S(u). b} = @*(u’. b);
by the inductive hypothesis, the bottom line is an isomorphism, and & is
an isomorphism; hence the top line is an isomorphism.

THEOREM 12 (Tate). Let A be a G-module, a e HX(G, A). For each prime

p let G, be a Sylow p-subgroup of G, and assume that
(i) HYGp, 4) = 0;

(i) H?*(G,, A) is generated by Resgq, (@) and has order equal to that of G .
Then for all subgroups H of G and all integers n, cup-product with Resgy (@)
induces an isomorphism

A"H,Z)- A"**(H, A).

Proof. Take B=1Z,C = 4,9 = 2, n, =—1in Theorem 11. Forn = —1
the surjectivity follows from (i). For n =0, & %G,, Z) is cyclic of order
equal to the order of G, so the bijectivity follows from (iii). For n = 1, the

injectivity follows from the fact that H'(G, Z) = Hom.(G,, Z) = 0. Thus
all the hypotheses of Theorem 11 are satisfied.
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1. The Groups
1.1. Introduction

A profinite group is an inverse limit of finite groups. We begin by explaining
this definition in some detail. [ For all basic facts concerning inverse limits
(and direct limits—these will be needed later) we refer to Chapter VIII in
Eilenberg-Steenrod: Foundations of Algebraic Topology (E-5).]

All our topological groups are assumed to have the Hausdorff separation
axiom. We recall that a morphism of topological groups means a continuous
homomorphism.

1.2. Inverse Systems

Let I be a directed set with respect to a relation <. This means that < is
reflexive, transitive and to every iy, i, in I, there exists i in [ such that i = §
and { > i,.

An inverse system of topological groups over I is an object (I; G'; =)
where, for each i in I, G, is a topological group and, for each i < jin I,

116
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nf is a morphism: G; » G, Moreover, =} is the identity on G;; and if
i <j<k, then nf #§ = n} (read mappings from right to left). We shall
often simply write our inverse system as {G)).

Suppose (G} (over I') is a second inverse system. Let ¢p: I’ = I be an
order preserving mapping and assume that to each i’ in I’ we are given a
morphism ¢;.: Gy = G} such that, whenever i < j'in I,

b
Gy ———— =G
t
. ,
o) !
o G
8 i

commutes. Then we call (¢; ¢, i’ €I') = ® a morphism of (G} to (G).

1.3. Inverse Limits

We shall view finite groups as topological groups with the discrete topology.
Let (G,) be an inverse system of finite groups and form IIG,, the cartesian
product, made into a topological group in the usual way by letting the kernels
of the projections IIG, —+ G, form a sub-basis of 1. Let L be the subset of
all (x;) in IIG; with the property that whenever i < j, nf(x;) = x;. Then
L is a subgroup of IIG, and we give it the induced topology. We say L is
the inverse (or projective) limit of the system (G,) (or, more loosely, of the
groups G;, i € I). If all the groups G; are finite p-groups we call L a pro-p-
group. The notation will be L = lim G;.

Clearly, L is closed in I1G;: for if x ¢ L, there exists i < j so that nfx; # x,
and the set of all elements in IIG; with i-term x,; and j-term x; is open and
contains x but containg no element of L.

If @: (G)) - (G}) is a morphism of inverse systems, we may define a
mapping ¢ of I1G, into IIG; as follows: given x in IIG; and any ' in I,
¥(x) is to be the element in I1G; whose i’-term is ¢, (x4)). Obviously, ¥
is a group homomorphism and is continuous because, for each #, the kernel
of IIG; » G| is open. By restriction, we obtain a continuous homo-
morphism of lim &, into lim G}.

1.4. Topological Characterization of Profinite Groups

The main result of this section will not be needed later in these two lectures
(but the corollaries will be: the reader may take them on trust). Nevertheless,

we give the proof in some detail because it is not too easy to extract from the
existing literature.



118 K. GRUENBERG

THEOREM 1. A topological group is profinite if, and only if, it is compact and
totally disconnected.

We recall two facts for which we refer to Montgomery-Zippin: Topological
Transformation Groups (M-Z). ' . .

(i) To say that a compact group is totally disconnected is equivalent to
saying that 1 is the meet of all compact open neighbourhood's of 1: M-Z, p. 38.

(ii) In a compact, totally disconnected group every neighbourhood of 1
contains an open normal subgroup (and hence 1 is the meet of all open
normal subgroups): M-Z, p. 56.

Proof. Let (G) be an inverse system of finite groups and write L = Jl_m G,

C = NG, Then C is compact (Tychonoff’s theorem) and hence L is also

because L is closed in C.

Co%ﬂaﬁzust show next that L is fotally disconnected. Consider ﬁfst C 1f
x s 1in C, then x; # 1 for some /. Put U= li., U; = G;forj # iand
U = T1U,. Then U is compact and open and contains 1 but not x. Hence C
is totally disconnected (by (D), above). Nowina cfompact group, a subset is
compact if, and only if, it is closed. Thus in C, 1 is the _meet of all open and
closed subsets containing 1. It follows that the same is true in L (induced
topology) and hence L is totaily disconnected. _

Next assume, conversely, that G is a compact, totally disconnected group.
Let (H,) be the family of all open, normal subgroups of G. Then (G/H))
forms an inverse system {we put i < j whenever H;2H; gnd use the natura.l
epimorphism G/H; — G/H ). Let L = lim G/H i Since each G_/H ¢ Is
finite, L is profinite. The mapping 8: g - (gH ,-)”13 clearly a Pontmuous
homomorphism of G into L. Since 1 = [} H; (by (ii), above), 6 is one-one.
On the other hand, if @ = (¢;H) e Land § = () a;H,;, th.en S is not emp_t;:
(by compactness) and so, if g € §, 0(g) = a: thus 0 is surjgctlve_. Hence G
is also a mapping; and it is continuous. We conclude that @ is an isomorphism
and thus G is profinite.

The last part of our argument also yields
COROLLARY 1. For any profinite group G,
G x lim G/U,
where U runs through all open, normal subgroups of G.
COROLLARY 2. If H is a closed subgroup of G,
Hzlim HHNU.
Proof. If V is an open normal subgroup of H, ¥ = O o H for some neigh-

bourhood O of 1 in G. Hence O contains some open normal subgroup U of G
((iiy above) and so Un H< V. Thus the family (U n H), for varying U,
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is cofinal in the family of all open normal subgroups of H. The result follows
now by Corollary 1 and E-S, p. 220, Corollary 3.16.

COROLLARY 3. If H is a closed normal subgroup of G,
G/H = lim G/UH.

Proof. We have only to show that G/H is profinite. Clearly, G/H is
compact. It remains to check that G/H is totally disconnected. Take any
x ¢ H. For each 1 in H we may choose an open and compact neighbourhood
0, of h not containing x (because G is totally disconnected). Then H < |J O,
and so, by the compactness of H, H = O, v .. v 0, = S, say. Then Sis
open and compact and contains H but not x,

1.5. Construction of Profinite Groups from Abstract Groups

Let G be an abstract group and suppose (H;; { € I) is a family of normal
subgroups such that given any H;,, H;,, there exists H, & H;, n H;,. If we
partially order I by defining i < j whenever H; 2 Hj, then I becomes a
directed set and (G/H) is an inverse system of groups (] being the natural
homomorphism G/H,; — G[H}). The mapping 0: g — (gH}) is a homomor-
phism of G into L = lim G/H,.

H Gy =) H,, then G/G, becomes a topological group if we use as basis for
open sets at 1 the groups H,/G, (M-Z, p. 25). The homomorphism & induces

a continuous homomerphism: G/G, - L and L is the completion of G{G,
with respect to (H,/G,).

There are two important cases.

(i) (H))is the family of all normal subgroups of finite index in G. We
denote the profinite group lim G/H,; by G. For example, Z is the inverse limit
of all finite cyclic groups.

(i} (H,)1is the family of all normal subgroups of index a power of p, where
p is a given prime number. Here lim G/H; = G,, is a pro-p-group.

For example, Z,, (usvally written Z,) is the inverse limit of all finite cyclic
p-groups. This is the group of p-adic integers.

Exercise: 2 = T1Z,,.
)

1.6. Profinite Groups in Field Theory

Let E/F be a Galois extension of fields, This means that E is algebraic
over F and the group G = G(EfF) of all F-automorphisms of E has no fixed
points outside F. [ For simple facts about field theory (including finite Galois
theory) we refer to Bourbaki: Algébre, Chapter V (8).)
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Let (K,, i & I) be the family of all finite Galois extensions of F contained
in E. Then E = U K; (B, Section 10.1).

i) if K; = K, then we have a natural homomorghism ni:
Now O 1 ! G(K,|F) — G(K{F) (B, Section 102);

10 OK; and (ji) the F-composite of K, and K,

l ] is some K;. Hence the finite Galois

G(K{K) O OK; groups (G(K,/F)) form an  inverse

G(K,IF) ‘ system and we may construct its inverse
' G(K,/F) O OF limit, call it L.

ProposiTION 1. G(E[F) = L.

Proof. For each i in I, we have a homomorphism G(E/F) — G(J_K 4 F).
These together yield a homomorphism 0: G(E/F) ~ TIG(K ,{F). The image
of @ is obviously contained in L. We assert # is an isomorphism onto L. .

If g # 1in G, there exists x in E such that g(x) # x; and then there exlst.s
K, containing x. Now the image of g in G(K,{F) maps x 10 g(x) and thus is

ot the identity. Hence @ is one-one. ‘
" ';‘;ke (g inyL. If x e Eand we set g(x) = gi(x), where x € K, then this
is an unambiguous definition of a mapping g of E into E. It1s easy to f:heck
that g is, in fact, an F-automorphism of E. Since &(g) = (g,), L is the image
of 8.

We use the isomorphism & to transfer the topology on L .to G. Tl.ms
G = G(E/|F) is now a profinite group and if U, = G(EIK), (U} is a defining
system of neighbourhoods of 1 (M-Z, pp. 25-26}.

Example. ¥ E is an algebraic closure of the field F, of p elements, then
G(E/F,) = Z (cf. Section 1.5).

Theorem 2 (Fundamental theorem of Galois theory).

Let EJF be a Galois extension with group G, the set of all closed subgra‘ups
of G and F the set of all fields between E and F, Then K — 'G(E/K) is sa
one-one mapping of & onto &. The inverse of this is the mapping § — E?,
where ES denotes the field of fixed points for the closed subgroup 3.

Proof: First Step. We show that if K e &, then G(E[K) € &. . '

Let(L;;j €J)be the family of all finite extensions of F contained in K.
Then K = ) L, and thus G(E{K) =  G(E[L))- . _

Each L; is contained in some finite Galois extension K, and hence
G(E/L)) 2 G(E{K}). By Proposition 1, G(E/K}) is open and therefore G(E[L;} is
also open in G{(EfF). Hence G(E(L)) is closed and thus () G(E/L)) = G(EIK)
is closed. ’ ‘

Second step. 1f K € & then K = ES*/*) (B, Section 10.2).
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Third step. Let S be a closed subgroup of G, K = E° and T = G(E[K).
Clearly § = 7. But by the second step, E* = E7.

1o oOE Hence for every open normal subgroup V; of T, if
| L, = E¥ LT = K = [§V/"+ By finite Galois theory,
s O we conclude TV, = SV [V ie,T = SV, Hence Sis
| O K dense in T. But S'is closed by the first stepandso S = T,
T o |
| | 1o OE
GO OF |
V, 0 IO oL, oL,
SV, (|)
T$ TV, 0 OK 0K

2. The Cohomeology Theory
2.1, Intreduction

In order to define the cohomology of profinite groups we make use of two
facts: (i) a profinite group is put together from finite groups; and (ii) we know
how to define the cohomology of finite groups.

2.2. Direct Systems and Direct Limits

We shall only be concerned here with the category of all discrete abelian
groups (written additively).

We consider a family (4,) of abelian groups, indexed by a directed set I,
Assume that for each / < j in 7 we are given a homomorphism tj: A; — A y
and that (i) 7} is the identity on A4, (i) if { < j < k, then } ¢/ = t}. We
call (I; A;; ©f) a direct system of abelian groups over I, Frequently we just
write {4,).

If (A};) (over I') is a second direct system, let §: 7 — I’ be an order
preserving mapping and to each i in I, let ¥, be a homomorphism:
Ay — Aywy. 11 < falways implies that

¥
4; Ay
1] o
¥;
4; Ay

commutes, then we call (¢; ¥) =¥ a morphism of direct systems:
(4) = (4p).
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Given (4), let § be the disjoint union of the groups 4, i el If x € 4,
¥ €A, write x ~ y to mean that there exists k > i, k 2> jsuch that x =y,
Then ~ is an equivalence relation on S. We write lim A, for the set of
equivalence classes and £ for the class containing x.

Now A4 = lim 4; is made into an abelian group (the direct limit of the
groups A, i eI)as follows. If %, § € A, where x € 4;, y € 4;, then find k
so that k¥ = 7and k > j and define ¥ + j to be the class containing
wx + tkp; also — % is to be =X . Clearly A is now an abelian group.

If ¥:(4,) = (4}) is a morphism of direct systems, we obtain a homorph-
ism of lim 4, into lim 4} by defining the image of X, where x € 4,, to be the
class of y {x).

2.3. Discrete Modules

Let G be a profinite group and A a (left) G-module. If {isan opensubgroup
of G, we shall denote, as usual, the set of all fixed elements in 4 under U
by AY. We shall consider only G-modules A satisfying the condition

A= 4,

where the union is taken over all open normal subgroups of G. Such modules
are called discrete G-modules.

It is not difficult to see that the following three conditions on the G-module
A are equivalent:

(i) A is a discrete G-module;

(ii) the stabilizer in G of every module element is an open subgroup of G;

(ili) the pairing G x 4 — A is continuous, where A is viewed as a
discrete space and G has its usual topology as a profinite group.

2.4. Cohonology of Profinite Groups

Let A be a discrete G-module and Jet (U;; i & I} be the family of all open
normal subgroups of G. Then G = lim G/U, (Corollary 1 to Theorem 1) and
A = lim 4Y* (because A = {J A% and {J AY' is naturally isomorphic to lim 47%).

Let g be a fixed non-negative integer. For every i < j, we obtain a homo-
morphism (inflation)

M: HY(GIU,, A") » H(G/U,, A%)
in the standard way (cf. Chapter IV, Section 4). Clearly, we now have a
direct system of abelian groups
I: HY(GIU,, AY); A)).

DERNITION.  lim HAG/ U, AYY) is called the g-th cohomology group of G in
A and written HY(G,4).
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There is another way of defining these cohomology groups. We consider
the additive group C" = C*(G,A) of all continuous mappings of G" into 4
and define a coboundary d: €" — C**! by the standard formula:

@)gys - vs Ensr) = &1+ S (€2 s Bua I+ ‘Z“:l (=D f (g1 o r 8i8it1s s Basd)

+ (_ 1)n+1f(gls ] gn)'
This vields a complex C:(G,4) and the homology groups of it are precisely
HYG,A).

Of course, this must be proved. The argument is not difficult but (when
written out in full) is both long and tedious. The crucial point is this. A
mapping ¢ of a profinite group H into a discrete space § is continuous if, and
only if, there exists an open normal subgroup K of H and a mapping i of the
finite group H/K into S such that ¢ is the product of the natural projection
H — HJK and . It follows that if f € C"(G,4), then there is an open
normal subgroup U, of @ such that f'is

G" = (GIU) = A.
Since f is finitely valued, the image of flies in 4”2, for some open normal U,.
U= U JU,,thenfis
G- (GIU A" > 4
and f7: (G/U)Y" = AY is an element of C*(G/U,4"). This makes it more than
plausible that C(G,4) = lim C(G/U,4Y).

2.5. An Example: Generators of pro-p-Groups

Let G be a pro-p-group and F, the field of p elements, viewed as a discrete
G-module with trivial action. The formula above for df shows immediately
that

HY(G,F,) = Hom (G,F)).
If G* = GP[G,G), then the right-hand side is Hom (G/G*, F,).

Assume G is finitely generated as a topological group. Then G/G* is
finite and its dimension d, as a vector space over F,, is the dimension of
HY(G,F,). Letx,G*, .., x,G* be a basis of G/G*. If U is any open normal
subgroup of G contained in G*, then x,, .., x, generate G modulo U (by the
Burnside basis theorem for finite p-groups) and hence x;, .., x, generate G
topologically. Thusdim g, H Y(G,F,} is the minimum number of generators of G.

2.6. Galois Cohomology I Additive Theory

[ Our reference for elementary Galois cohomology is Chapter X of Serre:
Corps Locaux (8).]

As in Section 1.6, let EfF be a Galois extension of fields with group
G = G(E[F). Denote by (K;; i e)the family of all finite Galois extensions of
F contained in E and set U; = G(E/K,). Then G = limG/U,.
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The action of G on E turns the additive group of E into a G-module. Now
EY = K, and E = [J K, so that E is a discrele G-module. Moreover, K, is a
GIK /1) =~ module and G(K;/F) = GfU;. Thus we have

HY(G,E) = lim HY(G(K,/F), K). 4y

Prorosition 2. HY(G,E) = O forallg = 1.

By equation (1) this is an immediate consequence of

Lemma 1. Let E/F be a finite Galois extension and G = G(E[F). Then
HYG,EY=0forallqg = 1.

Proof. The normal basis theorem states that E, as FG-module, is free on
one generator (B, Section 10.8), i.e., is isomorphic to the induced module on F.
Hence the result (cf. Chapter IV, Section 6).

Note that this argument yields the following stronger fact:

CoRrOLLARY. If E[fF is a finite Galois extension, then the Tate cohomology
groups RG(E[F), E) = 0 for all integers q.
(Recail that A9 = Heforg = 1.)

2.7. Galois Cohomology IT: *“Hilbert 90”

We continue with the notation of Section 2.6. We saw that E as a G-module
turned out to be cohomologically uninteresting. The situation is very different
when we look at E* (the multiplicative group of E) as a G-module.

Again, since (E¥)Y" = K and E* = |J K}, E* is a discrete G-module;
and

HY(G,E*) = lim HYG(K,[F), K{). (2)

PROPOSITION 3, HY(G,E*) = 0.

Proof. By equation (2), we need only prove this when E/fF is finite.

Let f be a 1-cocycle of G in E*. By the theorem on the independence of
automorphisms (B, Section 7.5), there exists ¢ such that

b =x§3f(x) . x{c) # 0.
Apply y in G to this:
Wby = J;G f0yx(e)] = xgaf 1O (px) . yx(e)
(since f(yx) =10 . 2 X))
=f'0) zgcf (2). =(e)

=70,
Thus f(y) = b.y (b)™', i.e,, fis a coboundary.
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CoroLLarY (Hilbert Theorem 90). If G = G(EfF) is finite cyclic with
generator g and a € E* is such that Ngyp(a) = 1, then there exists b in E*
such that a = bfg(b).

Proof. Since G is cyclic, HY(G, A) = yA{(1 — g)A (cf. Chapter 1V,
Section 8). Here A = E* and so, in multiplicative notation, (1 — g)4 is
{b/g(b), b € E*}. Since HY(G,E*) = 0, the result follows,

2.8. Galois Cohomology IIT: Brauer Groups

Let E\/F, E,/F be two Galois extensions and write G, = G(E,/F).

Suppese j is an F-homomorphism: E, — E;. Then j(E\)/F is Galois
and hence the restriction g — g|/(E,) yields a morphism j: G, -+ G,. Let
U= G(E,/j(F)) Now

inf
HYG\, EY) = H(G,/U, E}") - H'(G,,E7)
and we shall write j* for the product of these two homomorphisms:
j*: HYG,ET) — HYG,,E3).

We assert j* is independent of /.

OE oI
il
E, O—Oj(E) OU
[ = G,
FO OF 06

Let j/* be another F-homomorphism: E, = E,, yielding j': &, = G,.
Since j(E,) = J(E)) (B, Section 6.3), j* = jg, for some g in G,. Hence
() = j*g*.

Now g: E; - E; will yield, by the above procedure, a morphism 7:
G; — Gy. Clearly 7 is the inner antomorphism x —» g~ !xg of G,. Therefore
g* is the identity on H%G,E,*}. (Cf. Chapter IV, Proposition 3.)

Thus (j')* = j* and hence j* is indeed independent of /.

Now suppose E|, E, are two separable closures of F. Then there always
exist F-isomorphisms: £, — E, and all these yield the same isomorphism
HYG,,E, *y - HYG,,E,*). From the cohomological point of view, it is
therefore immaterial which separable closure one uses and we shall simply
write HY(F) for the group HYG(E/F),E*), where E is any given separable
closure of F. The groups H%F) depend functorially on F.

DerFINITION. The Brauer group of the field F is the group H2(F).

THEOREM 3. If E[F is a Galois extension containing a Galois extension K/F,
then we have the exact sequence

0 - HYG(K[F),K*) » HXG(E/IF), E*) —» HYG(E[K),E*).
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CoroLLARY 1. If K{F is a Galois extension, the following sequence is exact:
0 - HYG(K/F),K*) -» H*F) » H*(K).

Proof. Take E to be any separable closure of F containing K and apply
Theorem 3.

An immediate consequence is the following corollary.

COROLLARY 2. If (K, is the family of all finite Galois extensions of F in a
separable closure of F, then H*(F) = ) HX(G(K//F).K\*).

To prove the theorem, we first translate it into a result about abstract
profinite groups.

Let G = G(E/F), H = G(E/K) and A = E*. Then, by Galois theory,
G/H = G(K/F) and A" = K* The mapping H?(G,A) —» H*(H,4) is
restriction and the mapping H*G/H,A") - H*G,4) is inflation.
(Restriction and inflation for profinite groups are defined precisely as for
abstract groups.) Theorem 3 is now seen as a consequence of the following
result, together with Proposition 3.

PropositionN 4. Let H be a closed normal subgroup of the profinite group G
and A be a discrete G-nodule such that HY(H,A) = 0. Then the following
sequence is exact.

0 = H(GIH.A%) = H*(G,d) — H*(H,A).
Outline of proof. The condition H'(H,4) = 0 is equivalent to
HYHU U, A" = 0
for all open normal subgroups U, of G. Hence, for each U,
0 - HX(GIHU,, A% - H¥GJU,, AY) - H*(HU jU;, AY)

is exact (Chapter IV, Proposition 5 with ¢ = 1). If i < j, we have an
exact row for #, one for j and the inflation mappings connecting the two and
producing a commutative diagram. All these diagrams together constitute
an “exact sequence of direct systems”. The result we want now follows by
taking the direct limit and using two facts:

(1) lim is an exact functor on the category of direct systems over a
fixed indexing set (E-S, p. 225);

(2) lim HIH n U; & Hand lim G/HU, = G/H (Corollaries 2 and 3
to Theorem 1, above).

Alternatively, one may prove the result directly by a method almost
identical to that used for establishing the abstract case.
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Introduction

We call a field K a local field if it is complete with respect to the topology
defined by a discrete valuation v and if its residue field k is finite. We write
g = p’ = Card (k) and we always assume that the valuation v is normalized;
that is, that the homomorphism v: K* — Z is surjective. The structure of
such fields is known:

1. If K has characteristic 0, then K is a finite extension of the p-adic
field Q,, the completion of Q with respect to the topology defined by the
p-adic valuation. 1f [K:Q,] = n then n = ¢f where f is the residue degree
(that is, f = [k : F,] and e is the ramification index v(p).

2. If K has characteristic p (“the equal characteristic case™), then K is
isomorphic to a field &((T)) of formal power series, where T is a uniformiz-
ing parameter.

The first case is the one which arises in completions of a number field
relative to a prime number p.

We shall study the Galois groups of extensions of K and would of course
like to know the structure of the Galois group G(K/K) of the separable
closure X of K, since this contains the information about all such extensions.
(In the case of characteristic 0, K, = K). We shall content ourselves with
the following:

1. The cohomological properties of all galois extensions, whether abelian
or not.

2. The determination of the abelian extensions of K, that is, the determina-
tion of G modulo its derived group ¢,

Throughout this Chapter, we shall adhere to the notation already intro-
duced above, together with the following. We denote the ring of integers
of K by Oy, the multiplicative group of X by K* and the group of units
by Us. A similar notation will be used for extensions L of K, and if L is a
galois extension, then we denote the Galois group by G(L/K) or G or
even by G. If se ¢ and a e L, then we denote the action of s on o« by ®x
or by s(e).

In addition to the preceding Chapters, the reader is referred to “Corps
Locaux™ (Actualités scientifiques et industrielles, 1296; Hermann, Paris,
1962) for some elided details. In what follows theorems etc. in the four
sections are numbered independently.

1. The Brauer Group of a Local Field

1.1, Statements of Theorems

In this first section, we shall state the main results; the proofs of the theorems
will extend over §§ 1.2-1.6.

We begin by recalling the definition of the Brauer group, Br (K), of K.
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i i i f K with Galois
See Chapter V, §2.7.) Let L be a finite galois extension o
(group GFL/K). We write H2(L/K) instead of H z((:y'm, L¥) and we con-
sider the family (L), of all such finite galois extensions of K. The induc-
tive (direct) limit lim H (LK) is by definition the Brauer group, Br(K),
of K. -

It follows from the definition that Br (K)‘ = H¥K/K). In order to
compute Br (K) we look first at the intermediate 'ﬁe}d K, KcKk,c Kf,
where X,, denotes the maximal unramified extension of K. The re:ader is
referred to Chapter I, §7 for the pEoperties of .K,,,. ‘We recall in par-
ticular, that the residue field of K. is k, the algebraic closure of k, and that
G(K,/K) = G(kfk). We denote by F the Frobenius element in G(K,,,/If)_;
the ;ﬁ'ect of F on the residue field £ is given by 1+ A9, The map o> F°is
an isomorphism Z — G(K,,/K) of topological groups. Erom Chapter V
§2.5, we recall that 7, is the projective (inverse) limit, I:__m Z/nZ, of the
cyclic groups Z/nZ. ‘

ySinci K, isasubfield of K, H YK,./K) is a subgroup of Br(K) = H*(KJK).
In fact:

THEOREM 1. H*(K,/K) = Br (K). .

We have already noted above that H*(K,JK) = H %2, K,.).

THeoREM 2. The valuation map v K, — Z defines an isomorphism
HXK, K} » H¥Z,7). '

V(Ve 1/112'6 to compute H*Z, Z). More generally let G be a profinite
group and consider the exact sequence

0-+Z->Q->Q/Z-0
i ivi i ivial cohomology,
of G-modules with trivial action. The n?o.dul&'t Q has trivia
since it is uniquely divisible (that is, Z-injective) and so thze coboundary
§: HY(Q/Z) - H*(Z) yields an isomorphism H 1(Q/Z)z—r H*(G,Z). Now
HY(Q/Z) = Hom (G, Q/Z) and so0 Hom (G, Q/Z) =~ H* (G, Z).

We turn now to Hom (Z, Q/Z). Let ¢ € Hom (Z, Q/Z) and define a map
y: Hom (2, Q/Z) » Q/Z by ¢ — (1) € Q/Z. 1t foliows from Theorem 2
that we have isomorphisms

-1
K, K) — B2, Z) > Hom (2, Q/Z) > Q/Z.
The map invg : HX(K,/K) = Q[Z is now defined by
invg=y°8"1e0
For future reference, we state our conclusions in:

CoROLLARY. The map invg = 7 ° 5~ o v defines an isomorphism
between the groups H(K,/K) and Q[Z.

Since, by Theorem 1, H*(K,/K) = Br (K), we see that we have defined
an isomorphism inv : Br (K) - QfZ.
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If L is a finite extension of K, the corresponding map witl be denoted
by inv;.

TueoreM 3, Let L{K be a finite extension of degree n. Then
invy o Resgp = n.invg.
In other words, the following diagram is convmutative
Br(K) Ressrz Br(L)
invxl itw;.l
] i
QZ _ ", Q/z

{For the definition of Resg,, the reader is referred to Chapter IV §4
and to Chapter V §2.7.)

CorOLLARY 1, An element o & Br (K) gives O in Br (L) if and only if
ne = 0.

COROLLARY 2. Let L{K be an extension of degree n. Then H*(L{K) is
cyclic of order n. More precisely, HXL|K) is generated by the element
i € Br (K), the invariant of which is 1/n e QfZ.

Proof. This follows from the fact that H2(L/K) is the kernel of Res.

1.2 Computation of H*(K,,[K)

In this section we prove Theorem 2. We have to prove that the homo-
morphism H*(K,,/K) - H*(Z, Z) is an isomorphism.

ProrosiTiON 1. Let K, be an unramified exiension of K of degree n and let
G = G(K,/K). Then for all ge Z we have:

(). HYG, U,) = 0, where U, = Uy, ;

(2). the map v: HY(G, K} — HYG, Z) is an isomorphism,

(Theorem 2 is evidently a consequence of (2) of Proposition 1, since
H*(K,/K) = H*Z, K,).)

Proof. The fact that (1) implies (2) follows from the cohomology sequence

H%G,U,) » HG,K;) » H(G,Z) - H* (G, U,)

It remains to prove (1). Consider the decreasing sequence of open sub-
groups U, > Ul > U? > ... defined as follows: xe U} if and only if
v(x—1) = i. Now let n € X be a uniformizing element; so that U} = 1+7'0,,
where O, = Oy,. Then U, = lim U,/U;. The proof will now be built up

nmn
from the three following lemmas,

Lemma 1. Let k, be the residue field of K,. Then there are galois isomor-
phisms UJU} ~ kF and, for i > 1, UYUIT* ~ &k},
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(By a galois isomorphism we mean an isomorphism which is compatible
with the action of the Galois group on either side.)

Proof. Take « € U, and map o & where & is the reduction of « into &,
By definition, Ul= 14+70,; so if a& Ul then & = 1, and the first part
of the lemma is proved.

To prove the second part, take xe U! and write o« = 1+7'f where
e 0, Now map o B. We have to show that in this map a product ao’
corresponds to the sum f+p. By definition, a0’ = 1+7'(B+p)+...,
whence aa’ + B+ 5.

Finally, the isomorphisms are galois since *o = 147 .58

LEMMA 2. For all integers g and for all integers i 2 0, HY(G, viuirh =0.
Proof, For i = 0, U® = U, and the first part of Lemma 1 gives
HYG, U, UL) = HYG, k¥) = HYGypo K)-

Now for ¢ = 1, H (G kr) = 0 (“Hilbert Theorem 90", cf. Chapter V,
§2.6). For g = 2, observe that G is cyclic. Since kj is finite, the Herbrand
quotient A(ky) = 1 (cf. Chapter 1V, § 8, Prop. 11); hence the result forg=2.
For other values of ¢ the result follows by periodicity.

For i = 1, the lemma follows from Lemma 1 and the fact that k; has
trivial cohomology.

The proof of Theorem 2 will be complete if we can go from the groups
UiUI*Y to the group U, itself and the following lemma enables us to do

this.

Lemma 3. Let G be a finite group and let M be a G-module. Let M iz
and M® = M, be a decreasing sequence of G-submodules and assume that
M = lim M/M; (more precisely, the map from M to the limit is a bijection).
Then, ;foar someq e Z, HYG, MiIM'*") = 0 for all i, we have H¥(G, M)=0.

Proof. Let f be a g-cocycle with values in M. Since HY(G, M{M"') =0,
there exists a (g—1)-cochain ¥, of G with values in M such that
f =0y, +fy, where f is a g-cocycle in M. Similarly, there exists 1, such
that f, = 8W,+f5, f» € M?, and so on. We construct in this way a sequence
W, f.) where ¥, is a (¢4— 1)-cochain with values in M"™! and f, is a
g-cocycle with values in M", and f, = Sy sy Ffirr Set = ot ..
In view of the hypotheses on M, this series converges and defines a (—1)-
cochain of G with values in M. On summing the equations f, = Wy st
we obtain f = i, and this proves the lemma.

We return now to the proof of Proposition 1. Take M in Lemma 3 to
be U,. It follows from Lemma 3 and from Lemma 2 that the cohomology
of U, is trivial and this completes the proof of Proposition 1 and so also
of Theorem 2.
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1.3 Some Diagrams

ProPOSITION 2. Let LK be a finite extension of degree n and let L, (resp. K,,)
be the maximal unramified extension of L (resp. K); so that X,, < L,,. Then
the following diagram is commutative.

H (K, JK) 5, H¥(L, /L)
invx’l’ invy,
Q/Z " . QZ
Proof. Let I'y = G(K,,/K) and let F be the Frobenius element of I'x;

let I', and F, be defined similarly. We have F, = (Fy)’ where /= {/: k]
is the residue field degree of L/K.

Let e be the ramification index of L/K, and consider the diagram:
HYC, K%) % HY[,Z) _*"' , Hom([, Q/Z) _** . Q/Z
Res] (1) e.Res (2) e.Resl (3) nl

HYI,LY) "=  HYT.,Z) *7'  Hom(I', Q/Z) ™, Q/Z,
where Res is induced by the inclusion I'y — Iy, and yg (resp. 7.} is given
by ¢ = @(Fy) (resp. ¢+ ¢(F.)). The three squares (1), (2), (3} extracted
from that diagram are commutative; for (1), this follows from the fact that
v, is equal to e.vx on K; for (3), it follows from Fy = Ff, and n = ¢f;
for (2), it is obvious.

On the other hand, the definition of invg: H*(I'y, K} = Q/Z is equiva-
lent to:

invg =y o8 e g,
and similarly:
inv; =y,08 ten.
Proposition 2 is now clear.

COROLLARY 1. Let H¥(L/K),, be the subgroup of H*(K,./K) consisting of
those o ti H*(K,,/K) which are “killed by L” (that is, which give 0 in Br (L)).
Then H*(L{K),, is cyclic of order n and is generated by the element uyy in
HYK,/K) such that invy (ug,) = 1/n.

I:roof. Note that a less violent definition of HZ(L/K),, is provided by
HYL{K),, = H¥(L/K) 0 HYK,/K).

Consider the exact sequence

0 — HA(L{K),, - H(K,,/K) _%_, H¥(L, /L).
The kernel qf the map HXK,/K) - HL, /L) is H*(L/K),, and this goes
to 0 under invy: H*L, /L) = Q/Z. On the other hand, it follows from

Proposition 2 that inv, ° Res = n.invg. The kernel of the latter is (1/m)Z/Z

ar!d S0 H*(LJK),, is cyclic of order #, and is generated by uy € H*(K,/K)
with invy (1) = 1/n.
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COROLLARY 2. The order of HX(LJK) is a multiple of n.
Proof. H*(L/K) contains a cyclic subgroup of order r by Corollary 1.

1.4 Construction of a Subgroup with Trivial Cohomology

Let L/K be a finite galois extension with Galois group G, where L and K
are local fields. According to the discussion in Proposition 1, the G-module
U, has trivial cohomology when L is unramified.

PropositioN 3. There exists an open subgroup, V, of U with trivia
cohomology. That is, H{(G, V) =0 for all q. .

Proof. We shall give two proofs; the first one works only in characteristic 0,
the second works generally. o N

Method 1. The idea is to compare the multiplicative and the additive
groups of L. We know that L* is a free module. over the algebra X[G].
That is, there exists a € L such that [*¢)sec is @ basis for L considered as a

tor space over K. '
W'(;*Iow ]sake the ring Oy of integers of K and define 4 = Yise O °. This
is free over G and so has trivial cohomology. Morcover, by multiplying «
by a sufficiently high power of the local uniformizer ng, we may take such
an A to be contained in any given neighbourhood of 0. .

It is a consequence of Lie theory that the addit'm? group of L 18 loca}ly
isomorphic to the multiplicative group. More precisely, the power series
e = 1+x+...+x"/nl+ ..., converges for v{x) > v(p)/(p—l‘). Thuf in the
neighbourhood v(x) > v(p)/(p— 1) of 0, L* is local'ly isomorphic to L _under
the map x+» e* (Note that, in the same neighbourhood, the mverse
mapping is given by log (1 +x} = x-x2/2+x3/‘3'—- el

Now define ¥ = e%; it is clear that ¥ has trivial cohopology.

The foregoing argument breaks down in characteristic p; namely at the
local isomorphism of L* and L*. s

Method 2. We start from an A constructed as above: zi = ¥ O "0
We may assume that 4 = Op. Since A is open in O.L, 0, < A for a
suitable N. Set M =nkAd. Then M. McmM if i> N+l For
M.M =4 A cn}'O andif i > N+1 then

i i
n}0, = ng.ngd < g M.

Now let ¥ = 1+M. Then V is an open subgroup of Uy. It. remains to
be proved that ¥ has trivial ¢cohomology. We define a filtration of V by
means of subgroups V' = 1+7xM, i = 0. (Note that_Vi is a subgroup since
(L+rkx) (L +7ky) = 1+mxlx+ y+nixy), etc) This yields a decreasing
filtration ¥V = ¥® o V1 > F? o ... Asin§ 1.2, Lemma 2, we a:'e reduced
to proving that HYG, Vi/¥'*') = 0 for all ¢. Take x = l-i'-nxﬂ, peM
and associate with this its image § e M[ng M. This is a group isomorphism
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of V{Vi*! and M [ry M and we know that the latter has trivial cohomology,
since it is free over G.

This completes our proofs of Proposition 3.

We recall the definition of the Herbrand quotient A(M). Namely,
M) = Card (H°(M))/Card (H'(M)), when both sides are finite. (See
Chapter IV, § 8.)

CoroLLARY 1. Let L{K be a cyclic extension of degree n. Then we have
KUy = 1 and l{L¥) = n.

Proof. Let ¥V be an open subgroup of U, with trivial cohomology {(cf.
Prop. 3). Since £ is multiplicative, MWU) = V). MUL/V) = 1.

Again, L¥U, = Z. So ML*) = MZ).A{U;). Now MUy =1 and
IZ) = n, since %G, Z) = n and H(G, Z) is trivial. Hence h{L*) = n.

COROLLARY 2, Let L{K be a cyclic extension of degree n. Then H*(L/K)
isof order n = [L: K].

Proof. We have

Card (H%(G, L*))

Card (HY(G, L*Y

Now Corollary 1 gives W(L*) = n. Moreover, HY(G, L*) = 0 (Hilbert

Theorem 90). Hence Card (H*(G, L*)) = n. But H*(G, L*) is HX(L{K),
whence the result,

(L) =

1.5 An Ugly Lenuna

LevumA 4. Let G be a finite group and let M be a G-module and suppose
that p, g are integers with p =2 0, g 2 0. Assume tha::

(a) H(H, M) = 0 for all 0 < i < q and all subgroups H of G;

(b) if H « K = G, with H invariant in K and K{H cyclic of prime order,
then the order of HY(H, M) (resp. H°(H, M) if ¢ = 0) divides (K: HY.

Then the same is true of G. That is, HY(G, M) (resp. H%(G, M) is of order
dividing (G : 1)%.

Proof. Since the restriction map Res: %G, M) = H%G,, M) is injective
on the p-primary components of H%G, M), where G, denotes a Sylow
p-subgroup of G, we may confine our attention to the case in which G is
a p-group. We now argue by induction on the order of G.

Assume that G has order greater than 1. Choose a subgroup H of G which
is invariant and of index p. We apply the induction hypothesis to G/H.
We know from (b) that, for g > 0, the order of HYG/H, M¥) divides
(G: HY = p* and by the induction hypothesis H4(H, M) divides (H: 1)°.
Now it follows from (a) that we have an exact sequence (Chapter IV, § 5).

0___. HYG/H,M") _0_ HYG, M) _2*_, HY(H, M).
Thus H¥G, M) has order dividing p*.(H: 1)* = (G: 1)~
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For ¢ = 0, we recall (see Chapter 1V, § () that
A%G, M) = MS[NcM.
Then we have the exact sequence
MYN M Vet MCINGM L (M7 NG M

where N/ denotes the norm map and the second map is induced by the
identity. The remainder of the argument now runs as before.

1.6 End of Proofs

PropoSITION 4. Let LIK be a finite galois extension with Galois group G
of order n = [L: K]. Then HY(L|K) is cyclic of order n and has a generator
uyx € H* (K, K) such that invy (ugg) = 1/n.

Proof. In Lemma 4, take M = L* p=1andg=2. Condition (a) is
satisfied by “Theorem 90" and (b) is true by Prop. 3, Cor. 2. Hence H*(G, L*)
has order dividing (G:1) = n. But by Prop. 2, Cor. 1, H*(L/K) contains
a cyclic subgroup of order n, generated by ux € H?*(K,,/K) and such that
invg (uy ) = 1/ Whence Proposition 4.

1t follows from this proposition that H (1 /K) is contained in H 2(K,./K).

We turn now to the proof of Theorem 1. The theorem asserts that the
inclusion Br (K) o H*(K,/K) is actually equality. Now by definition,
Br(K)=UH *(L{K), where L runs through the set of finite galois extensions
of K. But as remarked above, H XL/K) « H}(K,/K).  Hence
Br (K)  H¥(X,,/K), as was to be proved.

Evidently, Theorem 3 follows from Theorem 1 and Proposition 2.

1.7 An Auxiliary Result

We have now proved all the statements in § 1.1 and we conclude the present
chapter with a result which has applications to global fields.

Let 4 be an abelian group and let n be an integer > 1. Consider the
cyclic group Z/nZ with trivial action on 4. We shall denote the correspond-
ing Herbrand quotient by I,(A), whenever it is defined. We have

Order(AfnA
hi4) = Orde(} ,,IA )
where ,4 is the set of xe 4 such that no = 0. (Alternatively, we could
begin with the map 4 = 4 and take fi,(4) to be:
order (Coker (n)}forder (Ker #)).)
Now let X be a local field. Then for o e K there is a normalized abso-

lute value, denoted by |aig (see Chapter 1I, §11). If xeOg, then
lalg = 1/Card (Og/aOg).
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PrROPOSITION 5. Let K be a local field and let n = 1 b ; - pri
the characteristic of K. Then h{K*) = nf|nlg. ¢ fuleger prime fo

Proof. Suppose that X has characteristic0. We have 1,(K*) = h(Z).h (U}).
1\_Iow h{Z) = n; so we must cqmpute h(Uy). As in Proposition 3, we con-
sider a ts‘uggmlég 11/10f U which is open and isomorphic to the additive
group of Og. We have h(Uy) = h,(V).1,(Ug/V) and since Ug/¥V i i
h{UxfV) = 1. We have #") WVis finite
hn( V) = hn(OK)

and
h(0g) = Card (Og/nOy) = .

S K (Ox/nOy) = 1/l
h(K*) = n.(l/In]g) = nflnlx.

Suppose now that K has characteristic
. p. We take the same steps as
before. First, h(K*) = n.h,(Uy). Now consider the exact sequence i

0- Ul Uy - k*>0
where U} is a pro-p-group (cf. Lemma 1). Sin is pri i
. . ce n Is prime to p it follows
that h,(UY) = 1 and that h,(k*) = 1. So n.h(Uy) = n. Whence the result.
We note that the statement of the proposition is also correct for R or C.

In these cases we have [n|g = |n|, |n|c = [a]* i
, [nlg = [#]* and one can check direct]
that, for R, 1,(R*) = n/ln| = 1 and, for C, 1,(C*) = nfln|c = 1/n. ’

APPENDIX
Division Algebras Over a Local Field

It is known that elements of Brauer groups correspond to skew fields (cf.
for 1nstanf:e, “Séminaire Cartan”, 1950/51, Exposés 6/7), and we are goin-’
to use thns. correspondence to give a description of skew fields and thi
corresponding invariants. Most results will be stated without proof.

Let K be a local field and let D be a division algebra over K, witﬁ centre
K and [D: K] = n®. The valuation v of X extends in a uniql,le way from
Kto D (for example, by extending first to K(a), « € D, and then fitting the
resultlpg extensions together). The field D is complete with respect to this
valuation -and, in an obvious notation, O, is of degree n? over Oy. Let d
be the residue field of D; we have n®> = ef where e is the ramiﬁcatixc;n ind
and f = [d: k). =

Now e < n; for there exists a € D such that vy(a) = 7!

'f° a commu‘tative subfield of degree at most » mfe(r )K The ::gdiebglec;gg;
is commutative, since k is a finite field, and d = k(&) for some @ € D. Hence

f < n. Together with n? = . . .
and f = n.g et with n ef, the inequalities e < nand f S nyielde = n
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Since [d: k] = n, we can find & e d such that k(@) = a. Now choose a
corresponding o € Oy and let L = K{x). Evidently {L: K] < n, since L is
a commutative subfield of D. On the other hand, & is an element of / (the
residue field of L) and ! = d; hence [/: k] = »n. It follows that [L: K] = »n
and L is unramified. 'We state this last conclusion as: D contains a maximal
commutative subfield L which is unramified over K.

The element 6 € Br (X) corresponding to D splits in L, that is § e H3(L/K).
S0 any element in Br (K) is split by an unramified extension and we have
obtained a new proof of Theorem 1.

Description of the Invariant

The extension L of X constructed above is not unique, but the Skolem-
Noether theorem (Bourbaki, “Algébre”, Chap. 8, § 10) shows that all such
extensions are conjugate. The same theorem shows that any automorphism
of L is induced by an inner automorphism of D. Hence there exists ye D
such that yLy~! = L and the inner automorphism X+ yxy~! on L is the
Frobenius F. Moreover y is determined, up to multiplication by an element
of L*.

Let vy be the valuation v : L* — Z of L; so that vy : D* = (1/m)Z extends
vy on D. The image i(D) of vy(y) in (I/M)Z{Z < QfZ is independent of the
choice of y. One can prove that (D) = invg (6), where § € Br (K) is asso-
ciated with D,

We can express the definition of /(D) in a slightly different way. The map
x> y"xy™" is equal to F”* on L and so is the identity. It follows that y"
commutes with L and ¢" = ce L*. Now

1
vp(y) = i vp(y") = }—11 vp(c) = ; v {c)-

Hence we have vp(y) = (1/n)v(c) = i/n where ¢ = niu.

Application

Suppose that K'/K is an extension of degree #n. By Theorem 3, Cor. 2,
an element & & Br (X)) is killed by K’. Hence: any extension K'{K of degree n
can be embedded in D as a maximal commutative subfield. This may be
stated more spectacularly as: any irreducible equation of degree n over K
can be solved in D.

ExXERCISE

Consider the 2-adic field Q, and let H be the quaternion skew field over Q,.
Prove that the ring of integers in H consists of the elements a-+bi+cj+dk
where a,b, ¢, de Z, ora, b, ¢, d = 1 (mod Z,). Make a list of the seven (up
to conjugacy) quadratic subfields of H.
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2. Abelian Extensions of Local Fields

2.1 Cohomological Properties
Let L/K be a finite galois extension of local fields with Galois group
G = G(L/K) of order n. We have seen (§ 1.1, Theorem 3, Cor. 2.) that
the group H*(L/K) = H*(G, L*) is cyclic of order 1 and contains a generator
upx such that invg (u) = 1/ne Q/Z. On the other hand, we know that
HYG, L") = 0.

Now let H be a subgroup of G of order m. Since H is the Galois group
of L/K" for some K’ > K, we also have H'(H, L*) = 0 and H*(H,L*) is
cyclic of order m and generated by Uy -

To go further, we need to know more about ;. Now we have the restric-
tion map Res: Br(K) - Br(K’) and this suggests that U = Res (up ).
To see that this is the case, we simply check on invariants. We have

. , . 1 1
inv g (Resuyz) = [K' : Klinvg (ugp) = [K': K]. 5= o= invg (g

We can now apply Tate’s theorem (Chapter IV, § 10) to obtain:

THEOREM 1. For all g€ Z, the map o+ &. Uz given by the cup-product
is an isomorphism of H%G, Z) onto H***(G, L¥).

A similar statement holds if H is a subgroup of G cotresponding to an

extension L/K'. The mappings Res and Cor connect the two isomorphisms
and we have a more explicit statement in terms of diagrams.

STATEMENT. The diagrams
BYG,Z) ‘= A™YG,I¥  A%G,2) —UE | BTG, [
Res Res Cor Cor
A%H,Z) "vx' | Aty [, 1% AYH,Z) *ux  [Aeryy 1w
are commutative.
Proof. As above, u; ;. = Res (vx)- We must show that
Resg/p (v .0) = ke Resgp (00).

The left-hand side is Resg/x: (k). Resg - () (see Cartan-Eilenberg, “Homo-

Iogic:acl1 Algebra”, Chap. XII, p. 256) and so commutativity with Res is
proved.

For the second diagram we have to show that Cor (uyx. B) = ty . Cor(f).

Now .Cor (uL,x... B) = Cor (Res (uy,x).8) = tyg. Cor (B) (Cartan-FEilenberg,
loc. cit.) and this proves the commutativity of the second diagram.

2.2 The Reciprocity Map

.We ghall be particularly concerned with the case q = —2 of the foregoing
discussion. By definition 4 “*G,Z) is H\(G,Z) and we know that
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H,(G,Z) = GIG' = G®. On the other hand, BYL/K) = K*[NpxL*,
wlllen; Nyx denotes the norm. In this case, Theorem 1 reads as follows.

TuroreM 2. The cup-product by uyx defines an isomorphism of G*(L{K)

to K¥/NypL*. .
on\:le g{ve”: name to the isomorphism just constructed, or rather to ttas
inverse. Define 0 = 0y x to be the isomorphism of K*/NL,KL* on to G*°,
which is inverse to the cup-product by tiy k. The map @ is called the local
reciprocity map or the norm residue symbol. _ )

Ifl?oc e K* corresponds to & € K*/N, e L¥, then we write 0.x(@ = (2, L/K);
The norm residue symbol is so named since it tells whether or not a € K‘
is a norm from L*. Namely, (o L/K) = 0 (remember that 0 means 1) if
and only if « is a norm from L*. ‘ '

Obseryve that if L/K is abelian, then G = G and we have an isomorphism
0: K*/NyxL* = G.

2.3 Characterization of (o, L/K) by Characters

Let L/K be a galois extension with group Gb We start from. an o€ K*
and we seek a characterization of (z, L/K)e G*. For ease of writing we set
s, = (%, L/K). Let yeHom(G, Q/z) = H %(G,Z) be a character of
degree 1 of G and let 5y € H*(G, Z) be the image of x by the coboundary
map & : H'(G, Q/Z) — H¥G, Z) (cf. § 1.1} Let

5 & K*Ny(L*) = H%@G, L¥)
be the image of «. The cup-product &.5y is an element of H (G, L*) = Br(K).
PROPOSITION 1. With the foregoing notation, we have the formula

1(s) = invg (&. %)

Proof. By definition s,.uix = &€ HY%G, L%, s, being identified v:'ith. an
element of H- %G, Z). Using the associativity of tbe cup-produciti this gives
&.5% = tipx-Se- 0% =tk (8:-00) = sty (5. ) With 5,.% tilH (G, QIZ_.)I;
Now A~ 4G, Q/Z) -5 H*G, Z) = ZnZ and w_ezldentlfy a (f,? Q/Z) wit
Z/nZ. Moreover, the identification between H ~%(G, Z) and G ”has been so
made in order to ensure that s,.x = x(s,) (see “Corps Locaux . Chap. XL,
Annexe pp. 184-186). Write s,.x = r/n, r € Z. Then 3rin) e.ﬁ (G, Z) and
3(rfn) = r. Hence k- (8.0X) = r.upx anc'l the invariant of this cohomology
class is just rjn = x(s,). So Proposition 1 is proved.

icati i ing situation. Consider a tower

As an application we consider the f'ollowmg situation '
of galois extensions K c L' = L with G = G(L/K) and H = G(L/L").
Then, if y’ is a character of (G/H)™ and y is the corresponding character
of G*, and if a e K* induces s,€ G and s, e (G/H)™ under the natural

map s, s, we have x(s;) = ¥'(s2). This follows from Prop. 2 and the
fact that the inflation map transforms x’ (resp. 8y} into x (resp. 6y).
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This compatibility allows us to define s, for any abelian extension; in
particular, taking L = K, the maximal abelian extension of K, we get a
homomorphism 8 : K* = G(K®/K) defined by o (o, K*%/K).

2.4 Variations with the Fields Involved

Having considered the effect on (¢, L/K) of extensions of L we turn now
to consider extensions of K. Let K'/K be a separable extension and let
K°, K’** be the maximal abelian extensions of K, K’ respectively.

We look at the first of the diagrams in the Statement of § 2.1 and the case
g = —2. Taking the projective limit of the groups involved, we obtain a
commutative diagram:

K* Ok G:;(b
im:ll V[
1 &

K!* L Gl;(b‘

Here V denotes the transfer (Chapter 1V, § 6), GZ denotes G(K'**/K) and
G% denotes G(K®/K) = G(K'®*/K).

Similarly, using the second of the diagrams in the Statement, we obtain
a commutative diagram:

KI* [ Gn;‘b'

Nx'rx i
-Klt 0x G‘Ié‘(b
where i is induced by the inclusion of Gy. into Gy.
[Note that if K'/K is an inseparable extension, then in the first of these
diagrams the transfer, ¥, should be replaced by ¢V where g is the inseparable

factor of the degree of the extension K‘/K. The second diagram holds even
in the inseparable case.)

2.5 Unramified Extensions

In this case it is possible to compute the norm residue symbol explicitly in
terms of the Frobenius element:

ProposITION 2. Let LIK be an unramified extension of degree n and let
Fe Gy g be the Frobenius element. Let « e K* and let v(a) e Z be its nor-
malized valuation. Then (a, L{K) = F*©@.

Proof. Let yx be an element of Hom (G, Q/Z). By Prop. 1, we have:
x{(e, L/K)) = invg (&.8).
The map invg : H¥(Gyx, L*) - Q/Z has been defined as a composition:
HX (G, L) 2, H¥ Gy, 2) 2, HY(Gpyx, Q/Z) 1, Q/Z.
We have v{@.dy) = v(x).8y, hence:

inve (@.8%) = o8~ 1o0(@.8) = 0(@).2(0) = v@X(F) = 2(F*®).
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This shows that
1((e LK) = 2(F*)
for any character x of Gyx; hence (@, LIK) = F*®.

CoroLLARY. Let E[K be a finite abelian extension.
symbol K* — Gy maps Uy, onto the inertia subgroup T of Ggx-

Proof. Let L be the sub-extension of E corresponding to T. By Prop. 2,
the image of Uy in Gpg is trivial; this means that the image of Uy in G_EIK.
is contained in T. Conversely, let teT, and let /= [L: K]; there exists
ae K* such that t = (g, E/K). Sincet€& T, Prop. 2 shows that f divides vg(a);
hence, there exists b € E* such that vl(d) = vi(Nb). 1f we put u = a.Nb™1,
we have u € Uy and (u, E/K) = (a, EfK) =1.

The norm residue

2.6 Norm Subgroups

DEeRNITION. A subgroup M of K* is called a norm subgroup if there exists
a finite abelian extension LIK with M = N L
Example: Let m = 1 be an integer, and let M, be the set of elements
ae K* with vg(a) = 0mod m; it follows from Prop. 2 (or from a direct
computation of norms) that M,, is the norm group of the unramified exten-
sion of K of degree m.
Norm subgroups are closely related to the reciprocity map
0y: K*— G = G(K®(K)
defined in § 2.3. By construction, 8, is obtained by projective limit from the
jsomorphisms K* INL* = G where L runs through all finite abelian
extensions of K. If we put:
K =lim.K*/NL¥,
we see that 8, can be factored into
i
K*=K i G2
where i is the natural map, and § is an isomorphism. Note that K is just the
completion of K* with respect to the topology defined by the norm subgroups.
This shows that norm subgroups of K* and open subgroups of G corre-
spond to each other in a one-one way: if U is an open subgroup of G2, with
fixed field L, we attach to U the norm subgroup 07 1(U) = Nygl*; it M
is a norm subgroup of K*, we attach to it the adherence of 8x(M); the
corresponding field Ly is then the set of elements in X® which are invariant
by the 0x(a), for ae M. We thus get a “Galois correspondence” between
norm subgroups and finite abelian extensions; we state it as a proposition:

PROPOSITION 3. (a) The map L NL* is a bijection of the set of finite
abelian extensions of K onto the set of norm subgroups of K*.
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(b) This bijection reverses the inclusion.
(g) g(L.L’) = NL~ NL and N(L nL') = NL.NL'.
g,-c(m;_ ny subgroup of K* which contains a norm subgroup is a norm sub-
(For a direct proof, see “Corps Locaux”, Chap. XI, §4.)
Non-abelian extensions give the same norm subgroups as the abelian ones:

Pl?OPOSITIOI\f 4. Let E/K be a finite extension, and let L{K be the largest
abelian extension contained in E. Then we have:

N.E[KE* = NL]KL*‘

Proof.‘ This follows easily from the properties of the norm residue symbol
proved in §2.4;‘ for more details, see Artin-Tate, “Class Field Theory”
pp- 22§—229, or Corps Locaux™, p. 180. (These two books give only th;
case where EfK is separqble; the general case reduces to this one by observing
that NL = K when L is a purely inseparable extension of K.)

CoroLLARY (“Limitation theorem™). The i

: : . he index (K*:NE™) divid
[E: K). It is equal to [E: K] if and only if E[K is abelian. ) N

Proaf. This f i i i
e jI'( ) is follows from the fact that the index of NL* in K* is equal

' 2.7 Statement of the Existence Theorem
It gives a characterization of the norm subgroups of K*:
THEOREM 3. A4 subgroup M of K* is a nor j
; orm sub if i
satisfies the following two conditions: group I and only I i
(1) Its index (K* : M) is finite,
(2) M is open in K*.

(Note that, if (1) is satisfied, (2) is equivalent to “ M is closed”.)

Proof of necessity. If M = NL*, where L is a finite abelian extension of X,
we know that K*/M is isomorphic to Gy, ; hence (K*: M) is finite. Mo ’
over, one c13ecks immediately that N;L* —+ K* is continuous an& ror:;
(the inverse image of a compact set is compact); hence M = NL* is gos’;d
cf. Bourbaki, “Top. Gén.”, Chap. I, §10. As remarked above, this shows;

that M is open. [This last
. property of the norm subgrou
expressed by saying that the reciprocity map groups may elso be

: ) BK. : K* b Gg{b
is continuous.)

TPrfJof of sufficiency. See § 3.8, where we shall deduce it from Lubin
Late s ,t’heory. The usual proof, reproduced for instance in “Corps
ocanx”, uses Kummer and Artin-Schreier equations. !

ANT.
6
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We give now some equivalent formulations. B
Consider the reciprocity map 0g: K* — Ge. By Prop. 2, the composition

L]
K* > G2 G(K,/K) =2

is just the valuation map v: K* > Z. Hence we have a commutative
diagram:

0-»Ug—»K*=Z-0

lo 1o lid.

0> Ix >GE»2-0,
where I, = G(K®(K,) is the inertia subgroup of G2, and G(X,,/K) is iden-
tified with Z. o _

The map 8: Uy — I is continuous, and its image is dense (cf. Cor. to

. . . o iontie
Prop. 2); since Uy is compact, 1t follows that.lt is surjective.

V\I:e c)an now stgte two equivalent formulations of the existence theorem.

TueoREM 3a. The map 0: Ux — I isan isomorphism. .

TueoreM 3b. The topology induced on Ug by the norm subgroups is the
natural topology of Ug.

The group I is just lim. Ug/(M n Uy), where M runs through all norm
subgroups of K*; the eaﬁ—ivalence of Theorem 3a and Theorem 3b follows
from this and a compacity argument. The fact that Theorem 3 = Theorem 3b
is clear; the converse is easy, using Prop. 2. .

CoroOLLARY. The exact sequence 0 — Uy — E* - Z — 0 gives by com-
pletion the exact sequence:

0-—>UK—+K—>Z-->O.

Loosely speaking, this means that R is obtained from K* by “replacing
Zby2”.

2.8 Some Characterizations of (&, L{K}
Let L be an abelian extension of K containing K, the maximal unramified

extension. We want to give characterizations of the reciprocity map
. ¥ _y .

’ -Sj::nce I({;,i“:: L, we have an exact sequence 0~ H— G~ 2~ (:
where H = G(L/K,,) and 2, is identified with G(X,/K). Choose a lo;l:att
uniformizer = in K and write o, = 8(m) = (x, LiK)e Gpx. We know t _att
¢, maps onto the Frobenius element Fe Gy, .jx- Moreov.cr, we cag bwr:7 €
G g as a direct product of subgroups Gy x = H.I wherel, i ge;era;ite ; 3& el’:i
Corresponding to this we have L = K, ® K, w1.1ere ‘.K" is the xl: By
of 6, = 8(z). Interms of a diagram, the interrelationship between the fie

is expressed by
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SN
Wl O
N

where K, and K, are linearly disjoint.
ProPOSITION 5. Let f: K* — G be a homomorphism and assume that:

f
(1) the composition K* - G — G(K,[K), where G — G(K,/K) is the
natural map, is the valuation map v: K* - Z;

(2) for any uniformizing element we K, f(n) is the identity on the corre-
sponding extension K.

Then f is equal to the reciprocity map 0.

Proof. Note that condition (1) can be restated as: for x € K*, f{(«) induces
on K, the power of the Frobenius element, F*®,

We know that f(xn) is F on K,, and that 8(z) is F on K. On the other
hand, /(=) is 1 on K, and 8(r) is 1 on K,. Hence f(n) = 6(x) on L.

Now K* is generated by its uniformizing elements mu (write n"u as
(nu).7n"~1). Hence f = .

ProrosITION 6. Let f: K* — G be a homomorphism and assume that (1)
of Proposition 3 holds, whilst (2) is replaced by:

(2) if ee K*, if K'/K is a finite sub-extension of L and if « is a norm from
K'™*, then f() is trivial on K'.

Then f is equal to the reciprocity map 0.

Proof. It suffices to prove that (2) implies (2). That is, we have to prove
that if = is a uniformizing element, then f{x) is trivialon K,. Let K'/K bea
finite sub-extension of K,. We want to prove that n € NK'*. But 8(n) is
trivial on K, and so on X’. This implies n € NK'*,

2.9 The Archimedean Case

For global class-field theory it is necessary to extend these results to the
(trivial) cases in which K is either R or C. Let G = G(C/R). In the case
K = C, the Brauer group is trivial, Br(C) = 0. On the other hand,
Br (R) = H*(G, C*) = R*/R% and so Br(R) is of order 2.

The invariant invg:Br(R) — Q/Z has image {0,1/2} in Q/Z and
inve: Br(C) » Q/Z has image {0}. The group H*(G, C*) = H*(C/R) is
cyclic of order 2 and is generated by u & Br (R) such that invg () = 1/2.

Under the reciprocity map (or rather its inverse) we have an isomorphism
G = H %G, Z) - H%G, C*) = R*RX,
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3. Formal Multiplication in Local Fields
The results given in this chapter are due to Lubin-Tate, Annals of Mathe-
matics, 81 (1965), 380-387. ‘ _

For our purposes, the main consequences will be: (1) the construction
of a cofinal system of abelian extensions of a given local ﬁt?ld K; (2) aformula
giving (&, L/K) explicitly in such extensions; (3) the Existence Theorem of
§2.7. ) o ~

In order to illustrate the ideas involved, we bggm Wlth the case K = Q,.
The results to be proved were already known in th}s.case (but were not
easily obtained) and they will be shown to be trivial consequences of
Lubin-Tate theory.

3.1 The Case K = Q,

TueoreM 1. Let Q_f,”“ be the field generated over Q, by all roots of unity.
Then Q;”" is the maximal abelian extr?nsion of (_2‘,. o

In order to determine («, L/K) it is convenient to spht. Q" into parts.
Define Q,, to be the field generated over Q, by. roots of unity of order prime
to p (so Q,, is the maximal unramified extension gf Q,) and define Q= to
be the field generated over Q, by p°th roots of umt;f,_v‘= 1,2,... (s0 Qpo
is totally ramified). Then Q,, and Q,« are linearly disjoint and

Q;yﬂ = Qm--pr = Qnr ® Qp‘”'

We have a diagram:

cyel
14

%

Qnr ; QP :

. Qp'

Now G(Q,./Q,) = 2 and if ¢ € G(Q,«/Q,) then ¢ is knt_)wn by its action
on the roots of unity. Let E be the group of p°throots of wnity, v = 1, 2,....
As an abelian group, E is isomorphic to Ii_n:Z/p"Z = Q,/Z, We shall
view E as a Z,module. There is a canonical map Z, —» End (1%'), defined
in an obvious way and this map is an isomorphism. The action of the
Galois group on E defines a homomorphism G(Q,=/Q,) — Aut (E‘)‘ =U,
and it is known that this is an isomorphism. {See Chapter III, and “Corps
Locaux”, Chap. IX, § 4, and Chap. X1V, § 7.) If u € U, we shalidenote by [#]
the corresponding automorphism of Qpe/Qp- -

THEOREM 2. Ifa = p".u where u € Uy, then (a, QIQ,) = ¢, is described
by:

(1) on Q,,, 0, induces the nth power of the Frobenius automorphism;

(2) on Q,e, 0, induces the automorphism [
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Of these (1) is trivial and has already been proved in § 2.5, Prop. 2.
The assertion (2) can be proved by (a) global methods, or {b) hard local
methods (Dwork), or (c) Lubin-Tate theory (see § 3.4, Theorem 3).

Remark. Assertion (2) of Theorem 2 is equivalent to the following:
if w is a primitive p°th root of unity and if u € U, then

o W) = Wi = 1 +,.21 (u_l)x",

n
where w = 1+x.

3.2 Formal Groups

The main game will be played with something which replaces the multi-
plicative group law F(X, Y) = X+ Y+ XY and something instead of the
binomial expansion, The group law will be a formal power series in two
variables and we begin by studying such group laws.

DerINITION. Let A be a commutative ring with 1 and let Fe A[[X, Y]).
We say that F is a commutative formal group law if:

(a) F(X, (Y, Z)) = F(F(X, Y), Z);

(b) F(0, Y) = Yand F(X,0) = X;

(¢} there is a unique G(X) such that F(X, G(X)) = 0;

(d) F(X, ¥Y) = F(Y, X);

(&) F(X, )= X+Y (moddeg?2).

(In fact one can show that (c) and (g} are consequences of (a), (b) and (d).

Here, two formal power series are said to be congruent (mod deg n) if
and oaly if they coincide in terms of degree strictly less than n.

Take A = O Let F(X, ¥) be a commutative formal group law defined
over Oy and let my be the maximal ideal of Oy. If x, y € g then F(x, »)
converges and its sum x+y belongs to Op. Under this composition law,
g is a group which we denote by F(my).

The same argument applies to an extension L/K and the maximal ideal
my in O;. We then obtain a group F(m;) defined for any algebraic extension
of K by passage to the inductive limit from the finite case.

If F(X, Y) = X+ Y+ XY then we recover the multiplicative group law
of 14y,

The elements of finite order of F{mg ) form a torsion group and G(K/K)
operates on this group. The structure of this Galois module presents an
interesting problem which up to now has been solved only in special cases.

3.3 Lubin-Tate Formal Group Laws
Let X be a local field, g = Card (k) and choose a uniformizing element
ne Oy Let §, be the set of formal power series f with:
() f(X)=nX (mod. deg. 2);
) A(X)=X? (mod. xn).



148 J=P. SERRE

(Two power seties are said to be congruent (mod. =) if and only if
each coefficient of their difference is divisible by #. So the second con-
dition means that if we go to the residue field and denote by f(X) the
corresponding element of X[[X]] then F(X)=X1")

Examples.
(a) f(X) = nX+X",

() K=Qp9 7= p, (X)—pX‘i'(g)Xz-{-..."f'pX"_l-i-Xp.

The following four propositions will be proved in § 35 as consequences
of Prop. 5.

ProposiTION 1. Let f& §,. Then there exists a unique Jormal group law
F, with coefficients in A for which f is an endomorphism.

(This means f(F{(X, Y)) = F(f(X), f(Y)), that is fo Fy = Fyo (fxf))

PROPOSITION 2. Let f€ §, and F; the corresponding group law of Prop. 1.
Then for any ae A = Oy there exists a unique [al; € A[[X]] such that:

(1) [al; commutes with f;

(2) [al, = aX  (mod. deg. 2).

Moreover, {al, is then an endomorphism of the group law Fj.

From Prop. 2 we obtain a mapping 4 — End (F;) defined by a [al,.
For example, consider the case

K=Q, f=pX+(‘g)X2+...+X";

then F is the multiplicative law X+ ¥+ XY, and
[}, =1+ X)y-1=73 (‘:) X'
i=
Proposition 3. The map av [a), is an injective homomorphism of the
ring A into the ring End (Fj).
PROPOSITION 4. Let f and g be menbers of §,. Then the corresponding
group laws are isoniorphic.

3.4 Sratements

Let X be a local field and let = be a uniformizing element. Let fe L
and let F, be the corresponding group law (of Prop. 1). We denote by
M, = Fj{mg,) the group of points in the separable closure equipped with
the group law deduced from F. Let ae 4, xe M, and put ax = {a],x.
By Prop. 3, this defines a structure of an A-module on M, Let E; be the
torsion sub-module of M; that is the set of elements of M, killed by a
power of 7.
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THEOREM 3. The following statements hold.

(a) The torsion sub-module E, is iso It i
’ morphic (as an A-module) with KiA.
(b? Let K, = K(E,) be the field generated by E, over K. Then K, is an
abelian extension of K. "
(¢) Let u be a unit in K*, Then the element o, = (u, K,

o e e o « = (4, KJK) of G(K,JK)
(d) The operation described in (c) defines an isomorphism Uy — G(K,/K).
(e) The norm residue symbol (n, K,/K) is 1. )

(D) The fields K, and K, are linearly disjoint and K*®® = K,,.K,.

We may express the results of Theorem 3 as follows. We have a diagram:
Kab
/7N
K

K
S
N

Here G(K,,/K) = Z and G(K,/K) = U,. Moreover every a & K* can be

written in the form « = #".u and o, gives ¢ (the Frobeni ;
6, gives [~*]) on K /K. ( enius) on K,./K whilst

Example. Take K= Q,, n = p and f = pX + (‘;) X244+ X" The

formal group law is the multiplicative group law; E, is the set of p°th roots

Zf (;n;ity; K, is the field denoted by Q,~ in § 3.1—and we recover Theorems 1
nd 2.

T

3.5 Construction of F,, [a],

In this section we shall
o ol hall construct the formal group law F, and the map
; PROII?OSIT[;)‘N 5. Let f, g€ &, let n be an integer and let ¢(Xy,..., X,)
e a tinear form in X,,..., X, with coefficients in A. Then there’ ex"t |
unigue ¢ € A[[Xy,. .., X,]] such that: e
(8) ¢ = ¢; (mod deg 2);
(b)foqb=q§u(gx...><g).
Remarks. (1) The property (b) may be written

f(¢(X1" LS ] Xn)) = ¢(g(Xl)s * '1g(Xr|))-

(2) The completeness of 4 will not be used in the proof. Moreover, the
proof shc.)ws that ¢ is the only power series with coefficients in an exten’sion
of 4, which is torsion free as an A-module, satisfying (a) and (b).

Proof. We shall construct ¢ by successive approximations. More pre-
cisely, we construct a sequence () such that ¢@ e 4[[X,,. .., X,]I, ¢@
satisfies (a) and (b) (mod deg p+1), and ¢ is unique (m’od ,cleé' 1; +1).
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We shall then define ¢ = lim ¢ and this will be the ¢ whose existence
is asserted.

We take ¢ = .

Suppose that the approximation ¢,+...+¢, = " has been con-
structed. That is, fo @ = ¢® o (gx ... xg) (nod degp+1). For con-
venience of writing, we shall replace gx ...xg by the single variable g.
Now write ¢#*1 = ¢ +¢_. ;. Then we may write

fodpP=¢Pog+E,y, (moddegp+2),

where E,.y (“the error”) satisfies E,yy = 0 (mod degp+1). Consider
¢ we have

Fod®V=fo(@P+¢,s) =f0 ¢P+ndyy; (moddegp+2)
(the derivative of f at the origin is 7)) and

PP ogtd,pr09 =P ogtnf ¢, (moddeg p+2).

Thus

fod®tD_gtD g =E  t+(n—n"*")p,s; (moddegp+2).
These equations show that we must take

¢p+1 = p+1/75(1"‘ﬂp)-
The unicity is now clear and it remains to show that ¢4, has coefficients
in 4. That is, E,4q = 0(modn). Now for ¢ eF,[[X]], we have
H(XD) = ($(X))? and together with f(X) = X?(mod n) this gives
Fo @ —P o f= GPXN—¢P(XY =0 (mod 2)

So, given ¢ we can construct a unique $®**) and the proof is completed
by induction and passage to the limit.

Proof of Proposition 1. For each f'e §,, let F(X, Y} be the unique solution
of F(X, ¥) = X+ Y (mod deg2) and fo Fy = Fyo (fxf) whose existence
is assured by Prop. 5. That F, is a formal group law now requires the veri-
fication of the rules (a) to (¢) above. But this is an exercise in the application
of Prop. 5: in each case we check that the left-and the right-hand sides are
solutions to a problem of the type discussed there and we use the unicity
statement of Prop. 5. For example, to prove associativity note that both
F{F/(X, Y),Z) and F({(X, F, '{ ¥, Z)) are solutions of

H(X,Y,Z)= X+Y+Z (moddeg2)
and
H(f(X), (Y), Z)) = (H(X, Y, Z)).

Proof of Proposition 2. For each ae A and f, g€ §; let [a);,(T) be the

unique solution of
[al;,(T)=aT (moddeg2)
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and
Jfals T) =1a); Lo(T),
(that is fo [al,, = [al;, - ). Write [a], = [al,,,-
Now we have

Fi(laly,o(X):[aly, oY) = [a];, o(F (X, Y)).
For each side is congruent to ¢X+aY (mod deg 2) and if we replace X by
g(X) and Y by g(¥) in either side, then the result is the same as if we sub-
stitute the sides in question in £ Thus [4],, is a formal homomorphism
of F, into F,. If we take g = f, this shows that the [a],’s are endomor-
phisms of Fj.

Proof of Proposition 3. In the same way as outlined above, one proves
that

[a+bly,=Fyo(fals, x[als,e)

[ablys = [als.o° [B)g
It follows from this that the composition of two homomorphisms of the
type just established is reflected in the product of corresponding elements
of A. Taking f = g, we see that the map a [a], is a ring homomorphism
of A into End (E,). It is injective because the term of degree 1 of []; is aX.
Proof of Proposition 4. If @ is a unit in 4, then [a],, is invertible (cf. the
proof of Prop. 2) and so F, = F; by means of the isomorphism [a],,.
Note that [z], = fand [1], is the identity (proved as before).

This completes the proofs of the propositions 1, 2, 3, 4.

and

3.6 First Properties of the Extension K, of K

From now on, we confine our attention to subfields of a fixed separable
closure K; of K. Given fe §,, let F, be the corresponding formal group
law and let E, be the torsion submodule of the A-module F,(wy,). Let
Ef be the kernel of [z"];; so that E, = v E]. Let K} = K(E}) and
K, = v K 1If G, denotes the Galois group of K(E}) over K, then
G(K,/K) = lim G, ,.

PROPOSITION 6. (a) The A-module E; is isomorphic to KfA;

(b) the natural homomorphism G(K./K) — Aut (E/) is an isomorphism.

Proof. We are free to choose f as we please, since, by Prop. 4, different
choices give isomorphic group laws. We take f = X+ X7 Then a e E} if
and only if f*}«) = 0, where f* denotes the composition fo .. ..f n times;
that is /= ["],.

If o € my, then the equation 7X+ X? = « is separable and so solvable
in K, its solution belonging indeed to my,. This shows that M is divisible.
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Hence E, is divisible also. This already implies that E, is a direct sum of
isomorphic to KfA.
m(iil':]fxss]izz‘ls.idgr the sul{:modulc E} of E; consisti'ng (see a}oovg) of those
a € M, such that [n],a = 0. The submodule E} is isomorphic with A/mK.,,
since it is an A-module with g elements. This is enough to show that E, is
i ic to KfA. ‘
!SOE;) rl;l:;foﬁor{)hism o€ G(K,/K) induces an automorghlsr_n of the
A-module E,. But since E, =~ K/A anq E_nc_i,. ('K/A) = A this gives a ?1;.([)
G(K,/K) - Aut (E;) = Ug. This map is n}Jectwe by the definition of K
and it remains to be proved that it is surjective. o
Take n > 1 and define E} and K} as above. We ha've.slm injection
G(K'[K) - Uy/Ug, where Ug = 1+7"A. Let « € Ey be f,lprlmltwe ele'ment;
that is an element of E} such that [7"],« = 0, but [n"~1};o # 0. Finally,
we define ¢ as follows:

¢ =f(")lf(n—1) =f(f("'”)lf("_”-
Now f = X44nX;sof/X = X9 +n. Hence

n—1)
s = ey

which is of degree ¢"—g"~ ! and which is irreducible, since it is an Fisenstein
polynomial. All primitive elements ¢ are roots of qS -Thus the order of
G(K?/K) is at least (g— 1)g"~*. On the other hand, this is actually the order
of the group U,/Uf. Hence G(K"/K) = Ug/Uy. It follows that

G(K,/K) = lim G(K3/K) = lim Ux/U% = U,

and this completes the proof of Prop. 6.
The same proof also yields:

COROLLARY. The element n is a norm from K(z) = K.

Proof. The polynomial ¢ constructed above is monic and ends with =.
Hence N(—o) = =.

3.7 The Reciprocity Map

We shall study the compositum L = KK, of K,, anc'l _K,,, and the symbol
(«, L/K), «e K*. We need to compare two uniformizing ¢lements = and
o = nu, ue Uy . . '

Let K, be the completion of X, (remember: K, is an increasing union
of complete fields but is not itself complete) and denote by A,,,.. the ring of
integers of K,,. By definition R,, is complete; it has an algebraically closid
residue field and = is a uniformizing parameter in R,. We take fe §,

and ge &,
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Lemma 1. Let o e G(K,,/K) be the Frobenius automorphism and extend
it to R, by continuity. Then there exists a power series ¢ e 4 J[X 1] with

¢(X) = sX (mod deg 2) and ¢ a unit, such that
(@) “¢ = ¢ o [l
(b) ¢ o Fy = Fyo(dx9);
€) ¢olaly =[al,o forallacA.

Proof. Since o—1 is surjective on A, and on J,, (cf. “Corps Locaux”,
p. 209), there exists a ¢ € 4, [[X]] such that ¢(X) = £X (mod deg 2) where
¢ is a unit and °¢p = ¢ o [u],. This is proved by successive approximation
and we refer the reader to Lubin-Tate for the details. This particular ¢
does not necessarily give (b) and (c) but can be adjusted to do so; the com-
putations are given in Lubin-Tate (where they appear as (17) and (18) in
Lemma 2 on p. 385). Note that together the above conditions express the
fact that ¢ is an A-module isomorphism of F, into F,.

Compuation of the norm reciprocity map in LIK.

Let L, = K, K,. Since K,, and X, are linearly disjoint over K, the
Galois group G(L./K) is the product of the Galois groups G(K,/K) and
G(K,,/K). For each uniformizing element n € 4 we define a homomorphism
r.: K* - G(L,/K) such that:

(a) ry(n) is 1 on K, and is the Frobenius automorphism ¢ on K,,,;

(b) for ue Uy, r,(u) is equal to [#™], on X, and is 1 on K,,.

We want to prove that the field L, and the homomorphism r, are independent
of m. Let @ = mu be a second uniformizing element.

First, L, = L,. For by Lemma 1, F, and F, are isomorphic over K,,,.
Hence, the fields generated by their division points are the same. So

. . T PN
R K, = R,,.K,. On taking completions we find that K,.K, = K,,.K,.
Inordertodeducethat X,,. K, = K,..K, from this, we require the following:

LeMMA 2. Let E be any algebraic extension (finite or infinite) of a local
field and let e E. Then, if « is separable algebraic over E, a belongs 1o E.

Proof. Let E; be the separable closure of E and let E' be the adherence
of Ein E;,. We can view « as an element of E’. Hence it is enough to show
that E' = E.

Let s e G(E,/E). Since s is continuous and is the identity on E, it is also

the identity on E’. Hence G(E/E) = G(E/E’) and by Galois theory we
have E' = E.

It follows from Lemma 2 that L, = L, and so L, = L is independent
of z,

We turn now to the homomorphism r, : K* — G(L/K). We shall show
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that r (@) = r{w). This will imply that r(w) is independent of = and so
the r’s coincide on the local uniformizers. Since these generate K*, the
result will follow. . ‘

We look first at ry(w). On K,,, r,(w) is the Frobenius automorphism o.
On K, it is 1. On the other hand, r,(w) is ¢ on K, ; so we must look at
r(w) on K. ~ ‘

Now K, = K(E,), where ge ¥, Let ¢ e A[[X ]1 be as in Lemma 1;
# determines an isomorphism of E, onto E,. So if 1€ £, then we can
write 1 = ¢(u) with pe E,. We look at r(o}A and we want-to show that
this is A. As already remarked, r(®)(1) = ry(@)¢(u). Write s = ro{w).
We want to show that *A = 1; that is *¢(u} = ¢(r). Now, r{w) = r,,(n).r‘n(u)
and the effects of r. (%) and r,() are described in (a) and (b) above. Since
¢ has coefficients in K,,,, “¢ = ‘¢ = ¢ o« [4]; by (a) of Lemma 1. But

() = ¢C) = ¢~ "1 ().
Gp(u) = ¢ o [l o [u7*] () = $().

So r, is the identity on K, and it follows that 7, is independent of 7.
Thus r: K* — G(L/K) is the reciprocity map 6 (§ 2.8, Prop. 5).

All assertions of Theorem 3 have now been proved except the equality
L = K which we are now going to prove.

Hence

3.8 The Existence Theorem

Let K be the maximal abelian extension of K; it contains K,. The
Existence Theorem is equivalent to the following assertion (5 2.3, Tt.leore.m
3a). If Iy = G(K™/K,,) is the inertia subgroup of G(K®/K), then the reciprocity
map 0: Uy — Iy is an isomorphism.

Let L be the compositum K,.K,, and let Iy = G(L/K,,) be the inertia
subgroup of G(L/K). Consider the maps

¢ e
Ug—Ig—Ix
where 8 is the reciprocity map and e is the canonical map I, = Iy. Both
# and e are surjections.

On the other hand, the composition e o 8: Ug — I has just been com-
puted. If we identify Iy with Uy it is ut—>u~ t, Hence the cpmposed map
¢ o @ is an isomorphism. It follows that both 0 and e are isomorphisms.

As we have already noted, the first isomorphism is equivalent to the
Existence Theorem. The second means that L = K, since both L and K
contain K.

[Alternative Proof. Let us prove directly that every open subg.roup M
of K*, which is of finite index, is 2 norm subgroup corresponding to a
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finite subextension of L., This will prove both the existence theorem
(§ 2.7, Theorem 3) and the fact that L = K.

Since M is open, there exists » = 1 such that U? < M; since M is of
finite index, there exists m 2 1 such that n™e M; hence M contains the
subgroup ¥, generated by Ug and #n". Now let K,, be the unramified
extension of K of degree m, and consider the subfield L, , = K2. K, of L.
If ue Ug, and ae€ Z, we know that (un”, L, ,/K) is equal to [z~*] on K*
and to the a-th power of the Frobenius element on K,,; hence (ur®, L, ./K)
is trivial if and only if ¥ € UZ and @ = QO mod m, i.e, if and only if un®e V..
This shows that V,,, = NL,,, and, since M contains V,,, M is the norm
group of a subextension of L, ,,, Q.E.D.]

4. Ramification Subgroups and Conductors
4.1 Ramification Groups

Let L/K be a galois extension of local fields with Galois group G(L/K).
We recall briefly the definition of the upper numbering of the ramification
groups. (For details, the reader should consult Chapter I, §9, or “Corps
Locaux”, Chap. IV.)

Let the function iz: G(L{K) = {Z U o} be defined as follows. For
seG(L(K), let x be a generator of Op as an Oy algebra and put
ic(s) = v (s(x)—x). Now define G, for all positive real numbers » by:
se G, if and only if ig(s) 2 u+1. The groups G, are called the ramification
groups of G(L/K) (or of L/K). In order to deal with the quotient groups,
it is necessary to introduce a second enumeration of the ramification groups
called the “upper numbering”, This new numbering is given by &* = G,,
where v = ¢(u) and where the function ¢ is characterized by the properties:

(a) ¢(0} = 0;

(b) ¢ is continuous;

(c) ¢ is piecewise linear;

(d) ¢'(u) = 1/(Gy: G,) when u is not an integer.

The G"s so defined are compatible with passage to the quotient: (G/H)"
is the image of G* in G/H (*Herbrand’s theorem”). This allows one to
define the G*s even for infinite extensions.

On the other hand, we have a filtration on Uy defined by Uf = 1+m¥.
We extend this filtration to real exponents by Uf = UZ if n—1 <v < n.
(It should be noted that » in this context is a real number and is not to be
confused with the valuation map!)

THEOREM 1. Let L{K be an abelian extension with Galois group G. Then the
local reciprocity map 0: K* — G maps U} onto G' for all v = 0.

Proof. (1) Verification for the extensions K of §3.6. .

Let we UL with i < n and u¢ Ur™!. Let s = 6(u) e G(K"/K). We have
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i(s) = vga(sA—A), where 2 is a uniformizing element. We choose a primitive
root & for A; that is, an « satisfying [n"],a = 0 but (="~ '], # 0. Observe
that s,() = (v 1],« and u™' = 1+a'p (see § 3.3, Theorem 3), where v is
a unit. These imply that

s,00 = [147'v] o = F (o, [#'0] po0).
If we write B = [w'v];, then B is a primitive (n—i)th root (that is,
fn"=i1,B = 0, [n"" 171, # 0), and we have

Ff(O!, [n"v]fa) = d+ﬂ+ Z '}’Uaiﬁj
i1, j>1

for some y,; € Og. Accordingly,

s —oa =B+ 7,08,
”K','.(su(“)—“) = vga{(B)

Now o is a uniformizing element in K7 whilst 8 is a uniformizing element

and

g-1 g1 g1
u

Figure 1.

in K%' and K"K~} is totally ramified. Its degree is ¢'. So we have deter-
mined the i function of 6(u); namely, if ue U but u ¢ U+, then i(0(w)) = 4.
This says that if ¢ '—1 < u < ¢'—1 then the ramification group G, is
6(UD.

We turn now to the upper numbering of the G,’s. That is, we define a
function ¢ = Py x, corresponding to the extension Kz, which satisfies
the conditions (a) to (d) above. Namely,
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Y dt
o) = Py pyx(v) fo GGy
Then G* = G, with v = ¢(u). The graph of ¢(u) is shown in Figure 1.
g~ 1—1 < u<¢—1,then'(w) = 1/(¢'—¢' ) and (Ux: U)) =¢'—¢"".
Soifi—1 < v < i, then G’ = 8(Ug) forv < n.

The general case
(2) Verification in the general case.

Having proved Theorem 1 for K7 it follows for K, = U K7 by taking
projective limits. Hence also for K,.K,,, since both extensions have the
same intertia subgroup. Since K,.K,, is the maximal abelian extension, the
result is true in general.

This concludes the proof of Theorem 1.

COROLLARY. The jumps in the filtration {G°} of G occur only for integral
values of v.

Proof. This follows from Theorem 1, since it is trivial for filtrations of
Uy and Theorem 1 transforms one into the other.

[This result is in fact true for any field which is complete with respect
to a discrete valuation and which has perfect residue field (theorem of
Hasse-Arf), cf. “Corps Locaux”, Chap. IV, V]

4.2 Abelian Conductors

Let L/K be a finite extension and let § : K* — G(L/K) be the corresponding
reciprocity map. There is a smallest number 7 such that 8(Ug) = 0. This
number # is called the conductor of the extension L{K and is denoted by
SLK).

ProposSITION 1. Let ¢ be the largest integer such that the ramification
group G, is not trivial. Then f{L[K) = ¢px(c)+1.

Proof. This is a trivial consequence of Theorem 1 and the fact that the
upper numbering is obtained by applying ¢.

Now let L/K be an arbitrary galois extension. Let x: G — C* be a one-
dimensional character and let L, be the subfield of L corresponding to
Ker (x). The field L, is a cyclic extension of K and f(L,/K) is called the
conductor of y and is denoted by f(x).

PrOPOSITION 2. Let {G;} be the ramification subgroups of G = G(L/K)
and write g; = Card (G,). Then

w=3 %1~ 6)

where 3(G) = gr ' D, x(s) is the “mean value” of ¥ on G
Gy
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Proof. We have y(G) = 1if y is trivial on G; (that is, equal to I every-
where) and x(G,) = 0 if y is non-trivial on G;. Hence (the reader is referred
to “Corps Locaux”, Chaps. IV and VI for the details)

i gj(l_X(Gi)) =.§ e Prile)+1,
o i=0go

i=0
where ¢, is the largest number such that the restriction xG,, # 1. Now
J@) = f(L/K) is equal to $r,x(c)+1, where ¢ is defined as in Prop. 1 for
the extension L,/K. Since ¢, is transitive, it suffices to show that
¢ = ¢y (c,) and this is a consequence of Herbrand’s theorem {§ 4.1).

4.3 Artin’s Conductors

Let L/K be a finite galois extension with Galois group G = G(L/K).
Let x be a character of G (that is, an integral combination of irreducible
characters). Artin defined the conductor of y as the number

=3 L) — (6.
i=0do
If x is irreducible of degree 1, this f(x) coincides with the previous f(x).
We define Artin’s character ag as follows. For se G, set

agls) = —f.ig(s) ifss£1

ag{l)=f ;1 ig(s).

Here f is the residue degree [/: k] (not to be confused with the conductor N,
and ig is the function defined above.

PROPOSITION 3. Let g = Card (G). Then

00 = (agr ) = ; 3 19acls).

Proof. The proof depends on summation on successive differences
G—Gyyy and is left as an exercise. (See “Corps Locaux”, Chap. VI, §2.)

ProPosiTION 4. (a) Let K = L' < L be a tower of galois extensions, let
' be a character of G(L'/K) and let y be the corresponding character of G(L/K).
Then f(x) = f(x').

(b) Let K =« K’ < L and let \y be a character of G(LIK') and let * be
the corresponding induced character of G(L/K). Then

S = (D). vx(dgep) +fxx-JOD),
where fy.x is the residue degree of K'|K and b kik I8 the discriminant of K'|K.
Proof. The proof depends on properties of the Iz function and on the

relation between the different and the discriminant, and can be found in
“Corps Locaux”, Chap, VI.

.
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TuroreM 2 (Artin). Let yx be the character of a representation of G. Then
S is a positive integer.

Proof. Let x be the character of the rational representation M of G.
1t follows from representation theory that

¥(1) = dim M
and
¥(G) = dim MY,
Thus in

z% (D) — (G,

each term is positive (= 0) and so £(x) = 0.

It remains to be proved that f(y} is an integer. According to a theorem
of Brauer, x can be written y = Y, m, ¥ where m;e Z and ¢} is induced
by a character ; of degree 1 of a subgroup H; of G.

Hence, since f(yf} = ¥ (Dox@xyp)+ S SW), fOUF) is an integer
provided that f({;) is. But since y, has degree 1, f(i;,) may be interpreted
as an abelian conductor and so is obviously an integer. This proves
Theorem 2,

4.4 Global Conductors

Let L/K be a finite galois extension of mumber fields and let G = G(L/K)
be the Galois group. If x is a character of G, then we define an ideal f(y)
of K, the conductor of y, as follows. Let p be a prime ideal in X and choose
a prime ideal P in L which divides p. Let G, = G(Lqy/K,) be the corre-
sponding decomposition subgroup. Let f(x, p) be the Artin conductor of
the restriction of x to G, as defined above. We have f(x, p) = 0 when p is
unramified. The ideal

T(X) = 1;[ pf(x, ?)

is called the (global) conductor of .
In this notation, Prop. 4 gives:

PROPOSITION 5. Let K'/K be a sub-extension of LIK. Let {y be a character
of H = G(L{K’) and let * be the induced character of G(L{K). Then

fGr™) = DRIk Nui))s
where by g is the discriminant of K'{K.
We apply Prop. 5 to the case ¥ = 1 and we denote the induced character

Y* by sgu (it corresponds to the permutation representation of G/H).
Since () = (1) we obtain:

CoRroLLARY. We have {(sg/u, LIK) = Dy
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In the case H = 1 we have sgz = 7', the character of the regular repre-
sentation of G, and the corollary reads

bL]K= 1_[ f(X)x“),

where y runs through the set of irreducible characters of G. This is the
“Fiihrerdiskriminantenproduktformel” of Artin and Hasse, which was
first proved by analytical methods (L functions). In the abelian case it
reads:

bLlK= H (0.
x:G—=C*

In the quadratic case it reduces to the fact that the discriminant is equal
to the conductor.

4.5 Artin’s Representation
We return to the local case.

Tueorem 3. Let L/K be a finite galois extension of local fields with Galois
group G. Let ag be the Artin character of G defined above (cf. § 4.3). Then ag
is the character of a complex linear representation of G called “the” Artin
representation.

Proof. The character a; takes the same values on conjugate elements
and so is a class function. It follows that @ is a combination 3 MY, With
complex coefficients m,, of the irreducible characters y. Since

m, = (aG! X) =f(X)’
we know (Prop. 3 and Theorem 2) that m, is a positive integer. Hence the
result.

Now let ¥, be an irreducible representation corresponding to y. We can
define Artin’s representation 4; by:

AG = Zf (X) . Vx)
where the summation is over all irreducible characters .
Remark. This construction of A is rather artificial. Weil has posed the
problem of finding a *“natural” 4.

THEOREM 4. Let I be a prime number not equal to the residue characteristic.
Then the Artin representation can be realized over Q.

Proof. See J-P. Serre, Annals of Mathematics, 72 (1960), 406-420, or
““Introduction a la théorie de Brauer” Séminaire LH.E.S., 1965/66.

Examples exist where the Artin representation cannot be realized over
Q, R or Q,, where p is the residue characteristic. This suggests that there
is no trivial definition of the Artin representation.

Assume now that L/K is totally ramified. Let ug = rg—1; we have
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ug(s) =—1if s # 1 and uz(s) = Card (G)~1if s = 1. Now a; = ug+bg
where b; is a character of some representation.

Note: ag = ug if and only if L/K is tamely ramified. So b; is a measure
of how wild the ramification is.

THEOREM 3. Let ! be a prime number not equal to the residue characteristic.
Then there exists a finitely generated, projective Z,[G) module By, with
character bg and this module is unique up to isomorphism. ’

Proof. This follows from a theorem of Swan, “Topology”, 2 (1963),
Theorem 5, combined with Theorem 4 above and the remark that bg(s) = 0
when the order of s is divisible by /. [See also the I.H.E.S. seminar quoted
above.]

For applications of Theorem 5 to the construction of invariants of finite
G-modules, see M. Raynaud, “Sém. Bourbaki”, 1964/65, exposé 286.

These invariants play an important role in the functional equation of the
zeta functions of curves.
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Throughout these lectures, K will be a global field, as has been defined in
Chapter 11, § 12. We treat the number field case completely, but in the function
field case there is one big gap in our proofs, in that the second inequality and the
accompanying key lemma for the existence theorem are proved only for
extensions of degree prime to the characteristic. (The reader interested in
filling the gap can consult the Artin-Tate notes,} pp. 29-38.)

As in Local Class Field theory, there are several aspects: (1) The COhOI‘I:lO-
logy theory of Galois extensions of K. (2) The determination of the abelian
extensions of K, (3) L-series analysis.

We will discuss the first two, leaving the third to Heilbronn (Chapter VIII),
except for a few remarks. .

Sections 1-6 constitute a statement and discussion of the reciprocity law
and the main theorems on abelian extensions, with no mention of cohorpo-
logy. We hope that this preliminary discussion will serve both as orientation
and bait for the reader. In sections 7-12 we give the main proofs, based on
the determination of the Galois cohomology of idéle classes and the Brauer
group of K. ‘

This chapter is strictly limited to the central theorems. In the exercises at
the end of the book the reader will find a few concrete examples and further

+ Harvard, Dept. of Mathematics, 1961.
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results. There are some references to recent literature scattered in the text
but we have made no attempt to give a systematic bibliography. A list of
symbols used in this chapter is given at the end.

1. Action of the Galois Group on Primes and Completions
Let L be a finite Galois extension field of K with Galois group G = G(L/K).

1.1, First of all we have a few lines on our notation and language. IfaeL
and ¢ € G, then the action of ¢ on a will be denoted by o4 or a°, according
to the situation. If Te G we use the convention ¢(1a) = (e1)a and so
(at)c - a(d‘()'

A prime is an equivalence class of valuations, or a normalized valuation,
of K; we usually denote a prime by the letter » or w. A prime may be either
archimedean or discrete; if v is discrete we write O, for its valuation ring and
P, for the maximal ideal of O,. We reserve the symbol P for prime ideals.

Let w be a prime of L, then with the definition |a|,,, = |o™1a],, it follows
that ow is another prime of L and o(zw) = (et)w. If D, is the valuation
ring of w, then ¢0,, = O,,,. A Cauchy sequence for i, acted on by o, gives
a Cauchy sequence for ow and conversely a Cauchy sequence for ow, acted
on by ¢!, gives a Cauchy sequence for w; so ¢ induces by continuity an
isomorphism a,,: L, 5 L,, of the completions of L with respect to the
primes w and ow respectively. If w is over the prime » of K so is ow and
this map is a K-isomorphism, Clearly, o,,, 0 1,, = (67),,.

The decomposition group G,, of w is the subgroup

G, = {o e Glow=w}
of . Note that

4)] G = {0 € Glotw = tw} =1G,t7",

thus the decomposition group of w is determined up to conjugacy by the
prime v. By what we have said ¢ is a K,-automorphism of L,, if 6 € G,,
and so we have an injection i of G,, into G(L,,/K).
1.2. ProeosiTioN. (i) L, /K, is Galois and the injection i: G, — G(L, [K,)
is an isomorphism.

(i) If w and w' are two primes of L over the prime v of K, there exists a
6 € G such that ow = w'.

Proof. Letting [X] denote the cardinality of a set X, we have
[G.] < 6L JK,) <[L,:K,],

and these inequalities are equalities if and only if (i) is true. Letr = (G: G,)
and let (o), 1 < i< r, be a system of representatives for the cosets ¢,G,,

of G, in G. Put w, = o,w for 1 < i< r. These are distinct primes of L
lymg over v; let w; for r+1 < i < s be the remaining such, if any. Then
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(6] = r[G.] = 3,161 < X [Lu 1 Ki] < 3 [ K] = [L:K] = [G)

o we have equality throughout. Hence r =5, which implies (i) and
G,] = [L,: K,}, which implies (i). [The fact that the sum O‘f‘ the local
legrees is equal to the global degree follows from the bijectivity of the
nap L ® K, - f[ L,, on taking dimensions over K,; see Chapter II § 10.
The surjjéctivity,'wlfjich is all we have used, is an easy consequence of the
weak approximation theorem.] . o

Write My for the set of primes of K. Then, since ¢y — My 18 s_ugectwe
(every prime v of K can be extended to a prime w of L), Proposition 1.2
amounts to saying that My ~ M, /G, ie. the primes of K are in 1-1 corre-
spondence with the orbits under G of the'primes of L, and for each prime w
of L, its stabilizer G,, is isomorphic to the Galois group of the corresponding
local field extension L,/K,.

2. Frobenius Automorphisms
2.1. Suppose that w is a discrete, unramified prime of L over ?he prime v
of K. (This is true of *“almost all” primes v, w, i.e. for all but finitely many.)
Then

6y G = G, = G(L,JK,) = G(k(w)/k(v)),
where k() (resp. k(w)) denotes the residue class field of K (resp.L) wit‘h
respect to v {resp. w). Since these residue class fields are finite the Galois
group Gk(w)/k(z)) is cyclic with a canonical generator,

FixesxM,
where Nv = [k(v)] is the “absolute norm”. Hence we see from (1) that there
is a unique element g, € G,, which is characterized by the property
6,eG, and a’=a" (mod B,)

for all ae ©,,. This automorphism o, is called the Frobenius automorghis{ri
associated with the prime w. An immediate consequence of this definition is

2.2, PROPOSITION
G, =110,
Thus the Frobenius automorphism is determined by v up fo conjugacy and
we define
Fp(v) = (conjugacy class of ¢, w over v) = (the set of a,’s for w over v).

If S is a finite set of primes of K containing the archimedean primes .amd
the primes ramified in the extension L/K, then Fyx is a map of My — S into
the conjugacy classes of G(L/K).
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2.3. PROPOSITION. Let o & Fy;(v) have order f, so that it generates the sub-
group <o> = {l,0,...,0/71}. Then in L, v splits into [G: <g>] factors,
each of degree = [k{w): k(®)). In particular, v splits completely if and
only If Fy(0) = 1, the identity element of G.

2.4. Remarks. This proposition tells us that knowledge of Fy; gives the
decomposition law for unramified primes, and more, since it chooses a
definite generator for the decomposition group.

Since Fy is a function to classes of G, to know Fyy it is enough to know
5(Fy () for all characters x of G. Accordingly, Artin was led to define
his non-abelian I-series in terms of ¥(F), by means of which one can prove
the fundamental Tchebotarev (= Cebotarev) Density Theorem: Let € be
a conjugacy class in G; the primes v with F(v) = € have density [€]/[G}.
In particular, for each conjugacy class %, there exists an infinite number of
primes v of K such that Fy(v) = €.

In the cyclotomic case Tchebotarev’s theorem is equivalent to the Dirichlet
theorem on primes in arithmetic progressions (see 3.4 below).

From Tchebotarev’s theorem it follows almost trivially that a finite Galois
extension L of K is uniquely determined (up to isomorphism) by the set
Spl (L/K) of primes of K which split completely in L {cf. exercise 6).
Unfortunately one knows no way to characterize directly, in terms of the
arithmetic of K itself, those sets T of primes of K which are of the form
Spl (LK), except in case L is abelian. The decomposition law for abelian
extensions, together with the complete classification of such extensions, is
given by the main theorem below (§ 5); but no such theorem is known for
non-abelian extensions, i.e. “non-abelian class field theory” does not exist.
From the abelian theory one can derive decomposition laws of sorts for
some soluble extensions (cf. Exercise 2) but this is not what is sought.
Recently Shimura (“A reciprocity law in non-solvable extensions™, Crelle’s
Journal, 221 {1966), 209-220) has given an explicit decomposition law for
certain non-soluble extensions obtained by adjoining to Q the points of order /
on a certain elliptic curve. The idea is to relate the behaviour of primes in
those extensions to the zeta-function of the curve, and to identify that
zeta-function with a modular function, the coefficient of whose g-expansion
can be calculated explicitly, The degree of generality of such examples, and
whether they will point the way to a general theory, is unclear; but at any
rate they are there to test hypotheses against.

3. Artin’s Reciprocity Law

3.1. First of all we give some notation. § will usually denote a finite set
of primes of K including all the archimedean primes. If we are considering a
particular finite extension LK, then § will also include the primes of K
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-amified in L. We will denote by I° the free abelian group on the elements of
My — S (a subgroup of the group of ideals, see Chapter II § 17).

Assume now that L/K is a finite abelian extension. Then the conjugacy
classes of G = G(L/K) are single elements and so Fy g is a map from MWe—.9
into G. By linearity we can extend this to a homomorphism (to be denoted
by Fyx also) of I° into G, putting

Fyix (”g,snu ”) = vl;[SF Lix(®)"s

where the #, are integers and n, = 0 except for a finite number of the v.

The first proposition of this section concerns the change in the map
Fy,x when the fields are changed. Suppose that L'/K’ and L/K are abelian
field extensions with Galois group G’ and G respectively, such that L' > L
and K’ o K, and let & be the natural map G’ — G (every automorphism
of L'/K’ induces one of L/K). Let § denote a finite set of primes of X in-
cluding the archimedean ones and those primes ramified in L’ and let S’
be the set of primes of X’ above those in S. Then

3.2. PropoOSITION. The diagram
Fryx:

— (7'

o

e !

l Fur 1

S——¢C
commutes, where N denotes “norm”.
Proof. By linearity, it is clear that it is enough to check that
6F L',rx'(v') =F LIK(N K'IK v')
for an arbitrary prime v’ of K’ such that v’ ¢ §'. Let Ngxv' = fo, where v
is the prime of K below v'; thus f = [k(2'): k(»)). Let ¢ = F, L,,K.(.v') and
¢ = Fyx(v). We must show 8(¢") = ¢/. Now o and ¢’ are determined by
their effect on the residue fields. Let w’ be a prime of L' above v’ and let

w be the prime of L below w'. For x e k(w) < k(w") we have
xo" = le!' = x(ND)-\' = xa-f’
as required.
If a € K* (i.e. a is a non-zero element of X)), then we write

(@) = ). n,v,
ves
where n, = v(d) for all v ¢ S; thus (a)° is an element of .
We can now state the reciprocity law in its crudest form

3.3. RECIPROCITY LAW (Crude form). If L/K is a finite abelian extension,
and S is the set of primes of K consisting of the archimedean ones and those
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ramified in L, then there exisis ¢ > 0 such that if ae K* and |[a—1|, < ¢ for
all ve S, then F{(a)®) = 1.
In words, if @ € K* is sufficiently near to 1 at all primes in a large enough
set S, then F((a)®) = [ F(p)"®@ = 1.
v¢S

In the number field case the subgroup (K*)" is open in K* for all n > 0,
and we claim that the condition [a—1|, < & can be replaced by ae(K})"
for ve S, where n = [L: K]. Indeed if the latter is satisfied then, by the
weak approximation theorem, there exists b € K* such that [ab™"—1l, < ¢
for all v € 8, and then

F((a)’) = F((b"ab™)%) = F((b*)' F((ab™")") = 1.

Thus, in the case of number fields, although the set .S depends on L, the
neighbourhoods of 1 at the primes of S depend only on the degree # of L
over K. In particular, for archimedean primes there is no condition needed
unless v is real and » is even, in which case the condition @ > 0 in X, is
sufficient,

Using the approximation theorem in L instead of K, one can replace the
condition “a is a local [L: K]-th power in §” by “a is a local norm from L
to K in §”, but for that we shall use the technique of ideles (see 4.4 and 6.4
below). The shift in emphasis from #-th powers to norms was decisive,
and is due to Hilbert.

3.4. Example. The reciprocity law for cyclotomic extensions. This reciprocity
law may be verified directly in the cyclotomic case k = Q, L = Q({), where
{ is a primitive m-th root of unity. This particular result will be used later
in one of our proofs of the general result (see § 10, below) so we give some
details. In the rational case it is conventional to denote primes by p and the
associated valuations by v,. The set S will consist of the archimedean prime
and those primes p which divide m (see Chapter III). For p¢ S and w
above p, the powers of { have distinct images in the residue class field k(w).
so we have

PRrROPOSITION.

F ) =" forallp¢sS.
From this we deduce

CoROLLARY. IfaeZ, a > 0and (a,m) = 1, then F((@*){ = {°.

Consequently, if @ is a positive rational number with |a—1|, < |m], for
all p e S, then a is a p-adic integer for all p dividing m, and we can write
a = bfc with (b, m) = (¢, m) = 1, and b = ¢ (mod m); hence {* = {° and
so F(B)) = {® = {°* = F((c)®)¢. By linearity this gives F((a)*}{ = { so
that F((a)®) = 1.
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For another example of an explicit description of Fy, and for the con-
ection between Artin’s general reciprocity law and the classical quadratic
sciprocity law, see exercise 1.

5. Remark. The cyclotomic case was easy because one can use the roots
f unity to “keep book™ on the effect of the F(v)'s for variable v. A sirnilar
irect proof works for abelian extensions of complex quadratic fields using
livision points and modular invariants of elliptic curves with complex
nultiplication, instead of roots of unity. In the general case no such proof
s known (cf. the 12th problem of Hilbert), although Shimura and Taniyama
nd Weil have made a great contribution, using abelian varieties instead
of elliptic curves. (See Shimura-Taniyama, ‘“‘Complex Maultiplication of
Abelian Varieties and its Applications to Number Theory”, Publ. Math.
Soc. Japan, No. 6, 1961, and more recently Shimura, “On the Field of
Definition for a Field of Automorphic Functions: 11, Annals of Math, 81
'1965), 124-165.) The proof of the reciprocity law in the general case is very
indirect, and can fairly be described as showing that the law holds “because
it could not be otherwise”.

3.6. Remark. In the function field case, as Lang has shown (“Sur les séries
L d’une variété algébrique”, Bull. Soc. Math. Fr. 84 (1956), 385-407), the
reciprocity law relates to a geometric theorem about the field K = k(C)of a
curve C. Serre has carried out in detail the program initiated by Lang. In his
book, “Groupes algébriques et corps de classes”, Hermann, Paris (1959), an
analogue of the reciprocity law is described as follows. Let f: C—+ Gbea
rational map of a non-singular curve C into a commutative algebraic group
G: let S be the finite set of points of C where f is not regular. Then finduces
a homomorphism of the group of divisors IS into G and

TueoreM. If ¢ € K takes the value 1 to a high order at each point of S,
then f{(¢) = 1.

This theorem is due to Rosenlicht, and independently, but later, Serre.
It was Serre and Lang who applied it to class field theory.

3.7. Definition. Let K be a global field, § be a finite set of primes of K
including all the archimedean ones and G a commutative topological group.
A homomorphism ¢ : I = G is said to be admissible if for each neighbour-
hood N of the identity element 1 of G there exists & > 0 such that ¢((@)°) e N
whenever a e K* and |a—1], < eforallveS.

If G is a discrete group, we simply take N to be (1). Thus

3.8. Refornmulation of the Reciprocity law: Fyx is admissible.

In this context the finite group G = G(L/K) is discrete. If G is the circle
group, then ¢ is admissible if and only if it is a Grossencharakter (f it
maps into a finite subgroup, itisa Dirichlet character). Dirichlet and Hecke
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formed their L-series with such characters; Artin was originally forced to
produce his reciprocity law in order to show that in the abelian case his
L-series defined in terms of characters of the Galois group were really Weber
I-series, in other words that x(F(v)) was admissible for each linear character
x of the abelian Galois group.

4. Chevalley’s Interpretation by Idéles

The set of elements of the idéle group Ji (see Chapter II § 16) which have
the value 1 at all the o-th components, v € S, is denoted by J§. If x e Jy it
has a non-unit component at only a finite number of v-components; if the
(additive) valuation of the v-th component x, of x is n, € Z we write

x)¥ =Yy npel
vE§S

4.1. ProposiTION. Let K and S be as before, G be a complete commutative
topological group and ¢ an admissible homomorphism of I S into G.
Then there exists a unique homomorphism § of Jx — G such that

(i) V is continuous;
(i) ¢(K*) = 1;
(i) Y(x) = §((x)°) for all x eJs.

Conversely, if ¥ is a continuous homomorphism of Jg — G such that
Y(K*) = 1, then {r comes from some admissible pair S, ¢ as defined above,
provided there exists a neighbourhood of 1 in G in which (1) is the only sub-
group.

Remark. It is clear that if such a \ exists then it induces a continuous
homomorphism of the idéle class group Cy = J/K* into G. This induced
homomorphism will also be denoted by . Furthermore, if such a  exists
for a given ¢ and S, then by the unicity statement, it is unchanged if S is
enlarged to a bigger set S’ and ¢ replaced by its restriction ¢’ to IS <P
Similarly, two ¢’s on IS which coincide on I¥" for some finite $* > S are
actually equal on I° (cf. Exercise 7).

For applications G can be thought of as a discrete group or the circle
group.

Proof. Suppose we have an admissible map ¢ : I* - G. Ifsuch a ¢ were
to exist, for any ¢ € K* and x e Jx we would have

Y(x) = Y(ax) = Y((ax) W ((ax)),

where (ax), is the id2le with the same v-component as ax for all v€ § and
value 1 elsewhere and (ax), is the idéle with the same v-component as ax
for all v ¢ S and whose v-component is 1 at all v e S (thus (ax), eJ§). By
the (weak) approximation theorem (see Chapter I, §6) we can find a sequence
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‘a,} of elements a, € K*, such that @, — x™ 1, asn —» oo, atallve S. Then
¥(x) = lim f{{a,)s)- $((a. %)) =,}11‘:‘1> P, x)°)-

Hence given ¢ we define a function § by

® §) = lim (0,9

As n, m — oo we have a.fa, = 1 at all primes v € §, and consequently

m

e (@)1

in G, because ¢ is admissible. Thus the limit exists, since G is .complete,
and the limit is independent of the sequence {a,}, because it exists for all
such sequences. Moreover Y is continuous._ If the gompon?nt_s of x are
units at primes v ¢ S, then we have Y(x) = lim q‘)((a_,,) }; and if in addltan
the components of x are sufficiently close to- 1at prlmess ve S, then so will
be those of a, for large n, and by admissibility, q’a-((a,,) ) w:l! be close to 1
in G. The last two conditions (ii) and (iii) are trivially verified by taking
a,=x"'and1foralln respectively. ‘

Now suppose we are given a continuous homomorphlsm_ uﬁ.: Jy—> G suc];
that $(K*) = 1. We will find a set S so that (a) the restriction of ¥ to J_K
comes from a function on I° and (b) if we call this function ¢, then ¢ is

issible. .
ad;l;isgy finite set S of primes of Klet US be the set of id&les in Jy for \yhlch
the p-component is 1 at all v § and a unit of K, forvé S By taking S
arbitrarily large we can make US an arbitrarily small nexghbourhoc?d of
the identity of Jx. If Nisa neighbourhood of (1) we can c.:hoose S sufficiently
large so that Y(U Sy < N, since | is continuous. Then taking N small inough,
we see that Y(US) = (1) for some set S by the “no-smailll-sub.group hypo-
thesis. We choose such a set S. Now JE/US is canonically isomorphic to
I5 and so i, when restricted to J3, induces a continuous homomorphism ¢
of IS into G. . '

It remains to verify that ¢ is admissible; in words, given a neighbourhood
N, then ¥((@)°) € N whenever 4 € K* is near enough tc? 1 at alé ve S. But
in this case (2)° is near to @ in Jg and so by continuity ¥((¢)") is near to
(), which is 1 since a € K*,

4. COROLLARY. The reciprocity law holds for a finite abelian extension L
of K if and only if there exists a continuous homomorphism W of Jg = G(LIK)
such that

(i) ¥ is continuous.

i WK = L. .
(Eii; :ZEx) = Fy x(x)°) for all x e JS, where S consists of the archimedean
primes of K and those ramified in L.
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Such a map ¥ = Y x whose existence we have just postulated is called
the Artin map associated with the extension L/K. It has been defined as a
map Jx — G(L/K); but since it acts trivially on K* it may be viewed as a
map of the idéle class group Cy = Jx/K* into G(L/K).

The reciprocity law for finite abelian extensions will be proved later
(see § 10). In the meantime certain propositions will be proved and remarks
made which depend on its validity. Suppose that L'/K’ and L/K are abelian
field extensions with Galois groups G' and G respectively and that L” o L,

K’ > K. Let 6 be the natural map G' —» G. Then in terms of idéles and
Artin maps Proposition 3.1 becomes

4.3. ProposITION. If the reciprocity law holds for L{K and L'IK’, then

L2295
JKI — G'
qux‘ |0
VL K l
Jy

is a commutative diagram.

Proof. Let S be a large finite set of primes of K, and S” the set of primes
of K' above 8. We have then a diagram

s
/JK‘\
LK

7 G
\L bk

@ N i ’

J’-S{' Yo G

—y
o

The non-rectangular parallelograms are commutative by the compatibility
of ideal and idéle norms, and by Proposition 3.2. The triangles are commuta-
tive by (4.2)(iii). Thus the rectangle is commutative, i.e. the restrictions of
Wrx o Ngyg and 8 o Y g to JE coincide. But those two homomorphisms
take the value 1 on principal ideles by 4.2 (ii), so they coincide on (X Ig,
which is a dense subset of J;. by the weak approximation theorem (Chapter
II, § 6). Since the two homomorphisms are continuous, they coincide on
all of Jy- which is what we wished to prove.

For proving Proposition 6.2 below, which is in turn needed for the first
of our two proofs of the reciprocity law in §10.4, we need the following

VARIANT. Suppose L{K satisfies the reciprocity law, and K <= M < L. Then
'I’fo(NM/xJM) < G(L/M).
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Consider diagram (2) with L' = L, K' = M, but with the upper hori-
zontal arrow Wy x» = Y removed. It shows that

‘!’LIK(N M,rxJﬂ) < G' = G(LIM).
Consequently the same is true with J3; replaced by M *J%,, and since that
set is dense in Jy, we are done.

4.4. CoroLLARY. If the reciprocity law holds for LiK, then

‘I’L,'R(N L[KJ L) =1
1t follows that ¥ gx(K*NyxJy) = 1; the next theorem states {among other
things) that K* Ny J), is the kernel of ¥y k.

5. Statement of the Main Theorems on Abelian Extensions
5.1. MAIN THEOREM ON ABELIAN ExTEnsions (Takagi-Artin).

(A) Every abelian extension LIK satisfies the reciprocity law (i.e. there is
an Artin map x)-

(B) The Artin map Vi is surjective with kernel K*Nyp(Jp) and hence
induces an isomorphism of Cx/Nyx(Cy) on to G(L/K).

(C) If M o L > K are abelian extensions, then the diagram

YK
Cy/NpgCoy — G(M|K)

f] Io

|

YL/K
Cy/NpyxCi — G(L{K)

commutes (where 8 is the usual map and j is the natural surjective map which
exists because Nypp Cu < NpygCi)-

(D) (Existence Theorem.) For every open subgroup N of finite index in
Cy there exists a unique abelian extension LIK (in a fixed algebraic closure
of K) such that Ny;x Cp = N.

The subgroups N of (D) are called Norm groups, and the abelian extension
L such that Ny xCp = N is called the class field belonging to N. In the
number field case every open subgroup of Cy is of finite index in Cp.

52 A certain amount of this theorem may be deduced readily from the
rest. First, given (A) and (B), then (C) is a special case of 4.3 put K'=K
and L' = M).

5.3. Secondly, the unigueness, though not the existence, of the correspon-
dence given in (D) follows from the rest. Given the existence, let L and L' be
two finite abelian extensions of K in a fixed algebraic closure of K and let M
be the compositum of L and L’ (which is again a finite abelian extension of K).
Now consider the commutative diagram above, under (C). Since the horizon-
tal arrows are isomorphisms (by (B)) we see that Ker 6 = G(M/L) is the iso-
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morphic image, under Wy, of the group NpxCp/NyyxCy. Thus L, as
the fixed field of the group Ker 8, is uniquely determined as a subfield of M,
by NyxCr. Applying the same reasoning with L replaced by L', we see that
if NL'IK' CLa = NL}'KCL! thenL = L'.
For some special examples of class fields (Hilbert class fields) see exercise 3.
For the functorial properties of the Artin map when the ground field K
is changed, see 11.5 below.

5.4. The commutative diagram of (C) allows us to pass to the inverse limit
(see Chapter III, §1), as L runs over all finite abelian extensions of K. We
obtain a homomorphism

Yx: Cg = lim G(L/K) = G(K*™[K),
z

where K?® is the maximal abelian extension of X; and then, by (D),
G(K**/K) =~ lim (Cg/N),
N

where the limit is taken over all open subgroups N of finite index in Cg. Thus
we know the Galois groups of all abelian extensions of K from a knowledge
of the idéle class group of K. The nature of the homomorphism
Wg: Cx = G(K**/K) is somewhat different in the function field and number
field cases. The facts, which are not hard to derive from the main theorem,
but whose proofs we omit, are as follows:

5.5. Function Field Case. Here the map g is injective and its image is the
dense subgroup of G(K*®/K) consisting of those automorphisms whose
restriction to the algebraic closure k& of the field of constants k is simply an
integer power of the Frobenius automorphism Fy (see Artin-Tate notes,
p. 76).

5.6. Number Theory Case. Here g is surjective and its kernel is the con-
nected component Dy of Cx. So we have obtained a canonical isomorphism
Cyx/Dy ~ G(K*®(K).

However, as Weil has stressed (“Sur la théorie du corps de classes”, J.
Math. Soc. Japan, 3, 1951), we really want a Galois-theoretic interpretation
of the whole of Cy. The connected component Dy can be very complicated
(see Artin-Tate, p. 82).

5.7. Example. Cyclotomic Fields. Consider Q™/Q, the maximal cyclotomic
extension of Q. Let Z = lim Z/nZ; by the Chinese remainder theorem this
«—

n
is isomorphic to [] Z,, where Z, is the ring of p-adic integers. Z acts on

b4
any abelian torsion group (for Z/nZ operates on any abelian group whose
exponent divides n) and the invertible elements of Z are those in H U,
P

where U, is the set of p-adic units in Z,,.
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Now consider the torsion group u consisting of all roots of unity. If
{ e p we can define {* for all ue ] U,; u induces an automorphism on p.

P
The idéle group Jy is isomorphic to the direct product Q* x Rix]1U,. (In

P
fact, if x = {X, X3, X3,...} €Jg We have x = a.{t, uz, u,,...}, where

a = (signx,) [] p* e Q%,
P

and where ¢ > 0, and u, € U, for p = 2, 3,...; moreover, this decomposition
is unique, because 1 is the only positive ratlonal number which is a p-adic
unit for all primes p.) Hence Cy, is canonically isomorphic to R¥ x H U,

so there is a map of Cg onto J| U,, which is the Galois group of the max1ma1
P

cyclotomic extension,

What in fact happens is the following. If x € Cp and x +— u by this map,
then {¥& = ¢! (this result is an easy exercise, starting from 3.4, and is
independent of parts (B) and (D) of the main theorem). Thus the kernel of ¥
is R¥, which is the connected component Dy of Cy. We have now used
up the whole of Cqy/Dyg; so if we grant part (B) of the main theorem, we see
that every abelian extension of Q must already have appeared as a subfield
of Q™°, and that part (D) holds for abelian extensions of Q.

The connected component R} of Cgq is uninteresting; similarly, Cg has
an uninteresting connected component when K is complex quadratic,
essentially because there is only one archimedean prime. It may well be
that it is the connected component that prevents a simple proof of the
reciprocity law in the general case.

6. Relation Between Global and Local Artin Maps

We continue to deduce results on the assumption that the reciprocity law
(but not necessarily the whole main theorem of § 5} is true for an abelian
extension L/K.

6.1. For each prime v of X, we let K, denote the completion of K at v. If
L/K is a finite Galois extension, then the various completions L,, with w
over v are isomorphic, It is convenient to write L* for “any one of the com-
pletions L,, for w over ¢”, and we write G° = G(L'/K,) for the local Galois
group, which we can identify with a decomposition subgroup of G (see 1.2).
In the abelian case this subgroup is unique, i.c. independent of the choice
of w.
Assume that L/K is abelian and that there is an Artin map
Yix:Jx -~ GIL/K) = G.
For each prime » of K we have
K gy ux G,
S
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where i, is the mapping of an x € K} onto the element of Jy whose v com-
ponent is x and whose other components are 1, and j, is the projection onto
the v-th component. Call , = ;g 0 4,3 S0 ¥, : K} — G. In fact
6.2. PROPOSITION.,  If K, = M < L°, then YN 45 #*) < G(L°[A4). In
particular, Y (K3 <= G°, and (N (L) = 1.

Proof. Let M = L n . be the fixed field of G(L*/.#) in L, so that G(L/M)
is identified with G(L*/.#) under our identification of the decomposition

group with the local Galois group. Then .# = M,, where w is a prime
above p, and the diagram
LNM/K
o

N Jl!x,‘

is commutative. By the ‘variant” of 4.3 we conclude that

Y (N A *) < ‘/’LIKN MK < G(LIM) = G([.4),
6.3. We shall call y,: K} — G* the local Artin homomorphism, or by its
classical name: norm residue homomorphism. If x = (x,) € Ji, then we have

x =tim (T .(x,)}

5

dw

It

and consequently, by continuity, we have
'»[’L/K(x) = H Yo(x,)
v

(this product is actually finite since if x, is a v-unit and v is not ramified,
then it is a norm of L°/K,). Thus knowledge of all the local Artin maps ¥,
is equivalent to knowledge of the global Artin map ¥, ;. Classically, the
local maps y, were studied via the global theory and, in particular, were
shown to depend only on the local extension L°/K,, and not on the global
extension L/K from which they were derived. Nowadays one reverses the
procedure, giving first a purely local construction (cf. Chapter VI) of
maps 0,: K} =+ G, = G(L°/K,). We will take these maps 6, from Serre
and show that [ | 8, satisfies the characterizing properties for W, in particular,

that ]'[ 8,(a) = 1 for all ae K* (see § 10).
The local theory tells us that the Main Theorem of 5.1 is true locally if
we replace Cy by Ky, ¥ by ¥, and G(L/K) by G(L*/K,). In particular
KJ}IND* ~ G(IIK,)

and in this isomorphism the ramification groups correspond to the standard
filtration of K*/NL"*. Going back to the global theory we get a complete

ANT. 7
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description of prime decomposition in terms of idéle classes, even in the
ramified case.

For the question of abelian and cyclic extensions with given local behaviour
and the Grunwald-Wang theorem, see Artin-Tate notes Chapter 10, and
Wang, “On Grunwald’s Theorem”, Annals, 51 (1950), pp. 471-484.

6.4. We can now give an apparently stronger statement of the reciprocity
law formulated in 3.3.

Recirrocity Law (Strong form). Let L{K be abelian, and let S consist of
the archimedean primes of K and those ramified in L. If an element ae K*
is a norm from L* for all v e S, then Fy((6)°) = 1.

For if j,(a) is a norm for v € § we can write j (@) = Ny (b,) for some
b,eL’. Then by Corollary 4.2

1= ¢((a)s).'£ls¢"(ju(a)) =F L/K((a)s) -”I;IS%(N Lv,rx..(bu)) =F LIK((a)s)-

by 6.2,

For the concrete description of the local Artin maps i, by means of the
norm residue symbols (g, b), in case of Kummer extensions, and the appli-
cation to the general n-th power reciprocity law, see exercise 2.

7. Cohomotogy of Idéles

7.1. L{K is a finite Galois extension {(not necessarily abelian) with Galois
group G. Write A; for the adele ring of L; then J; is the group of invertible
elements in 4, =L ®@g Ag, and Gacts on L @z Ay by oo ®@1;s50 G
acts on Jy.

However, we want to look at the action of G on the cartesian product
structure of J;. Suppose x &Jy, then x = (x,,), where w runs through M, ;
oe Ginduceso,,: L, = L,,, (see 1.1) and (¢x),,, = 0,7, thatis, the diagrams

v T

Ly, — L3, Ly, — L,
iw| Iow le {Jw
a a

commute. (Note that the image of LY in J; is not a G-invariant subgroup;
the smallest such subgroup containing L}, is [ L%.)

wie
7.2, ProPoSITION. Let ve MMy and w, e Wiy with w, over v. Then there are
mutually inverse isomorphisms

(G T] 1Y) =

wir

cores . hg

H r(G wo) ll’a)

j""o . rl::
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and
cores . fy
-
H (6, [] U) ‘=5 H' Gy U,
wiv j""o L TCS

where U, denotes the group of units in L.,

The assertions remain valid when H' is replaced by H".

The proof is immediate from Shapiro’s lemma (see Chapter IV, §4) in
view of Proposition 1.2 of § 1.

Thus the cohomology groups H'(G,,, L) are canonically isomorphic for
all w over v, so it is permissible to use the notation H'(G", (L9*) for any
one of these.

7.3. PROPOSITION. (a) Jx = J§, the group of idéles of L. Ieft fixed by all
elements of G.

) B'GID= [T A@, @M,

veM K

where | | denotes the direct sum.

Proof. (a) is clear from Chapter II, § 19, To prove (b) we observe that

) Jy=limJ; g, where J; ¢ = L x

t = Ls L.§ veS(wHI" ) vés(;l;[ )

and S is a finite set of primes of X containing all the ramified primes in
L/K and the archimedean primes. The limit is taken over an increasing
sequence of .§ with lim S’ = M. The cohomology of finite groups commutes
with direct limits, and any cohomology theory commutes with products,
so it is enough to look at the cohomology of the various parts. By 7.2 and

Chapter VI, § 1.4, v]; (H U,,,) has trivial cohomology if S contains all the
wie
ramified primes. Hence

;4 (G, Jyp,s) HSH (G (L)),
by 7.2. Let § - My; we find
A7(G,J) ~ [ A(G", (I)*%).
7.4. COROLLARY.
(a) HY(G,J) =0.
(b) HYG,J) ~]] (’%- Z/Z), where n, = [L': K,].

]

Here, the determination of H! is just Hilbert’s “Theorem 90" for the local
fields (see Chapter V, § 2.6 and Chapter VI, § 1.4). The second part follows
from the determination of the Brauer group of K, in Chapter VI, § 1.6.

8. Cohomology of Idé¢le Classes (I), The First Inequality

We recollect the exact sequence 0 — L* = J, — C; — 0. The action of
G on Cy is that induced by its action on J..
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8.1. PROPOSITION. Cy =~ C§.
Proof. The above exact sequence gives rise to the homology sequence
0— H%(G, L*) - H(G,J,) » H(G, Cp) - H'(G, L¥),
that is
0 K*=J-CEn0,
8.2, Remark. Our object in the abelian case is to define
lburc : CK/NL[KCL - G(L/K) = G.
By the Proposition above Cy/Ny,Cp = B%G, Cy), and on the other hand
G = H™*(G, Z). Comparison with Chapter VY, § 2.1, suggests that the global
theorem we want to prove about the cohomology of C is essentially the
same as the local theorem Serre proves about the cohomology of L*. This
is in fact the case. Abstracting the common features, one gets the general
notion of a ““class formation”. [cf. the Artin-Tate notes.]

We recollect that if G is cyclic and 4 a G-module the Herbrand quotient
is defined by h(G, A) = [H*(G, A))[H'(G, A)] if both these cardinalities
[H?(G, 4)] and [H*(G, 4)] are finite (see Chapter IV, § 8).

8.3, TuEOREM. Let L/K be a cyclic extension of degree n. Then h(G, C;) = n.

Proof. We take a finite set S of primes of K so large that we can write

Jy, = L*.Jp 5, where
Jps= H (HL:') X H (H U“')'

veS\wfv v S\wio

More precisely, S is to include the archimedean primes of X, the primes
of K ramified in L and all primes of X which “lie below”” some primes whose
classes generate the ideal class group of L. Denote by T the set of primes
of L which are above primes in §. Hence

Coo J L 2 0y [(I* A Ji9) =Jrs/Ly
where Ly = L¥ N Jp ¢ is the set of T-units of L, i.e. those elements of L
which are units of L,, for w¢ T. It follows that
h(Cy) = h{Jy 5)/(Ly),

if the right-hand side is defined (we note that it is impossible to use the above
equation with the S missing, since then the right-hand side is not defined).

First of all we determine A(J,5). Since S contains all ramified primes,
the group T[] (l;[ Uw) has trivial cohomology, as remarked in 7.3. Hence

vES\efw
h{Jy.s) = LY =TI s(ITLY;
Vs =h(IL{TLE)) = IIHTTES)
so by 7.2 we have h(Jy5) = I] n,, where the n, are the local degrees (see
veS

Chapter VI, § 1.4). This was the “local part” of the proof.
The “global part” consists in determining #(Ly); in order to prove that

e ———— e r—

R e
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h(C.) = n we have to show that nh(Ly) = [ n,. We do this by constructing
&

Ve
a real vector space, on which G operates, with two lattices such that one has
Herbrand quotient nk(L;) and the other has quotient [ n,.

ves

Let V' be the real vector Space of maps f: TS R, so V ~ R, where
t = [T], the cardinality of 7' ‘We make G operate on ¥ by ::Ieﬁnin
(@) (v) = f(6™1w) (so that {af)ow) = f(w)), for all feV,ceGandwe 7{,’

Put N={7eVIf(v)€Z for all weT}. Clearly, N spans P ang o
G-invariant. We have N ~ 11 (H Zw), where Z, ~ Z for all w, and the

. . veSiwie
action of G on N is to permute the Z,, for all w over a given v e §. Hence,

AG,N) ~]] H'(G, I zw) =186, 2Z)
) veS wiy vel
by Shapiro’s lemma again. Thersfore

W) =TT (A°G", Z))[HX(G", 2)] = [T n,.

ves

Now define another lattice, Let 1 be amap: Ly — V¥ given by Aa) = f,
where fi(w) = log la),, for all we T The unit theorem (or at any rate 1;;
proof!) tells us that the kernel of 2 is finite and its image is a lattice 470 of Vv
spanning the subspace V0 = { fe VI3 fw) = 0}

Smceothe kernel of 1 is finite, h(Lg) = h(M°) (see Chapter 1V, § 8). Now
V=VF +Bg, where g is defined by gw) = 1forall we Sz. We define the
§ecoqd lattice A as M °+Zg. Then M spans V" and both M° and Zg are
invariant under G. Hence A(M) = h(M ) HZ) = nh(M°) = ni(Ly).

Now M, N are lattices spanning the same vector space, so h(N)T= h(M)
by Chapter IV, § 8. Hence ]:[ Hy = h(N) = W(M) = ni(L,), as required.

8.4. CoNSEQUENCE., IfL/K is cyelic of degree n, then
[Tx/K*NyxJ 1] 2 n.

This inequality, cal_led in the old days the second inequality, was always
proved by non~aua}ytw methods having their origins in Gauss® theory of the
lg:enera of quadratic forms, of which our present ones are an outgrowth

or us it is the first inequality, since the other inequality i i '
id of i e quality 1s deduced with the
8.5. CONSEQUENCE.
of Jy such that

(a) D c NL/KJL’

(b) K*D is dense in J ks
then L = K.

. Proo__ﬁ We may suppose that L/K is cyclic, since if I = [ = Kand L'/K
1s cyclic, then D < Nyxdy © NypoJy. Serre has proved that locally the

If LK is a finite abelian extension and D is g subgroup
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norms Ny, L% are open subsets of K3 which contain U, for almost all v;
s0 NpJy (which is simply 1 Nveosx, L) and K*NpgJp are open, hence

closed in Jy, and the latter is dense since its subset K*D is dense. So it is
the whole of Jg, that is, [Jx/K*NpxJi] = 1; so n =1 by the previous
consequence.

8.6. Remark. We emphasize that in the Galois case an element x = (x,} € J¢
is in Ny xJy if and only if it is a local norm everywhere, i.e. x, € Npog (L°)*
for all v e M.

8.7. CONSEQUENCE. If S is a finite subset of My and L{K is a finite abelian
extension, then G(L{K) is generated by the elements Fyx(v) for vé S (ie.
the map Fyu: IS — G(LIK) is surjective; cf. 3.3).

Proof. Take G’ as the subgroup of G(L/K) generated by the Fpx(v) with
v¢ S; let M be the fixed field of G'. For v¢S, the Fpx(v) viewed in
G(M/K) = GJG’ are all trivial, so forallv ¢ S, M,, = K, if we My, is over v.
Trivially, every element of K is a norm of this extension.

Take D = J§ (idiles with x, = 1 for v € S); every element of D is a local
norm, i.e. D € Ny xJy. By the weak approximation theorem (see Chapter
11, § 6) K*J is dense in Ji. So by 8.5 we have M = K and G’ is the whole
of G.

8.8. COROLLARY. If L is a non-trivial abelian extension of K, there are
infinitely many primes v of K that do not split completely (i.e. for which

Frg(v) # 1).
For we have just seen that such primes exist outside of any finite set 5.

9. Cohomology of Idéle Classes (II), The Second Inequality

Here we deduce what in the non-analytic treatment is the second inequality.
This inequality can be proved very quickly and easily by analysis (see
Chapter VIII, Theorem 5), and classically was called the first inequality. We
give Chevalley’s proof (Anrnals, 1940).

9.1. THEOREM. Let LK be a Galois extension of degree n, with Galols group G.
Then

(1) [A%G, C)) and [A*(G, C,)] divide n,

() AYG, C) = (0).

Proof. The proof will be in several steps.

Step 1. Suppose that the theorem has been proved when G is cyclic and
n is prime. By the Ugly Lemma (see Chapter VI, §1.5) it follows that
[A°(G, C,)] divides n and A'(G, C;) = (0). Using this triviality of A%, it
follows, again by the ugly lemma, that [H%(G, Cp)] divides n.
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Step 2. Now we assume that & is cyclic of prime order n; in this case we
know that A% =~ H? and by the first inequality 8.3 that [A?) = a[H"]; so
it will be enough to show that [H(G, Cp)) = [Ck: Ny Cy] divides n.

We will make the one assumption that in the function field case » is not
equal to the characteristic of X. (The other case is treated in the Artin-Tate
notes, Chapter 6.)

Step 3. We now show that we may further assume that K contains the
n-th roots of unity.

In fact, if we adjoin a primitive n-th root of unity { to K, we get an
extension K’ = K({) whose degree i divides (»—1), and so is prime to the
prime n. So

L=LK ———— K'=K({0)

m n

L —K

The degree of LK’ over K’ is n, and L and K’ are linearly disjoint over K.
So there is a commutative diagram with exact rows (we drop the subscripts
since they are obvious):

C, > Cy » Cx/NC,, —0
Con Cen Con
Co » Cy s Cp/NCp — -
N{ Nl NI
CL » Cx — C,(Nl\fqL - 20

Here Con is the Conorm map; and the composite map N.Con is simply
raising to the mth power (see Chapter 11, § 19, for this and the definition of
the Conorm map). The group C,/NC, is a torsion group in which each
element has order n, for if a € Cy, then &" is a norm, i.e. a" € NC,. Thus the
map Ny Con g C/ NCp - Ci/NC, is surjective since (m,n) = 1.
Hence the map Ng.x: Cx/NCy. = Ci/NCy is surjective; so if {Cg.: NC/]
divides n so does [Cx: NCy).

Step 4. We are thus reduced to the case where » is a prime and K contains
the n-th roots of unity. In fact we shall prove directly in this case the more
general result:

Let K contain the n-th roots of unity and LIK be an abelian extension of
prime exponent n, with say G(L{K) = G =~ (Z{nZY. Then

(1) [Cx: Ny Cy] divides [L: K] = w".
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For although, as we have just seen, the case of arbitrary r does follow from
the case r = 1, yet the method to be used does not simplify at all if one
puts » = 1, and some of the constructions in the proof are useful for large r
(see 9.2 and 9.5).

By Kummer Theory (see Chapter I1I), we know that L = K(Gfay,. .., Ya,)
for some a,, @,,..., 4, € K. Take Stobea finite set of (bad) primes, such
that

(2) (i) S contains all archimedean primes,
(i) S contains all divisors of n,
(iti) Jg = K*Jg s (by making § contain representatives of a system
of generatoss for the ideal class group),
(iv) S contains all factors of the numerator and denominator of any a,.

Condition (iv) just means that all the g; are S-units, that is, they belong to
Ks = K n Jg 5t they are units for all v ¢ 5.

Write M = K(%/Kj) for the field obtained from K by adjoining n-th roots
of all S-units. By the unit theorem the group K has a finite basis, so this
extension is finite, and M is unramified outside S by Kummer Theory and
condition (ii). Now M o L o K and

Kg=M*"nKs> " n Ks> K* n Kg= K.

By Kummer theory with [M: L] = #, [L: K] = # (given) and (M : K] = »°
we have

@) [Ks:I*"AKl=n', ["nKs:Kg]=w and [Ks:K§]=w
respectively. We claim thats = [S], the cardinality of S. By the unit theorem,

there are [S]—1 fundamental units, and the roots of unity include the
n-th roots; so Kg = ZP1~1x (cyclic group of order divisible by n) and

(4) [Ks: K2l =n'®1=rn’, wheres=t+r.

We recall we want to show that [Cg: Ny Cy] divides #', ie. divides
[L* n Kg: KZ]. So we need to show that Ny xCy is fairly large—we have
to provide a lot of norms.

If w is a prime of L above a v ¢ S, then, since MK is unramified outside S,
the Frobenius map Fy,(w) is well-defined. By consequence 8.7, the F (W)
generate G(MJL). Choose wy,. .., w; so that Fypw) (i=1,...,t) arc a
basis for G(M/L), and let v,,. . ., v, be primes of K below them. We assert
that Fyy(w;) = Fux(®) (= 1,..., t). (In fact, each of the v’s is unramified,
$0 F () is defined). The M/K decomposition group G,(M/K) is a cyclic
subgroup of (Z/nZ)', so is either of prime order » or trivial. The w's were
chosen so that the F;(w) were non-trivial, so the M/L decomposition group
G,(M/L) is non-trivial; so the L/K decomposition group

G(LIK) = G(M/K)/G,(M[L)
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is tri*triall, i.e. vsplits completely in L (see Proposition 2). Therefore, G,, = G,
and it is generated by the Fy;(v;) = Fpp(w;).) Notice also that we have
L,=K,foralii=1,...,¢
Write 7" = {v,,...,v}. We claim that
) ('Y "Ks={aeKsaeK: forallveT).
In fact, SiI.ICC L, = K, for all ve T and w above v, it follows trivially that
L* n K is contained in the right-hand side. Conversely, if a € K, then
_{‘/ae M. If further ae K for all veT, then Y/ae K, for all ve T and so
is %eft fixed by all Fpyu(v) = Fypyr(w); these generate G(M/L) so MfaelL.
This proves (5).
Let
6) - E=TIK"x[IKfx J] U,
ves veT vgSuT
where U, is the set of v-units in X,; so E < J, Al
M ESuT: so Ec= N, J
(see Remark 8.6)—for every element of K" is a norm, since K*/NL* ZKGI:,
(see Chapter VI, § 2.1), which is killed by n; we have K} = L¥ forall ve T,
and so all the elements of these X} are norms, and the elements of U/, are
all norms for v unramified (see Chapter VI, § 1.2, Prop. 1).
Now
[Cx/NpxCi]=[J KIK*NLIKJ t]
d1v1ﬁes [Jx: K*E} because E < NppJ;. The set S was chosen ((2)(iii))
50 that
Jg= K*Jx,s = K*JK,SU T
Fhefefore [Ck/Nyx Cy) divides [K*Jgo,r: K*E]. A general formula for
indices of groups is
[CA:CB][CnA:CnB]=[4:B],
so to prove (1) it will be enough to show that
(7) [‘IK,SUT:E]/[KSUT:KhE]=nr
(Where KSUT=K * ﬂ‘IK,SuT)‘
First, we calculate [Jy 5,7 E].
JK,SUT=HK:HK: 1__[ Um
vES reT végSuT

so [JxsoriE]l= !;IS[K:‘ ((K5Y', by (5). From Chapter VI, § 1.7 (cf. also

the Artin-Taie notes, p. xii), we see that the “trivial action” Herbrand
quotlent*fr(Kv) f n/lr:l,, where | |, denotes the normed absolute value. But
also A(K}) = [K : K;"]/n because the n-th roots of unity are in K*. This
means that [K* : K*'] = n?/ju], and '

® [Jrsor:El= nzsll [n|st = n?, by the product formula
: ve ‘
since n|, = 1ifv¢s.
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We will also need in 2 moment the formula
©) [U,: Uz] = nfjn],.
which follows from the fact that A(U,) = 1/[n|, (see Chapter VI, § 1.7).
By (8) we see that to prove (7), it will be enough to show that
(10 [Ksyr:K* 0 E]l=n"""=n""
As in (4), replacing § by Su T, we have [Ks,r: K5, 7] = 1t so it will
be enough to show that K* n E = K3, T-
Trivially, K* n E o K3, 1, 50 it remains to prove
an K*nEcKgyq,
and this will result from the following lemma.

9.2. LEMMA. Let K contain the n-th roots of unity. Let S be a subset of My
satisfying parts (i), (i), (i) of (2) in the above proof, and let T be a set of
primes disjoint from S, and independent for K in the sense that the map
Ks - [1 U,JU;, is surjective.

T . +* - .
Supvpease that b e K* is an n-th power in S, arbitrary in T, and a unit outside

SwT. Thenbe K™,
Proof of Lemma. Consider the extension K’ = K(3/b); it will be enough
to deduce that X' = K. Put
% n .
b '—vI;[SKu X UI;ITUg X ugHJ TU‘”
by arguments similar to ones used before (see after (6)), D = 1‘_"14'—;;(-’1:'-
Therefore, by the first inequality in the form of consequence 8.5, in order
to prove that K’ = K it is sufficient to prove tha't K*D. =.J,(. But by
hypothesis, the map K; _’.,ﬂ(U"/U:) = Jg /D is surjective.  Hence

Jes = K¢ D, and Jg = K*Jy s = K*D as required. o

To deduce (11) from the lemma, we have to check that T is independent
for S in the sense of the lemma. Let H denote the kernel of the map
Ks - [1(U./Uy). To prove that map is surjective it suffices to show that

(KS:I?)T= T1(U,: Up. This latter product is just n' by (9), because
T

Inl, =1 for”: e 7. On the other hand, by (5) we have H = Kg n (L*)", and
consequently (Ks: H) = #* by (3).
The proof of the theorem is now complete.
9.3. Remark. Even the case of the Lemma 9.2 with T empty is interesting.
“If 8 satisfies conditions (i), (ii), (i) of (2), then an S-unit which is a local
n-th power at all primes in § is an n-th power™.

9.4. CoNnsEQUENCE. If L{K is abelian with Galois group G, and there is an
Artin map W : H%G, Cp) = Cg/NCy — G, then y must be an isomorphism.
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In fact, consequence 8.7 of the first inequality already tells us that Y has
to be surjective; if now [A%G, Cp)] < [G], then ¥ can only be an
isomorphism!

9.5. CONSEQUENCE. (Extracted from the proof of Theorem 9.1.) Let n be
a prime and let K be a field, not of characteristic n, containing the n-th roots
of unity. Let § be a finite set of primes of K satisfying the conditions (i), (i),
(i) of (2), and let M = K({'/ Ks). Then, if the reciprocity law holds for M|K,
we have

(12) K*NyyxJy = K*E, where E = [T(K¥)" x [] U,
ves vgS

Consider the case L = M of the proof of 9.1 (so that T is empty, ¢ = 0
and s = r). Then the E of that proof is as given in (12), and E = Nisixng-
By (7) with L = M, we have [Jy: K*E] = n* = [M:K]. On the other
hand, if the reciprocity law holds, we know that

[Cx:NaygCpl = [Jk: K*Npyxdu] = 1%
hence (12) must hold,

This result we put into the refrigerator; we will pull it out for the proof
of the “existence theorem™ in the final section § 12.

9.6. CoNSEQUENCE. Let L/K be a finite (not necessarily abelian) Galois exten-
sion. Since H'(G, C;) =0, the exact sequence 0 — L* — J, — C,—0
gives rise to a very short exact sequence 0 — H*(G, L*) - HYG, J;). Now
HYG,J,) = [1 HXG",(I)*), by Proposition 7.3, so there is an injection
ve My
(13) 0> HAG,I) ~ ] HAG", (L))
ve Mg

We shall see later (from the fact that the arrow 8, in diagram (9) of § 11
is an isomorphism, for example) that the image of this injection consists
of those elements in the direct sum, the sum of whose local invariants is 0.
We thus obtain a complete description of the structure of the group H*(G, L*).

In terms of central simple algebras, (13) gives the Brauer-Hasse-Noether
Theorem, that a central simple algebra over K splits over K if and only if
it splits locally everywhere. In particular, if G is cyclic, B? ~ A ° and we
have the Hasse Norm Theorem:

If ae K*, and L{K is cyclic, then a e NyxL* if and only if ae Ny, L'*
or all ve M.

Specializing further, take G of order 2, so L = K(,/b).
Ny(x+y\/b) = x*—by?,
so (if the characteristic is not 2) we deduce that a has the form x:—byt if
and only if it has this form locally everywhere. It follows that g quadratic

Jorm Q(x, y, z) in three variables over K has a non-trivial zero in K if and only
if it has a non-trivial zero in every completion of K. Extending to n variables,
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we may obtain the Minkowski-Hasse Theorem, that a quadratic form has
a zero if and only if it has a zero locally everywhere, see exercise 4.

One may consider the general problem, “if a € K* and a ¢ NL** for all o,
is ae NL*?” Unfortunately, the answer is not always yes! (See 11.4.)

9.7. We return to the sequence (13). We write H*(L/K) for H¥G, L*) and
H*(L*/K,) for H*(G", L*¥). Thus (13) becomes
(139 0— H*(L/K) -~ ] H{(L/K,).

Serre (Chapter VI, § 1.1, Theorem 3, Corollary 2) has determined H*(L/K,);
it is cyclic of order n, = [L': K.}, with a canonical generator. Thus

HYG,J) = | F*(IK,) = [] (:* Z/Z).
and v
0~ H¥I/K) -] ( nl— Z/Z).
Ifae]] H¥L'/K,), or a € H*(L{K), we can find its local invariants inv, ()

¥
(more precisely inv, (j,(«)), where j, is the projection on the v-component

of &), which will determine it precisely.
We are interested in the functorial properties of the map inv,. Let

L' o L o K be finite Galois extensions with groups
G' = G(L/K),
and
G =G(L/K)~ G'|H,
where H = G(L'/L). If @ e H*(G, J1), then infl (&) € H*(G", J,) and
(14) inv, (infl &) = inv, (a).
Indeed, choosing a prime w' of L’ above a prime w of L above v, one reduces

this to the corresponding local statement for the tower L. o L,o K,

cf. Chapter VI, § 1.1,
Thus nothing changes under inflation so we can pass in an invariant

manner to the Brawer group of K, and get the Jocal invariants for
a€Br(K) = H¥K/K), where K is the algebraic closure of X (see
Chapter VI, § 1), and more generally for

ae HZ(GKfK, JK) = lim HZ(GLIK, JL)’
——
L

where Jg = lim J;, by definition, the limits being taken over alt finite Galois
—
L

extensions L of K; ¢f. Chapter V.
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If now « € H%(G", J,.), then res fee HXH,J,) and
(15) inv, (res fa) = n,,,, inv, (o),
where we MM, lies above veMg and n,, = [L,: K] (again one reduces

immediate]y to tfle Iocal case fOI Whicll see Cha ‘/ § Ire’'s
" 3 pter I 1.1 or Se !
Corps LOC&UX”, Hermaﬂll 1962 p 175 I\A() SOV ’ ’
oi ' ( ), . _)- T er, L/K need not be
i a“y WE m ntion th esu]t (&) orest. i. i i

F‘tl € me. € T for corestr ction, though we will not use it
Agalﬂ, L K need t i I ! o H G "
: / no be Gal()lS. fa € H (H; -I[ '), then cor GH [+ A =] 2( ', J[ n)

(16 v, (or ) = 5 inv, (o),
wiv

where the sum is over all pri “
b, 175) primes w & My, over v € My (see “Corps Locaux”,

9}8. b(?O.ROLLARY. LetaeBr(K)Yor H HG(R[K), Jg), where K is the separable
algebraic clo:mre of K. Let L be an extension of K in K. Then res §(a) = 0
if an'd. only.tf [L,:K]inv, (@) = 0 Jor every w over v (this is only q Sfinite
condition, since almost all the inv, (&) are zero).

In the case when L/K is Galois, there is an exact sequence

0 —— HYL/K) "L, gr(ky —12, g, (L),

and o € H*(L/K) if and only if the d i : ..
for all w over o, Y enominator of lnv, (Ot) leldeS [L“, : Kv]

10. Proof of the Reciprocity Law

global Artin map existed we were able to reduce i
uce it to the study of 1
symbols and re?marked that, conversely, if the local Artin maps a)r,e deﬁ(l)l?;ll
I\:::) ;;l::]d }(::Jtam 2 gloll)lal ;Artin map. We propose to carry out this latter
re using the in (“ idue” i
Chor g ocal Artin (“norm residue ) maps defined in
Let the local Artin maps be denoted by 8,: K¥ — G*; we define a map

by B :JK 4 G

0(x) =“];[t 0(x,), xeJg.

This is a proper definition since (b

[ X ¥ Chapter VI, §2.3)8.(x ) = F plxs)
(v(x,) bem'g the normalized valyation of x,) when)vvgs v)unrar;;{i?év)and
v(x,) = 0if x, & U,,;.so Q,,(xu) =1 for all but finitely many o, (Iu’dccd
even if L/K were an infinite extension, the product for 8(x) would be ’
vergent.) It is clear that @ is a continuous map., o
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Take S, < My as the set of archimedean primes plus the primes ramified
n LJK; then x € Ji implies 6(x) = F((x S4), Thus, § satisfies two of the
.onditions for an Artin map ((i) and (iii) of Corollary 4.2); the other con-
jition ((ii) of 4.2) is that

0(a)= [] 6(a)=1 forallae K*.

veWx
So if we can prove this, we will have proved the reciprocity law.
10.2. To prove the reciprocity law, it will be convenient to state two related
theorems, and to prove them both at once, gradually extending the cases
for which they are true.

TueoreM A. Every finite abelian extension LIK satisfies the reciprocity
Iaw, and the Artin map 8 Jy ~ G(L|K) is given by 8 = T1e..
v

Tueorem B. If a € Br (K), then ), inv, (@) = 0.
ve Vg

Remarks. After what has been said above, Theorem A has been whittled
down to the assertion that
§)) [1 6(a)=1 forallae K*.

ve Mg

The sum of Theorem B is finite since inv, (®) = inv, ( j,.0) = 0 for all
but finitely many o.

If o e Br(K), then a & H*(L/K) for some finite extension L/K, ie. « is
split by a finite extension of K.

Logically, the proof is in four main steps.

Step 1. Prove A for an arbitrary finite cyclotomic extension L/K.
Step 2. Deduce B for a split by a cyclic cyclotomic extension.
Step 3. Deduce B for arbitrary « € Br (K).

Step 4. Deduce A for all abelian extensions.

In practice, we first clarify the relation between Theorems A and B and
deduce (step 2) that A implies B for cyclic extensions and (step 4) that
B implies A for arbitrary abelian extensions. Then we prove Step 1 directly,
and finally push through Step 3, by showing that every element of Br (K)
has a cyclic cyclotomic splitting field.

10.3. Steps 2 and 4. The relation between A and B. A is about #° and B
is about H2, so we need a lemma connecting them.

Let Z/K be a finite abelian extension with Galois group G. Let x be a
character of G, thus x e Hom (G, Q/Z) = H 4G, Q/Z), where Q/Z is a
trivial G-module. If v e Dy, denote by y, the restriction of x to the decom-
position group G*. Let & be the connecting homomorphism

8: HY(G,Q/L)— H*G,Z).
If x = (x,) € Jg, let % be its image in Jg/Ny k1 = A%G, J;). Then the cup
product (see Chapter IV, §7) X.6x € H UG, J).
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LemMmA. For each v we have

inv, (x.81) = 1.(0,(x,)),
and so

g inv, (%.87) = x(8(x)).

Proof. We refer to Chapter VI, §2.3. The projection j,:J, — (L°)*
induces a map
jo-resg, tHXG,J 1) - HX(G,, J 1) = HY(G,, (L)),
and as restriction commutes with the cup product, so
inv,(X.0y) = inv,(j, resg, (%.0x))
= inv” ((ju . f) . 5Xv)
= inv,(%,.dx,)

= 1o(8e(x0)),

the final step coming from Chapter VI, § 2.3.
It fotlows immediately that

HO(x) = x(I;I Bv(xv)) = ; ¥oB(x,) = ¥ inv, (X.6y).

To check Step 4, apply the lemma with x = ae K* = Jg. Denote by
& the image of ain A%(G, L*). Then &.5y € B*(G, L*) < Br (K), as we need.
The image of &.8y in H*(G,J.) is @.6x, where 4 is the image of a in
B%G,J,), and by the above lemma, Y inv, (d.dy) = x(8(a)); so if Theorem

v
B is true for all & € Br (K), it follows that x(6(a)) = 0, and since this is
true for all y, that 8(a) = 0. This is Theorem A.
. To check Step 2, take L/K cyclic. Choose y as a generating character,
i.e. as an injection of G into Q/Z. Then cupping with dy gives an isomor-
phism A° = H?, so every element of H*(L/K, L*) is of the form &.dy. If
Theorem A is true, then by the above lemma

% inv, (@.0x) = x(6(a)) = 0

for all a € K*, which is Theorem B.

10.4. Step I. (Number Field Case.) We want to prove that if L/K is a cyclo-
tomic extension, then [] 6,(a) = 1 for all a e K*,

Let 1/K be a finite cyclotomic extension. Then we have L « K({) for
some root of unity ¢, and it will suffice fo treat the case L = K({) because
of the compatibility of the local symbols 0, relative to the extensions
(K(D)’/K, and L*[K,; cf. Chapter VI, § 2.4. _

Next we reduce to the case K == Q. Suppose that M = K({), with Galois
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group G'; define L = Q(!), with Galois group G. Then M = LK, and
there is a natural injection i: G’ > G and norm map N:J; — Jo. The
diagram

;

Ty — G
Nqul J{
Jo———G

(where 0’ = [] 8;, and @ = ] 6,) is commutative, since
[ P

(Nyjex), = ]:I Ng, 10, %y
vip

(see Chapter I, § 11, last display formula) and since the diagrams

K, — G,
Nl {
Q, — G,

are commutative whenever v is above p (see Chaper VI, § 2.1, cf. Proposition
3.1 above). Thus io 6'(x} = O(Ngsq(x)) for all x € Jy and so, in particular,
iob(a) = O(Ngo(@) for all ae K. If Theorem A is true for L/Q, then
8(b) = 1forall be Q, so #(a) = 1 for all a € K, because i is injective.

First Proof for L{Q cyclotomic. We know that the reciprocity law, in
the sense of 3.8, holds for L/Q by computation {see 3.4), i.e. we have an
admissible map F:I° - G(L/Q) = G, for some S. Using the Chevalley
interpretation (Proposition 4.1) we get an Artin map ¥:Jo— G, and
we obtain induced local maps ¥, : Q¥ — G, (see § 6). Using Proposition 4.3
we can pass to the limit and take L as the maximal cyclotomic extension
Q™ of Q. This gives us local maps ¥, Q% = G(Q/Q,), for all primes p.
We want to show that these y,’s are the same as the 8,’s of Chapter VI,
§2.2; we do this by using the characterization given by Chapter VI, § 2.8,
Proposition 3.

We have to check three things. Firstly, that Q" contains the maximal
unramified extension QY of Q,,; this follows from Chapter1, § 7, Application.
Secondly, if a € Q,, then ¥,(0)|Q, = F*®, where v,(a) is the normalized
valuation of «, and F the Frobenius element of G(Q3'/Q,); this is clear.
Thirdly, if .#/Q, is a finite subextension in Q%', and a e N 4q,.#*, then
Y (o) leaves .# pointwise-fixed; this follows from Proposition 6.2. Hence
¥, = 0, for all finite primes p. We must not forget to check that ¥, is
the same as 8, (see Chapter VI, §2.9). By Proposition 6.2, ¥, is a con-
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tinuous homomorphism of R*into G, = G(C/R) =~ { + 1}, and y ,(NcgC¥) =1.
Hence ¥, and 8, induce maps of R*/R% into G(C/R) and 8, is onto, so we
just have to check that ¢, is onto—in other words, we have to check that
¥, is not the null map.

C = R(}), so consider the effect of ¥ on Q(i) > Q; the only ramification
is at 2 and co. Therefore

L=d(=D =¥ =D =D (=T = (D .Y, (- 1),
since —7 is a 2-adic norm and so y,(~7) = 1. Now ,(7) is the map
i—=i" =—1I, 30 ,(—1) is also the map i = —1, i.e. is non-trivial,
Second Proof for LIQ cyclotomic. We may proceed entirely locally,
without using our results of the early sections, but using the explicit local

computation of the norm residue symbol in cyclotomic extensions, due ori-
ginally to Dwork.

Let { be a root of unity; by Chapter VI, § 2.9
1) O=l®) = psien (0 for x g R*,

and by Chapter VI, § 3.1, if x € Q}, x = p*u, with u a unit in Q, and v an
integer
@ (oot {C"',l when { has order prime to p.
{“"", when { has p-power order.

We need to check that []6,(a) = I for all ae Q* and to do this it is
4

sufficient to show that [[8,(¢) =1 for all primes ¢ > 0, and that
14

[16,(—1) = 1. Furthermore, it is enough to consider the effect on ¢, an

4
Ith power root of unity (/ a prime). One checks explicitly that the effect
is trivial, using the tables

C—ls p=oo
Cﬂp(-l) =471, p=1

, p#low
c’ p=q=
{9 — C,_‘ p# 1, p # g (including the case p = o)
C" ’P=13P#q
U, p#lLp=q

(Since the Galois group is abelian, it does not matter in what order one
applies the automorphisms 6,(~1), resp. 6,(4).)

10.5. Step 3. (Number Field Case.) It is enough to show that every element
of Br (X) has a cyclic, cyclotomic splitting field. In other words, for every
a € Br (K), there is a cyclic, cyclotomic extension L/K such that for every
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v € My, the local degree [L”: K] is a multiple of the denominator of inv, (a)
(see Corollary 9.8). Now inv, () = 0 for all but a finite number of primes
and so we need only prove the

LEMMA. Given a number field K of finite degree over Q, a finite set of
primes S of K, and a positive integer m, there exists a cyclic, cyclotomic exten-
sion LK whose local degrees are divisible by m at the non-archimedean primes v
of S and divisible by 2 at real archimedean primes v of S (in other words, L
is complex).

Progf. 1t is sufficient to construct L in the case K = Q (multiply m by
the degree {K: Q). Take r very large and g an odd prime. The extension
Lig) = Q(‘{/ 1) has a Galois group isomorphic to the direct sum of a cyclic
group of order (g— 1) and cyclic group of order g"~ %, so has a subfield L'(g)
which is a cyclic cyclotomic extension of Q of degree ¢"~*. Now

[L(g): L'(@)=a—1,
and so on localizing at a fixed prime p % oo of Q we have
[L@®: L(g)™] < (g—1);

since [L(9)®: Q,] - 0 as r — oo (this follows for example from the fact
that each finite extension of Q, contains only a finite number of roots of
unity), it follows that [L'(g)*”:Q,] — co as r — co. Therefore, since
[L'(9)®: Q,] is always a power of g, it is divisible by a sufficiently large
power of g if we take r large enough.

Now let ¢ = 2, and put L(2) = Q(z\'/ 1) for r large. I{2) has a Galois
group isomorphic to the direct sum of a cyclic group of order 2 and a cyclic
group of order 2"72. Let { be a primitive 2’-th root of unity and set
E={—~{"1 and L/(2) = Q(¢). The automorphisms of Q({) over Q are
of the form a,,: ¢+ " for p odd, and 6,(&) = {#*~{* Since{¥ '=—1,
one sees that o _ 4 5e-1(€) = o,(£); since either p or —p+2""1is = 1(mod4),
this implies that the automorphisms of Q(&)/Q are induced by those g,
where p = 1(mod4) and that they form a cyclic group of order 2772,
Also, since o_, & = —¢&, Q(¢) is not real, and so its local degree at an infiinte
real prime is 2.

Now [L(2): L'(2)] = 2, and the same argument as above shows that for
p # o0 we can make [L'(2)”: Q,] divisible by as large a power of 2 as
we like by taking r large enough.

If now the prime factors of m are ¢,,. . ., g, and possibly 2, then for large
enough r the compositum of L'(g,),. . ., L'(g,) and possibly L'(2)} is a complex
cyclic cyclotomic extension of Q whose local degree over Q, is divisible
by m for all p in a finite set S.

Cyclic cyclotomic extensions seem to be at the heart of all proofs of the
general reciprocity law, We have been able to get away with a very trivial
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existence lemma for them, because we have at our disposal both cohomology
and the local theory. In his original proof Artin used a more subtle lemma;
see for example Lang, “Algebraic Numbers”, Addison Wesley, 1964, p. 60.
(But notice that the necessary hypothesis that p be unramified is omitted
from the statement there.)

We may prove the reciprocity law for function fields on the same lines,
but the special role of “cyclic cyclotomic extensions™ in the proof is taken
over by “constant field extensions”.

Step 3 goes through, if we replace “cyclic cyclotomic extension” by
“constant field extension”; we have only to take for the L in the lemma
the constant field extension whose degree is m times the least common
multiple of the degrees of the primes in S.

For step 1, we check the reciprocity law directly for constant field exten-
sions; in fact, if we denote by ¢ the Frobenius automorphism of k/k, where
k is the constant field of K, then for each prime v of K the effect of F(v)
on k is just ¢%®°, where degv = [k(v): k] is the degree of ». Hence the
effect on & of 0(a) is [] " 4s¢ = gE*@desr = %82 = ], since dega =0

for all @€ K* (the number of zeros of an algebraic function a is equal to
the number of poles).

11. Cohomology of Idéle Classes (IIT), The Fundamental Class

11.1 Let E/L/K be finite Galois extensions of K; then we have an exact
commutative diagram

0 0 0
0 —— HYL{K,L*) ~— HYL|K,J) —— H*L{K,C})
() 6——H 2(EllK ,E*) —— HXE[K,Jp) —— HYE[K, Cg)

0 —— H*(E/L, E*) ~—— H*E[L,J5) —— H¥E/[L,Cy),

where we have written H2(L/K, L*) for H}(G(L{K), L*), etc. In this diagram,
the vertical lines are inflation-restriction sequences; these are exact since
H(E[L, E*) = (0) (Hilbert Theorem 90, Chapter V, § 2.6), H'(E/L, J5) = (0)
(Corollary 7.4) and H'(E/L, Cp) = (0) (Theorem 9.1) [see Chapter IV, § 5,
Proposition 5]. The horizontal sequences are exact, and come from the
sequence O — L* — J; — C; — 0, since again HY(L/K, Cp) = (0), etc.

We pass to the limit and let E — K, where K is the algebraic closure of X,
to obtain the new commutative diagram
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0 0 0
|

0., H{LJK, L 1, Hz(LflK, Jp) s Hz(LllK, lol)

|

l
@) 0—_, HYK,R% —n, HYK,Jp —% HYK Cp

0o_ _., HXL,K* —m, H¥LJg) —2- H¥L,Cp),
where we have written H2(K, K*) for H¥(G(K/K),K*), etc. Certain of the
maps with which we shall be concerned below have been labelled in the
diagram.
11.2. We are going to enlarge the above commutative diagram.
For the Galois extension L/K we have the map
inv; =Y inv,: H{(L{K,J) - Q/Z,

and Theorem B of 10.2 tells us that the sequence
3 0, HX(L/K,LY) L H*(LIK,J;) - ine , QJZ
is a complex.t
Since inv, (infl @) = inv, («) for all a e HX(L/K,J}) (see 9.7, (14)), we
have a map inv, : H%(K, Jg) = Q/Z such that the diagram
HYLIK,J) — 2, Q|Z

@ s .
| |

HYK,Jp) —= _, Q/Z

is commutative, where i is the identity map. Furthermore, the sequence

&) 0___ . H¥K,K*) 2, HYK,Jp)— 2, Q/Z
is a complex.

In a similar manner we have a complex

(6) 0 —— HXL,K*) %, H¥(L,Jg) "%, Q/Z.
But now, inv,, (res «) = n,,, inv, (), where x € H %(K,Jg) and w is a prime
of L over v of K, and n,,, = [L,: K,] (see §9.7, {15)). Thus we have the
commutative diagram

HY(K,Jg) ™ _, QJZ
@ N \
| {

HYL,Jp) — 2 ., Q/Z,
as the sum of the local degrees Y. n,,, = n = [L: K].

wie

t i.e. the image of each map is in the kernel of the next.
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Now let Image of &, = Im ¢, in H*(K, Cg) be denoted by H*(K, Cy)yeq
and Im g5 by H*(L, Cg),., It follows that we have a map fi, (resp. )
induced by inv, (tesp. invs) of H3(K, Cg)ee into Q/Z (resp. H*(L, Cg)eeq
into Q/Z). Thus for ae H*K, Cg)., We have B,(a) = inv,(b), where
g,(b) = a (this is independent of the choice of b). We have now explained
the two lower layers in diagram (9) below.

We define

(8)  HXLJK,Cp)ey = {a € HHLIK, Cp)|infla € HA(K, Cp)rey)-

Then »8, infl @ = 0, and so f#, induces a homomorphism

Byt HALIK, g 22
such that
B1(a) = B2 (infl a).
If a = &, b with b e H*(L/K, J;) then
B:(a) = B, (infl b) = inv, (infl b) = inv, (b).

(Note the difference in construction of f, and B,; the point is that
H*(L|K, Cy),; = Im ¢, but they will not in general be equal.)

We put all the information from (3)-(8) into (2) to obtain a new commu-
tative (three-dimensional) diagram

i 0 0
0> HLIK, L)~ H¥LIK, J)——>H(LIK, C,) e 0

L1

N l7z

i

- T2 N £
0-""'"+H2(K, K*) ——-—>-H2(K, Jz) -——-——a—Hz(K‘ Cf)rT—_*O i

B

inva

Q/Z

A — T3 { E}
0 ———>H*(L, K¥)——>H*L,Jg) —>HXL, CR)gm>0

"
LE]

invy

) 20/Z

in which i is the inclusion map, n is multiplication by # and the “bent”
sequences are conplexes, and the horizontal and vertical sequences are exact.
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11.2. (bis) We propose to show that
(10) H*(K, C)ey = H¥(K, Cg) = Q/Z.

| 1 .
Now Im (inv,) in ;-lZ/Z is the subgroup - Z/Z, where n, is the lowest
(1]

common multiple of all the local degrees of L{K, by Corollary 7.4, and so
since Im B; o (inv,) we have the inequalities

nz [HZ(L/Ks CL)] Z [HZ(LIK: CL)reg] = [Imp,l] = [Im (invl)] = Rg,
by the second inequality, Theorem 9.1. It follows that if n = ny for this

particular finite extension L/K, then we have equality throughout, so that
f11 is bijective and the sequence

a1 0 — , H¥L/K, LY 2, HYL/K,J,) ™, Q/Z
is exact (for if 0 = inv, (b) = f,2, b, then ;b = 0, and 5 e Im y,).

Now if L/K is a finite cyclic extension, then # = n, because the Frobenius
elements Fyx(v), whose orders are equal to the Jocal degrees n,, generate
the cyclic group G(L/K) by Consequence 8.7. So if, in particular, the exten-
sion L/ K is cyclic cyclotomic, then (11) is an exact sequence. But the Lemma
of § 10.5 says that the groups H*(K, K*) and H?*(K, Jg) are the unions (of
the isomorphic images under inflation) of the groups H*(L/K,L*) and
H?(L/K, J;) respectively, where L runs over all cyclic cyclotomic extensions
of K. Consequently, in our commutative diagram (9) the complexes

0 L HXK,K% 12  H¥K,Jp", Q/Z

and

0, HYL,K*) —* , H*(L,Jg) ", Q/Z
are exact. Therefore ker (inv,) = ker (g,), so B, (and similarly f,) must be
injective maps into Q/Z. They are surjective, since there exist finite exten-
sions with arbitrarily high local degrees and consequently even inv, and
inv, are surjective. Hence both §, and f8, are bijective maps. Now, letting L
be an arbitrary finite Galois extension, we conclude that £, is a bijection:

1
HZ(LIK: CL)reg = ;‘ Z/Z:
but H*(L/K, Cp),., is a subgroup of H*(L/K, C;) which has order dividing ».
So it is the whole of H*(L/K, C;). Letting L — K we see that
HZ(L/K: CK)reg = Hz(Ls CK)‘

Thus we can remove the subscripts “reg” from our diagram (9).
Also, we have proved the following

ResuLt. H*(L/K, Cy) is cyclic of order n, and it has a canonical generator

1 .
uy g with invariant -, i.e. invy (uyg) = -.
n n
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This element uyy is called the fundamental class of the extension LK.
It was first exhibited by Weil (see the discussion in 11.6 below). The com-
plete determination of the structure of H%(L/K, C,) is due to Nakayama.
He and Hochschild were the first to give a systematic cohomological treat-
ment of class field theory; see G. Hochschild and T. Nakayama “Cohomo-
logy in Class Field Theory”, Annals, 1952, and the references contained
therein.

The two lower layers of diagram (9) and the vertical arrows between
them make sense for an arbitrary finite separable extension L{K of finite
degree n, and in this more general case, that much of the diagram is still
commutative, because the argument showing the commutativity of (7) did
not require L/K to be Galois. Using this, and replacing L by K', we see
that if L = K’ o K with L{K Galois, then restricting u;x from L/K to
L{K’ gives the fundamental class 1 ..

11.3. Applications. The results we have obtained show that the idéle classes
constitute a class formation. In particular (cf. Chapter IV, § 10) the cup
product with the fundamental class u, ;g gives isomorphisms

A7(G(LIK), Z) 3 A" *(G(LK), Cy),
for — o < r < o0, such that for L o K’ o K with L/K Galois the diagrams

B(G,2) 5 A" G, Cy) A7G,Z) 3 A"*4(G,Cy)
(12) resl usl and corT corT
A(G, )3 A6, CY) A(G,Z2)x A XG', Cp)

are commutative, where & = G(L{K) and G' = G(L/K).
Case r = —2. There is a canonical isomorphism (see Chapter 1V, § 3)
G(L/K)™® ~ Cx/NyxCu,

which is inverse to the Artin map. Using this as a definition in the local
case, Serre deduced the formula inv (@.5y) = x(#(a)) in Chapter VI, §2.3; we
have proved the formula in the global case, so one can reverse the argument.
(The isomorphism G*® ~ H~*(G,Z) is to be chosen in such a manner
that for y € Hom (G, Q/Z) ~ H'(G, Q/Z) and ¢ € G, we have x.c = x(0)

.1 . -
upon identifying p Z/Z with H™Y(G, Q/Z) as usual.)

Reversing the horizontal arrows in (12), with r = —2, and letting L—+K,
we obtain the commutative diagrams

Cy — ¥ G(K™/K) Cx —¥ G(K™/K)
(13) con | I
Cpr —F—— GUK'F"/K) Cp — L — GK'PIK'),

where the §’s are the Artin mapsand V is the “Verlagerung}”. The right-hand
+ Called the * transfer > in Chapier 1V, § 6, Note after Prop. 7.

v and N T
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agram expresses the so-called translation theorem, and in fact results also
rectly from 4.3, which in turn came from an almost obvious property 3.2 of
e Frobenius automorphisms F(v). The commutativity of the left-hand
agram (13) can also be proved by a straightforward but somewhat more
smplicated computation with the Frobenius automorphisms which was first
ade by Artin in connection with the “principal ideal theorem” (see exercise

and Serre, “Corps Locaux”, p. 130).

Case r = —3. This leads to an isomorphism used by Roquette in Chapter
¥, 52
1.4. Application to the Cohomology of L*. The general idea is to determine
1e cohomology of L* from a knowledge of the cohomology of the idéles
nd the idéle classes.

Let L/K be a finite extension, with Galois group G. Then the exact
squence 0 — L* — Jy — Cp — 0 gives an exact sequence

g S
S G, J) - B NG, C) — H'(G, L") » A (G, T~ ...
1 which the kernel of £ is isomorphic to the cokernel of g. We know

a-yG, )= 11 g-4e %= 1] %G, 2%).

vedlg reix
see Proposition 7.3), and

AYG,Cp =736, 2);
o the kernel of
{86, -] A7(G", L™
s isomorphic to the cokernel of
g [1A™%G", 2)~ A %6, 7).
't is easy to see that the map g, is given by
N @ z,,) = %: cord z,,.
Using the fundamental duality theorem in the cohomology of finite groups,
which states that the cup product pairing
A7G,T)xA™"(G,Z)» A°(G,Z) = Z/nZ
is a perfect duality of finite groups, one sees that the cokernel of g, is the
dual of the kernel of the map
hRG,T) - [ 8376, 7

which is defined by (h(2)), = res & (z) for all v e M.
Caser = 0.
ala e K*, a is a local norm everywhcre)

Keef= ( ala € K*, a is a global norm
and coker g is dual to ker (H*@G, Z) X5 [] H*G", Z)). For example, if
1
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G = G* for some v, then this is an injection, so local norms are global norms.
If G is cyclic, then H¥G, Z) ~ H'(G, Z) = 0, so local norms are global
norms and we recover Hasse’s theorem, 9.6. On the other hand, if for
instance G is the Vierergruppe, it is possible that G” is always one of the
subgroups of order 2, so H3(G*, Z) = 0 but H*(G, Z) = Z/2Z. Explicitly,

17

we can consider Q(/13, /17)/Q; here (;—3) = (-1—3) = 1, and the extension

is unramified at 2 because 13 = 17 = 1 (mod 4), so all the decomposition
groups are cyclic. Thus the set of elements of K* which are local norms
everywhere is not the same as the set of elements of K* which are global
norms (see exercise 5).

Case r = 3. H*(G, L*) is cyclic of order n/n,, the global degree divided
by the lowest common multiple of the local degrees, generated by du; g
(8: H¥Cy) » H3(L*)), the “Teichmiiller 3-class”. This can be killed by
inflation (replace L by a bigger L’ so that the n, for L' is divisible by n);
so H3K/K,K*) = 0.

For a more precise description of the sitwation, announced at the
Amsterdam Congress (Proc. 11,66-67), see Tate: “The cohomology groups
of tori in finite galois extensions of number fields”, Nagoya Math. J.
27 (1966), 709-719.

Group Extensions. Consider extensions M/L/K, where L/K is Galois with
group G, and M/K is Galois with group F and M is a class field over L
with abelian Galois group 4. So 1 - 4 - E— G — 1 is exact. By the
Artin isomorphism A o Cy/Nyy Cy (see Theorem A of 10.2 and Con-
sequence 9.4). We want to know about E.

11.5. THEOREM. (i) Let o€ E have image ¢e€G. Let xeCyp; then
w(Gx) = oy(x)e™", where y: C —A is the Artin map.

(ii) Let v € H*(G, A) be the class of the group extension E; then v = Y (uyx),
where Yy is the map: HXG, Cp) » H*(G, A) induced by fr:Cp— 4,
and where wuy g is the fundamental class for LIK.

It is straightforward to see (i). As usual in such cases the situation becomes
clearer if we consider an arbitrary field isomorphism o: M — M’ rather
than an automorphism. Denoting ¢ by L’ and the restriction of ¢ to L
by &, we have the picture

M__° M

L — I,

and by transporting the structure of M/L to M'[L' we see that, if xe C,
and y € M, then (y'(Gx)) (o) = oy (x)(»)).
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(i) is non-trivial; Zafarevié did the local case (“On Galois Groups of
.adic Fields”, Doklady, 1946), but it is really a general theorem about
ass formations (see Artin-Tate notes, p. 246). We do not prove it here,
1d will not make any use of the result in these notes.

1.6. Before the structure of H(G, Cy) was known, Weil (“Sur la Théorie
a Corps de Classes”, J. Math. Soc. Japan, 3 (1951), 1-35) looked at this
tuation from the opposite point of view. Taking M to be L*®, the maximal
belian extension of K (so that now 4 = G(L®**/L) is a profinite abelian
roup), Weil asked himself whether there was a group extension & of
i = G(L/K) by Cy, which fits into a commutative diagram of the sort

1 - Cy & — G ~1
(14) | - l li
) I I

1 — A - B — G '—A'L

vhere E = G(L*®/K), and if so, to what extent was it unique? In the
unction field case, ;. is for all practical purposes an isomorphism, and the
wistence of such a diagram is obvious. Moreover, in that case, the group-
heoretical transfer map V (Verlagerung) from & to Cp, (which has its image
n Cy) gives a commutative diagram

6 L — CK c CL
(15) HJ ‘*K

l |

E — E™,

as follows from the commutativity of the left-hand diagram (13). Inspired
by the case of function fields, Weil proved that also in the aumber field case
a diagram (14) did indeed exist, and was essentially uniquely determined
by the condition that (15) (together with its analogues when K is replaced
by an arbitrary intermediate field K’ between K and L) should be commu-
tative. In particular, the class ue H (G, Cp) of such an extension & was
unique, and that is the way the fundamental class was discovered.

Nowadays one can proceed more directly, simply constructing & as a
group extension of G by Cp corresponding to the fundamental class g,
and interpreting the unicity as reflecting the fact that H G, Cy) =0
(cf. Artin-Tate, Ch. 14),

The kernel of the map W: & — E is the connected component Dy of Cy.
As Weil remarks, the search for a Galois-like interpretation of & (or even
a “natural”’ construction, without recourse to factor systems, of a group &
furnished with a “natural” map W:& — E) seems to be one of the funda-
mental problems of number theory.
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In support of the idea that & behaves like a Galois group, Weil also
describes how to attach I-series to characters x of unitary representations
of & These L-series of Weil generalize simultaneously Hecke’s L-series
“mit Grossencharakteren” {which are obtained from representations which
factor through Cy via the arrow ¥ in (15) and Artin’s “non-abelian”
L-series (which are obtained from representations which factor through E,
or in particular through G =~ E/A, via the arrow W in (15)). (The intersection
of Hecke’s and Artin’s L-series are those of Weber obtained from repre-
sentations of E®® =~ Cy/Dy, ie. from ordinary congruence characters.)
Using Brauer’s theorem on group characters, Weil shows that his L-series
can be expressed as products of (positive or negative) integral powers of
Hecke L-series, and are therefore meromorphic.

12. Proof of the Existence Theorem

We still have to prove the Existence Theorem (D) of 5.1. Our proof, more
traditional than that used by Serre in Chapter VI, works just as well in the
local case.

If H is an open subgroup of Cy of finite index [Cy : H], we say temporarily
that H is normic if and only if there is an abelian extension L/K such that
H = NyxC;. The existence theorem asserts that every open subgroup H
of finite index in Cy, is normic. (We have already shown that if L/K is abelian,
then Ny Cy, is an open subgroup of Cy of finite index; in fact the normic
subgroups are just the inverse images of the open subgroups of G(K™[K)
under the Artin map ¥, : Cx = G(K**/K).)

First, two obvious remarks: If H#, > H, and H is normic, then H, is
normic (the field L corresponding to H has a subfield L, corresponding to H,).
ILf f’l), H, are normic, so is H, n H, (take as the field the compositum

1hoz)

Next, we go to 9.5 in order to prove

KEY LEMMA. Let n be a prime, and K a field not of characteristic n containing
the n?th roots of unity. Then every open subgroup H of index n in Cg is
normic.

P::ooji In- fact, suppose H is open in Cy with [Cx: H] = n. Let H be
the inverse image of H in J;. Then H' is open in Jg, so there is a finite

set § = M such that H' > [1(1) x [[ U, = U®. Furthermore, H is of
ves vES

index n in Cy, so H' > JE. Therefore H' o [[K*" x [[ U, = E, say.
, veS véS

Thus H = H'{K* o EK*/K*, and from consequence 9.5, it follows that

H is normic.

‘ If L is an extension of K, there is a norm map N: Cp — Cpg; conversely,

if we start with H = Cg we get a subgroup N~ {(H) € C;.
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LeMMa. If LiK is cyclic and H © Cg, and if Npjx(H) = Cy is normic for
%, then H is normic for K.

Proof. Write H' for Nx(H) and let M/L be the class field of H'. We
slaim that M is abelian over K, and Ny x Cy < H, so H is normic. That
Vs Cae < H is clear, since N is transitive; the difficulty is to show that
MV /K is abelian.

(In point of fact, if something is the norm group from a non-abelian
sxtension, then it is already the norm group from the maximal abelian sub-
:xtension (see exercise 8). But this has not been proved here—if it had, we
vould not need L/K to be cyclic, and we would be already finished with
he proof of the lemma.)

MK is a Galois extension since H’ is invariant under G(L/K). The
Salois group E of M/K is a group extension, 0 - 4 - E— G — 1; since
£/4 =~ G is cyclic, it is enough to show that 4 = G(M/L) is in the centre
f E.

We can use the first part of Theorem 11.5. Let i be the Artin map Cp — A.
['o show that A is in the centre, it is enough to check that

¥(x) = od(x)o ™ = Y(ox)
or all xe Cp, and 6 e E. Now : C; = A has kernel H', so we want to
theck that ox/x € H’, which is clear since N{gx/x) = 1.

Proof of the Theorem. (In the function field case we can only treat the
:ase in which the index is prime to the characteristic; for the general case,
iee Artin-Tate, p. 78.)

We use induction on the index of H. If the index is I everything is clear.

Now let # be a prime dividing the index. Adjoin the n-th roots of unity to
K to get K’, and replace H by H’ = Ny jx(H). By the last lemma, it suffices
o consider H’. The index of H’ divides the index of H; we can assume
Cr.t H') = (Cg: H), otherwise H' is normic by induction hypothesis.

So n divides (Cy.: H’). Take H;{ so that H; o H and (Cy.: H') = n.
By the above Key Lemma, H; is normic. Let L be its class field, i.e.
H{ = Ny Cy. Put H' = Npgx{(H"). Then

[CL:H']<[Ck:HY=[Cy:H].
For C /H"¥u§ C.fH' is an injection, whose image is H;/H’, properly
sontained in Cy./H'.)

Hence H” is normic by induction hypothesis; L/K’ is cyclic, so we can
1pply the above lemma again; so H' is normic.
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List oF SyMBoOLS
The numbering refers to the section of this Chapter where the symbol was
first used.
Note (i) [4] is the cardinality of the set A.
(ii) “>" denotes inclusion with the possibility of equality.

1.1. K, K* (non-zero 4. Ji, J§ 73. 11
elements of K) (x)¥ Jis S < My
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U0y W W, A N,
Dw Dw CK
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‘he object of this Chapter is to study the distribution of prime ideals in
arious algebraic number fields, the principal results being embodied in
everal so-called “density theorems” such as the Prime Ideal Theorem
Theorem 3) and Cebotarev’s Theorem (Section 3). As in the study of the
listribution of rational primes, L-series formed with certain group characters
slay an important part in such investigations.

Much of what we have to say goes back to the early decades of this century
ind is described in Hasse’s “Bericht iiber meuere Untersuchungen und
>robleme aus der Theorie der algebraischen Zahlenkdrper” (Hasse 1926,
927 and 1930), henceforward to be referred to as Hasse’s Bericht.

L. Characters

Throughout, let k be a finite extension of Q, of degree v. Let S denote a
set consisting of the infinite primes (archimedean valuations) of k together
with a finite number of other primes (non-archimedean valuations) of k.
S is sometimes referred to as the exceptional set.

In slight modification of earlier notation, an idéle x of k will be written as

X = (Xpp0e s Xp 3 Xp, p00e 00 Xpgs Xpp g - s

where p,,.. ., P, are the infinite primes, Pg+y,-. ., P 2r€ the finite primes of
S, and the remaining p; are the primes not in S. LetJ denote the idéle group.

By a character i of the idéle class group we understand a homomorphism
from J into the unit circle of the complex plane satisfying

(1) Y(x) =1if x e k* (i.e. x, = x for all p);

(2) ¥(x) is continuous on J (in the idéle topology);

(3) Yy(x)=1if x,=1for pe Sand |x,|, =1 forpéS.

As was pointed out in Chapter VII, “Global Class Field Theory”, §4,
\ generates a character of the ideal group IS (the free abelian group on the

set of all p ¢ S) in the following way:
204
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Let
a=TIo¢ ()
i»b
be a general element of I° (so that almost all the exponents «; are 0). For each
i> b, let 7, be an element of k& with |r;],, <1 and maximal. With a we
associate the idéle x" having
1, i=1,2,...,b,
x"),, =
& {ni", i=b+1,...;
then we define
x2(a) = ¥(x%).
We observe that although x is not unique, y(a) is, nevertheless, well-defined
in view of property (3) above. Clearly yx is a multiplicative function in the
sense that for all ideals a,b coprime with S,

x(ab) = x(a)x(b).

Any ideal character y defined in this way is called a Grossencharacter,
and such characters were first studied by Hecke (1920) and later, in the idéle
setting, by Chevalley (1940).

Let 5,5 be two exceptional sets and ¥, x’ characters of I°, I respectively.
We say that y and y’ are co-trained if y(a) = y'(a) whenever both x(a), x'(a)
are defined. This definition determines an equivalence relationt among
characters. In the equivalence class of y there is a unique ' corresponding
to the least possible exceptional set S' (S' being the intersection of all
exceptional sets corresponding to the characters co-trained with x); we refer
to this character ¥’ as the primitive character co-trained with yx.

The principal character y, of I° is defined by yo(a) =1 for all ael®.
The principal characters form a co-trained equivalence class, and the
primitive member of this class is 1 for all non-zero finite ideals.

We shail now look more closely into the structure of a character of the
ideal group IS, with a view to describing the important class of Hilbert and
Dirichlet characters.

‘We can write each idéle x in the form

x = []x(»)
L
where each factor x(p) is the idéle defined by

Xy .y =
“”“zﬁm brr
k] l-

1 To prove ghe transitivity of the relation it suffices to show that if w(p) = 1 for all
idéles y for whlqh ype =1, i=1,2,...,m, then p(x} = 1 for all ideles x. However, for
any ¢ > 0 there is an « € &* such that

¢ — xp,lpe < & i=12,...,m,
by the Chinese Remainder theorem and thus w(x) = y(x~2x) tends to 1 as ¢ -+ 0.
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Chen
W) = [T ),

where \, is a character of J defined by

Vp(x} = Y(x(p))

and is referred to as a local component of  (Chevalley, 1940). We note that
b, is continuous and satisfies (3). We first follow up some consequences of
the continuity of .

Let .4~ be a neighbourhood of 1 containing no subgroup of y(J} except 1.
By continuity of v, there exists a neighbourhood A4~ of 1 in J, say

|x,— l|n <&, PeE, (L1
%o =1 péEE, (1.2)
where E is some finite set of valuations, such that
Y( A"y = A

We choose A4 first to make the set E minimal, and then to make the ¢,’s
maximal; so that for the finite p in E we have ¢, < 1. For finite p, (1.1} is
now equivalent to saying that x, € 1+ p"? where p, is a positive integer. Bl}t
since 1+4p* is a group, so is y,(1+p"¥), whence Y, (14+p*) =1, and this
holds for no smaller integer than p,. We write

= H phe

p finite
veE

and we refer to f, as the conductor of the character y derived from y. Ifp
is finite and belongs to E, (1.1} implies, by virtue of (3), that p & S. More-
over, if p is finite and not in E, (1.2) shows that it is not necessary, in view of
(3), to include p in S. Thus the finite p in E are just those non-archipledean
primes in the exceptional set of the primitive character co-trained with y.

Let m be a given integral ideal of k and let x be any character such that
fim. Then if a = (x) where o = 1 (mod m),

x(a) =y(,....1;1,.
=yl .. e e e L

coliea,. )

by (1),
=y(e~t,...,a"t1,...,1;1,1,...

since a~! e 1+ p* for finite p e S. Hence

xwe) = 11 Yy~

where S, is the set of archimedean primes.
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We now restrict attention to those characters y for which (/) is a discrete
sub-set of the unit circle for all p € S,. Consider a particular p € Sy. There
exists an integer m such that

Yplx™) =1
and, in particular, for all x e k*. The completion k, is R or C according as
p is real or complex, with each x of k* mapped onto the p-conjugate X,
of x. However, a homomorphic mapping of C* into the unit circle and
having finite order must map C* onto 1 and similarly, a homomorphic map
of R*, of finite order, into the unit circle either maps R* onto 1 or maps
R* onto %1 by x—sgnx. Thus, if p is complex, ¢, is identically 1, and if

p is real ¥, is either identically 1 or is £ 1; in the latter case, for x ¢ k* we
have

forallx e J,

1, x® >0,
Volx) = {— i, x® <o,

If x®) > 0 for all real pe S, x is said to be fotally positive and we write
x> 0. Thus, if ¥ has discrete infinite components, y is a character deter-
mined by the subgroup of totally positive principal ideals =1 (mod m).
Such a character is called a Dirichlet character modulo m; if m = 1, y is called
a Hilbert character.

Conversely, we shall now show that any character y of the ideal group I’
which is 1 on the subgroup H"™ of totally positive principal ideals congruent
I modulo m (where S consists of the archimedean primes together with the
primes dividing m) arises in this way from an idéle class character ¥ with
exceptional set S. Let x be such a character, and let y*, ¥, be the restrictions
of x to the group 4° of principal ideals coprime with m, and to the group
B™ of principal ideals = 1(mod m) respectively. Then y,(«) is determined
by the signs of the real conjugates of «. We extend this definition to all
elements & of k* in the obvious way. Then we write y, = y* ¥;!; clearly
Xz is a character of 4% equal to 1 on B™,

We define ¢ corresponding to y by stages. For any idile x, and each p
not in S, define

Vy(x) = x(@%)  wheret p%]x,. 13)

This part of the definition ensures that y satisfies (3).
We next consider together all the finite primes of S, that is, all pe S-S,
We choose yek* such that y = x, (mod p™) for each p e S—.S,, where
p*?|lm (this is possible by the Chinese Remainder Theorem). We then define

[I ¥&)=2x'0) (1.4)
peES—So
for those ideles x having |x,|, = 1 for all p € §~5,.

T p'fjx, means that xp & p° — pr+1,
ANT. 8
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iti i d to define
To complete the definition of ¢ on this sub-set of J, we nee
v, (x) for :: €S, For real peS, let £® be the character on k* defined by
x""” (#) = sgn a,. Then y; is the product of some sub-set of these characters
{»)
X0, say
= II X(p) (T = Sy) (1.5)
pel

and we define Y, (x) for p & Sp by
P}y )1 ifpeT
_ [a®x) if p 16)
Ye(x) = {1 ifpeSe—T, (
i i iti * tinuity.
rovided x, e k*, and we extend this definition to kg l_ay con

’ We post:aone defining W for those idéles x for which |x,|, # 1 for some
p E S-S - * . . -

Itis clgar from our construction that  is multlphc_atlve. We procee(.i to
verify that i satisfies (1} and (2), (3) having been satisfied by construction.
Consider (1) first. Then

T1 #,(0) = 21 '@

peS
by (1.5) and (1.6),
1 ¥@=2"'@

peS—So
by (1.4}, and
I;[st!lp(a) = x(@) = 1" (@)
P

by (1.3). Since x* = %1 X2, ¥ is seen to be 1_ on k*.
It remains to consider (2). But y(x) = 1if
[x,—1], <1, PeSo
x,el4ph, pe S—S,,
e =1 »ES
and this is an open set in the idéle topology. o _
Finally, we need to extend the definition of W to id2les x for which, for
some peS—Sg Ixl,#1. Let x be such an idéle and suppose that
peS—3S, If p*#|x, (where u, is, of course, not necessarily positive), choose
o € k* such that
p~ |«  foreachpeS—=So.
We now define
P(x) = Y(ax), .
noting that the right-hand side bas already been defined. Hence y is well
defined; for, if B is another element of k* such that p~“|| 8 for each p &€ S—So,

Y(Bx) = P(Blor(ax) = (o),
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since Bfa e k* and  is multiplicative. This completes the definition of
as an idéle class character.

We recall that J® is the group of all ideals of % relatively prime to S, 4%
denotes the subgroup of principal ideals in 75, B™ the subgroup of A5
consisting of those principal ideals (&) where « = 1 (mod m), and H™ the
subgroup of B™ consisting of those principal ideals («) which satisfy

e=1(modm), a0,

We note that H™ js the intersection of the kernels of all the distinct Dirichlet
characters modulo m, and the number A, of such characters is thus the index
of H™ in IS,

The index of 4% in I is equal to the so-called absolute class number h. The
index of B™ in A% is the number of units in the residue class ring mod m,
denoted by ¢(m); and the index of H™ in B™ is the number of totally
positive units = 1 (mod m), equal to H/(hd,(m)) where ¢,(m) is the number
of residue classes mod m containing totally positive units and H is the
number of ideal classes in the “narrow™ sense, i.e. relative to the subgroup
of I® consisting of all totally positive principal ideals of k. Thus the number
h,, of distinct Dirichlet characters mod m is given by

H
by = md’(m)-

2. Dirichlet L-series and Density Theorems

In this section we shall take “character” to mean “Dirichlet character”. If
¥ is a character, we define y on S by x(p)=0if pe S.
Let a denote a general integral ideal, with the prime decomposition of a
in k given by
a=[[p"*,  v,2=0,v, =0/ oralmost all p.
P

By N(a) we shall understand the absolute norm of q, i.e, Ny q(a).
We define the Dedekind zeta-function {,(s) by

1 1\t .
C"(S)EZITCI)’=H(1_W) . (s=o+ir),

a®0 P

and with each character ¥ we associate a so-called L-series

x(a) ( x®) )"‘
Ls, )=} —== l—===] .
©0=2 ey = T\~ Ny
Since each rational prime p is the product of at most [k : Q] primes p, the
convergence of both sum and product in each case, and the equality between

them, for ¢ > I all follow from the absolute convergence of sum and product
for ¢ > 1.
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We observe that L(s, xo) and {;(s) differ only by the factors corresponding
to the ramified primes, and that {,(s) is the L-series corresponding to the
primitive character co-trained with ¥o.

As in classical rational number theory, L-functions are introduced as a
means of proving various density theorems (such as Theorem 3 below). An
important property of these functions is that their range of definition can be
extended analytically to the left of the line 6 = 1. The continuation into the

region ¢ > 1 1 can be effected in an elementary way (using only Abel
v

summation and the fact that {(s) is regular apart from a simple pole at s = 1)
by virtue of the following

THEOREM 1

z x(a) = {O(xl_”v): X # Xos
N kx+0(x'""),  x=10
where i depends on the degree, class number, discriminant and units of k.
We indicate briefly the proof of this result. Let C denote a typical coset of
H™ in 75, Then the sum considered in the theorem is equal to
20 X 1

Nia)£x
ael

and since

Foes = Yo»
ZX(C)={"' X=1Xo
[

0 otherwise,
it suffices to estimate the inner sum. Let b be a fixed ideal in C™*. Then

ab = (@) where a is a totally positive element of k such that a=1 (mod m).
As a varies, a is a variable integer in the ideal b. Also,
|N(a)| = | N((@))] = N(a)N(®),
so that the inner sum may be written in the form
L |
|N(a)| < xN(b)
aeb
where the asterisk indicates that ¢ = 1 (mod m), a > 0, and that in each set
of associates only one element is to be counted. The integers a of the ideal b
may be represented by the points of a certain #-dimensional lattice, and the
problem is essentially the classical one of estimating the number of these
points in a certain simplex (Dedekind, 1871-94; Weber, 1896 and Hecke,
1954). The estimate takes the form¥ ' '

i:f" x+ o(xl - 1[\!)‘

- ¥ A better error term can be derived as in Landau (1927), Satz 210,
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A result of this type may also be derived for Grossencharacters, but the
proof is complicated (Hecke, 1920).

As ir} classical theory, deeper methods lead to analytic continuation of
L-functions into the whole complex plane, and thence to a functional

equation for such functions. In the case of the ordinary {-function, one
obtainst

s s\, 1 1 y e
ST (ﬁ) Q)] =17 +f(x o Y LO(x) — 1) dx = D),
where '
O(x)y = i e TE,

m=~cH
and one derives at once the functional equation
@(s) = O{1—3s).
Hecke (19?0) extended this classical result in a far-reaching way to L-series
formed with Grdssencharacters; and, more recently, Tate (Chapter XV)

generalized Hecke’s result to general spaces. For Dirichlet characters,
Hecke's result is summarized below (Hasse’s Bericht, 1926, 1927 and 1930).

Let - - f! r (s+a,,) . T(s)" {M}‘“ Lis, 3

2 427"
then ®(s, x) is meromorphic and satisfies the functional equation

O(s, x) = W((1—5,7)
where W is a constant of absolute value 1, and

d denotes the discriminant;
ry,ro are the numbers of real and complex valuations respectively;
a, = 0,0r 1 according as the value of  in the domain of all principal ideals
(@) with « = 1 (mod f,) does or does not depend on the sign of the
gth real conjugate of .
An explicit expression for W is given, e.g. in Hasse’s Bericht (Section 9,
Satz 15); its presence in the functional equation leads to interesting informa-
tion of an algebraic nature, for instance, about generalized Gaussian sums
(Bericht, Section 9.2 ef seq). It follows from the proof of the functional
equation that L(s,x) is an integral function, except for a simple pole at
5 =1 when y = y,.
] We shall see that information about the zeros of L-functions plays an
important part in applications to density results. The distribution of zeros
in the “critical” strip 0 < ¢ < 1 is particularly important. According to the

1 Titchmarsh (1951).
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generalized Riemann hypothesis, L(s, x) # 0 if ¢ > ¥; but this conjecture is far
from being settled.

Nevertheless, significant information can be extracted from the much
weaker

THEOREM 2
L(s,x) 0 if ezl

Proof. 1In view of the product representation of L for ¢ > 1 we may
restrict ourselves to the case ¢ = 1. The proof falls into two parts, the first
due to Hadamard, the second to Landau. We suppose on the contrary that
14it is a zero of L(s, x).

(i) (Hadamard) Assume that x® #x, if # = 0. If ¢ > 1, we have, from the
product representation, that

U =exp {5 5 e )

pi=1

When p is prime to §,, we write x(p) = ¢'*¢, f, = ¢ log N(p)+c, and consider
the function

|, xo) Lo +it, Lo+ 2it, x*)|
= exp{ Y i 1 N(p)~™ (3 +4cosmp,+cos Zmﬁ,)}
P

prime to f,m=1 1
z1

since 3+4 cosew+cos2w > 0 for all real w. Keeping 7 fixed, we now let
¢ — 140. Of the terms on the left, the first is O((c—1)"?), the second is
O((e—1)*) by hypothesis and the third is O(1) because if 7=0, x* # xo.
Hence the expression on the left tends to 0 as ¢ — 1+0, and we arrive at a
contradiction.

(i) (Landau) It remains to consider the case when y? = y, (so that y is real)
and, if possible, L{1,x) = 0. We consider the product

GLOLED = L N@ K = 3 0,07

where
a,= ¥ Ma)
N(a)=u
and
Moy = ; x(6) =pl;L{1 +x)+ - 2™}
- — -~ ,>¢.0,.5.,.

\;v-here p™l|a signifies that m = m, is the highest exponent to which p divides
a. Moreover, if m, is even for all p dividing a,

Ma) = 1.
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Hence, if ¢ is real and both series converge,
Y, N(a) "Ma) = Y. N(a) =%, 2.1)
4] q
We now utilize the following simple result from the theory of Dirichlet series:

A Dirichlet series of type

fO=Ya,u a20 @=12..)

u=1
has a half-plane Re s > o, as its domain of convergence, and if o, is finite,
then f(s) is non-regular at s = ¢,. (Titchmarsh, 1939, see the theorem of
Section 9.2.)
By hypothesis, f(s) = {,(s)L(s,x) is everywhere regular (the hypothetical
zero of L(s,y) at s = 1 counteracting the pole of {,(s)); hence the series on
the left of (2.1) converges for all real o. However, the series on the right of

(2.1) is equal to {,(20) which tends to 4 co as o — 1+0. Hence we arrive at
a contradiction.

The Landau proof is purely existential, whereas Hadamard’s argument
can be used to yield quantitative results about zero-free regions and orders of
magnitude of L-functions.t

We are now in a position to prove
THEOREM 3 (Prime Ideal Theorem)
=~
Y x(p)=Jl0B%
NEp)<x x
[ Iog x)9 X 5& Xo-
Proof. For Re s> 1, form the logarithmic derivative of L(s, y), namely

L(s, @ _
~ LB -3 § NG 1og NGp)167)

_ log N(p)
=3 P Noy T g(s, 1)

)

{1 +0(1)}’ X = Xos

where g is a function regular for Re s > . Our first, and major, step will be
to estimate the coefficient sum

Y. x(p)log N(p).

Np)sx
One way of doing this is to express the sum as a contour integral of
Ly T T
s L(s, )
T See Estermann (1952) and Landau (1907).
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along the line (¢—ico, ¢4 ioo) with some ¢ > 1, and then to shift the line r?f
integration to the parallel line Re s = 1, with an indent round s=1. This
we now know to be the only point at which a pole can occur (and does occur
precisely when ¥ = o, the residue in this case then leading to the dominant
term). For an account of this treatment, see Landau (1927). It is clear from
even this sketch that the non-vanishing of L{(s, x) on Re s = 1 is vital.
An alternative approach is via the Wiener-Ikehara tauberian theorem:
Suppose that
~$ % @0, g9=3
f(s) —mzi ;; (am = Vh g _m= e
are Dirichlet series, convergent for Re s > 1, regular on Re s = 1 with simple
poles at s =1, of residue 1 in the case of f, and 1 in the case of g, where 1
may be 0. Assume that there exists a constant ¢ such that |b,] < ca,. Then

Y bu~nx, asx-—»oco.
msx

We apply this result with

{'(s) o L'(Ss X) =Tlk-
f(S) = Z:(-;)': (S) = L(s, x)’ ¢ l_k -

Clearly 5 = 1 when y = ¥,, and otherwise = 0.
Finalily, it is an easy maftter to show that

L Y x@logN®~ ¥ 1),

logx n@yss Nepy<

e.g. by partial summation; and this proves the theorem. (The tauberian
approach is described in Lang (1964).)

It is worth remarking that the analytic method can be made to give sharper
estimates of the error terms (Hecke, 1920). Both methods extend to
Grbssencharacters.

In close analogy to Dirichlet’s famous proof of the infinitude of rational
primes in arithmetic progressions, one can show that every Dirichlet ideal
class C contains infinitely many primes p of k. Indeed, by means of the
prime ideal theorem we can show that the primes p are equally distributed
among the classes C; we have, in particular, that

THEOREM 4
1 x
~—_—— - 00,
Nprsx h,logx
pelC
Proof. We have only to remark that
hli'l’ p E C’

Zﬂonm={
F4

0 otherwise.
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By virtue of this orthogonality formula, we have

b ¥ 1=3YHCO) % xv);
ngggx F Nip)sx

on the other hand, the sum on the right is asymptotic to x/log x as x -0
by the prime ideal theorem.

If B is any set of ideals in k, and

lim lig-3‘:card {peB|Np)<x} =

x4+ X
exists, then / is called the density of primes in B. Thus the density of the set
of all primes of k is 1.

To investigate the density of primes in a given set, it suffices to consider
only primes p of absolute first degree, that is, those p for which N, 4{(p) is a
rational prime; for all primes p whose norms N(p} are powers of rational
primes greater than the first, and satisfy N(p) < x, are O(x¥) in number. For
the same reason we may clearly disregard the finite number of ramified
primes.

We shall use this remark in proving the next result, known in classical
parlance as the first fundamental inequality of class field theory (see Chapter
VII, “Global Class Field Theory”, §9, and Chapter XI, “The History of Class
Field Theory™, §1).

TrEOREM 5. Let K be a finite normal extension of k, and denote [K : k)
by n. Let S be the exceptional set in k. K determines the subgroup Hy of I,
of finite index hg in I°, composed of those cosets of H™ which contain norms
(relative to k) of ideals of K coprime with S. Then

h, < n.

Proof. We identify 1/n and 1/hg as the densities of two sets of primes in 4.

First of all, if C is the set of all primes p (of k) in H, then, by the pre-
ceeding theorem, the density of C is 1/As.

Next, since Kk is normal, the prime decomposition of any p in K is of the

form
p=(PB... B
where all the primes %B; have the same degree f relative to p, and
ejr =n,

Since the number of ramified p is finite, we need consider only primes p for
which ¢ = 1. Now consider the set B of all primes p whose prime decom-
position in K'is characterized by e = f = 1, that is, by = n. On the one hand,
by the prime ideal theorem for K (noting that the primes 9, are all the primes
of K of absolute first degree) the density of B is clearly 1/n; on the other
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hand, if peB and Plp, then N, (P) =p, so that Bc H;. The result
follows at once.

Note. It is worth remarking that Theorem 5 can be proved without appeal
to the relatively deep Theorems 3 and 4 and, in particular, to the non-
vanishing of L(s,x) on Res= 1. A more clementary argument, using only
real variable theory, runs as follows:

Let s be real and > 1. By Theorem 1 and partial summation we have

(@) lin}(s—l)L(s, Xo) =K
and
) lim L{s, ) exists and is finite if y # y,.
s—+1

From the product representation of L(s, y) it follows that

x(p)
N(py

where g(s, %) is a Dirichlet series absolutely convergent for s> 4. Using
the orthogonality properties of the characters y, we conclude that

1 1 1
© B NGy ~ B, 51 O

PE

logL(s,x) =2, + 96, %)

where
h.f(s) = Z‘, {log L(s, x)— g(s, )} +10g (s— D) L(s, x0) — 9(s, Xo)-
x#xo
By (a) and (b), limsup f(s) is not + co and, indeed, is finite unless one of the
s=1

L(s, ¥} (x # xo) vanishes at s = 1.
Now let K be as described in the statement of Theorem 5. We have,

analogously to (a), that hm {x(s).(s—1) exists and is finite. Taking
logarithms of the product representatwn of {i(s), gives
i 1 1
e = ~log— + G(5)
sesN(@py n gs—l (
where lim G(s) exists and is finite. Subtracting (d) from {(c), and using

s=1

B = Hg, we obtain

(@

1 1 1
——=-Jlog— +f(s - G(s) =20
(5- Dog; 7 +9 - 60
for all s > 1. Letting s — 1 +0, the result follows.
For the next theorem we require some results from class-field theory.

ZETA-FUNCTIONS AND L-FUNCTIONS 217

THEOREM 6. If K is a finite abelian extension of k, then

{x(s) =[] L(s, 1. k) (2.2)

where, in the notation of the preceding theorem, the product on the right
extends over the primitive characters co-trained with the characters of the
class group IS/Hj,

FProof. The proof is carried out in terms of local factors, and we consider
separately non-ramified and ramified primes p of .
() Let p be a non-ramified prime of &, so that

p=%P ...
where P,.. ., B, are distinct primes of K. From class field theory,
N K[Q(ipi) =N, ka(P)f
where If = [K:kl=n.
Thus the corresponding local factor on the left is
(L=NGp)™19",
whilst the corresponding local factor on the right is

I;[ (L—x(P)N®) ™~

Since f is the least positive integer such that y(p') = 1 for all y, we have the
easily verifiable identity (take logs of both sides and use A5 = )

(A—yH)y=™ =l;[(1—x(v)-y)";

from this, with y = N(p) ™", equality of the local factors follows at once.

(i) The proof for ramified primes is more difficult, and depends on the
functional equations satisfied by the various L-functions. We begin by
writing

CK(S) = g(s) ];I L(S, X k),

and prove that g(s) is identically 1. From above, g(s) is equal Lo the finite
product over ramified p of the expressions

l;[ {1-x(PIN(P 7}
H {I-N(®)™} -

If this product is not constant then it has a pole or zero at a pure
1magmary point itg, £ # 0. In view of the functional equations, g(1 —s)/g(s)
is a quotient of gamma functions and so can have only real poles and zeros.
Thus 1—if, is also a pole or zero of g. But we know that 1—it, is not a

singularity or zero of any of the L-series or of {\(s). Hence g is constant, and
so equal to [,
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Example 1.1 Let k=Q, K= Q(w) where o is a primitive mth root of
unity. Then

{x(s) ={(s) l;[ L(s,)

where the product on the right extends over the primitive characters
co-trained with all non-principal rational characters mod m.

Proof. See Chapter III, §1.
Example2. Letk=Q, K= Q(\/d) where d is the discriminant of X. Then

9=t 5 (5)m,

where (Sl) denotes the Kronecker symbol (Hecke, 1954, Chapter VII).

We touch upon another consequence of this theorem. We recall that the
functional equation of an L-function contains a factor

{ldIN G,
Applying the functional equation to {x(s) on the left of (2.2) and to each of
the L-series on the right, one can derive the relation

I 14 = ol

where D is the discriminant of K (Hasse’s Bericht, Section 9.3). If we assume
for the moment that k = Q, we obtain

T17, = Disc(K/K). (2.3)
%

This inference is not as easy to justify in the general case when k # Q,
because two distinct ideals in & can have equal norms. However, it can be
proved (Hasse’s Bericht, Section 9.3, formula (12) and Note 44) that (2.3} is
valid in general.

3. L-fanctions for Non-abelian Extensions

Suppose now that K is a finite, normal but not necessarily abelian extension
of k of degree n. The problem is to develop in this case an analogue of the
above theory of L-series formed with abelian group characters.

As usual, let G be the Galois group of X over k. Let {M(1)},. c be a repre-
sentation of G into matrices over the complex field. Thus to each element
p of G corresponds a matrix M(u). The character x(u) of u is defined to be

t By (2.2), since x(s) and L(s, xo, £) = {i{s) have simple poles at 5 =1, and the
remaining L(s, x, &) on the right are regular there, it follows that these L(s, x, k) do not
vanish at s = 1. In particular, in the situation of Example 1, it follows that all the L-func-
tions formed with non-principal Dirichlet characters modm do not vanish at s = 1.
This is an alternative proof of the key step in the proof of Dirichlet’s theorem on the
infinitude of primes in arithmetic progressions mod m.

B T T T
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the trace of M(y) and depends only on the conjugacy class (u) in which p
lies.

Two representationst {M(u)},eq, {N(i)},e are said to be equivalent if
there exists a non-singular matrix P such that

PM(P™* = N(»)

A representation {M()} is said to be reducible if and only if it is equivalent
to a representation {N(u)} such that

(1),
%= (Yo ® o

where {NM()}, {N®(1)} are themselves representations of G.

The character of an irreducible representation is said to be simple, From
the general theory of group representations (for an account of this theory see
e.g. Hall, 1959) the number g of simple characters of G is equal to the number
of conjugacy classes of G, and the following orthogonality relations are known
to hold:

forallpeG.

) forallpe G,

syt X=1)
EGx(u)x () {0, s (3.1)
in particular
_ fn,  xprincipal,
ugoxw) {0, otherwise,

where the principal character is the character of the representation M(y) = 1
for all p e G, to be denoted henceforward by x,. Also, if ¢, ¥s,.. ., ¥, are
the simple characters of G, then

g nfl, pel{w
Vv ={ g , ’ 3.2
ZITE =" e, G2
where I, is the number of elements in the conjugacy class {u) of p. In
particular, taking p' = p =1,

n? =n, (3.3)

where #, is the degree of W, (that is, ¥, is the character of a representation by
n; X 1y matrices).

If G is abelian, then each /, = 1, so that g = n and each n; = 1. Thus each
character ¥, is a homomorphism of G into the unit circle, and so an abelian
character.

Eet B be a non-ramified prime of K, and let p be the prime of & lying under
PB. We shall denote the Frobenius automorphism of K/k relative to P (for

1 It should be clear from the context that N is not used here to denote a norm!
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K
definition see Chapter VII §2) by [ ﬂ/.‘» ] If

|1 — M(p)x|
is the characteristic polynomial of M(p)—so that I denotes the unit matrix—
we take as local factor of our L-function the expression

o [ i

We note that this definition cannot be extended to ramified P since there is
no corresponding Frobenius automorphism.

It is important to note that this local factor depends only on the character
x of the representation, and not on the explicit representation matrix. For
any similarity transformation of M(u) leaves its characteristic polynomial
invariant and, since M(y) has finite order, the Jordan canonical form of M(x)
must therefore be a diagonal matrix all of whose diagonal elements are roots
of unity. Thus, without loss of generality,

()

may be taken to be

& 0
“([5))-
The local factor is then equal to ®
Ta-en@ =ep{ %, £ Lave ™|
-on{ £ o ([ka] ot 6o

’N

k
since z &' is equal to the trace of [ /

os((47)

We collect up the local factors corresponding to non-ramified P and
define the so-called Artin L-functiont essentially by

Lis0) = Lis, Ky = 1 |i-M ([Kﬂ/;‘]) NG

non=-ram,
¥

we shall introduce later a factor derived from the ramified primes.

T See also Artin (1930).

} which, by definition, is equal

a!

~-1

>
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We now list 2 number of observations about L(s, y):

() L(s,%)is regular for ¢ > 1, since the product is absolutely and uniformly
convergent in every closed sub-set of the half-plane Re s > 1.

(ID) If K/k is abelian, and if y is simple then, apart from the factor corre-
sponding to the ramified primes, this definition coincides with that given in
Section 2 above.

(II1) Suppose that Q is a field intermediate between K and &, normal over
k. Let H = Gal(K/Q), so that H is a normal subgroup of G and

G/H = Gal (Q/k).

Then if y is a character of G/H, it can be regarded in an obvious way as a
character of G, and

L{s, x, K{k) = L(s, x, k).
Proof. Take the character over G defined by the representation
M'(p) = M(uH).
We have
kol
Xt P4 = XN (mod P) (3.5)

for all integers X e K, and in particular for all integers X € Q. Since Qisa
normal extension of k,

XeQ=>X"'cQ foralluegG.

Hence (3.5) is a congruence in Q, and since P is unramified, if P lies over q
in Q we have

Kk
X (5] = X¥®(mod q).
Hence also

Rik
X[ 3 17 - v (mod q),

k
ie. [%] H is the Frobenius automorphism in .

e (5 o (5] o
-fu (] o

(IV) Suppose that y is a non-simple character of G, say x = x, +xz. Then

L(s, x) = L(s, x)L(s, x2)
since log L is linear in y by (3.4).

Thus
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(V) Suppose again that Q is a field intermediate between K and %, this
time not necessarily normal over k. Let H = Gal(X/Q), and suppose that

G=ZHC(;
i

is the partition of G into right cosets of H. To each character y of H there
corresponds an induced character x* of G, given by

x*(w) = ; xuporY),  peG; (3.6)

apay~le H
then

L(s, x*, K[k) = L(s, %, K/Q).
Proof.¥ Let P be a non-ramified prime of K, and p the prime of k£ under .
Suppose that, in Q, p has the prime decomposition

.
=1Ta  Naga) = Nyen)™
P ‘];Ilq; arela) = (NyoP) 3.7

and suppose that 7, is an element of G such that q; lies under ;8. Then
(Hasse’s Bericht, Section 23, I) G can be decomposed in the form
r fi—1

G= Z 2 Htiﬂgls

i=1x=0

-1

From the definition of induced character given above, we have

Ji=1
=3 2 T T T P

r
i=1 =0
Tipo™ (oo~ ¥l Tl e H

= ;Zl SixCpg )
o™ ~1 e H
=3 fire§e)
Jilm
since (7,107 )" ¢ H if and only if f}|m.
The logarithm of the p-component (p non-ramified) of L(s, x*, K/k) is

m.]L* —ms_w_]; -m,' . —
mZ& oy (15)N(p) —mz::l mN(p) i};lf,x(ti_uor,- H

where

b o f‘ Iilm-l i
=Z Z = x(tugT DN(p)™™
i=lm=1M
Silm

= Z mlt"{x(*rmé'rf HYN(@) ™™

i=11=
T For an alternative proof see Hasse’s Bericht, Section 27, VII.
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by (3.7), on writing m = f;¢ in the inner summation; and this is nothing
but the sum of the logarithms of those q-components of L(s, x, K/Q) which,
by (3.7), correspond to p.

We proceed to consider some special cases of (V).

V(i) Q=K. Then H = Gal(K/Q) = (1) and we have only one character,
the principal character y,. In this case, then, L(s, xo, K/C2} reduces to {x(s).
By (3.6) the corresponding induced character, y,*, of G is given by

wsn _ Jmif pis the unit element of G,
1ol = {0 otherwise. (.8)

Let §,,¥3,. .., ¥, be all the simple characters of G. By (3.2), with y' =1,
we have /; = 1 and arrive, by (3.8), at

S = 1. (39)

‘We observe that, of course, (1) must be a positive integer. By repeated
application of (IV), it follows that

0 =i1jl Lis, 1, K[1¥AD, (3.10)

V(i) 2 = k. By (III) (with Q = k and therefore G = H),
L(S, Xo» K/k) = L(S, Xo» k/k)
= {,(s).

We shall now deduce from the preceding theorems the remarkable result
that a general Artin L-function L(s, x, K/k) can be expressed as a product of
rational powers of abelian L-functions L{s, y, KfC}), where the £’s are fields
intermediate between & and K with K/Q abelian.

With the notation used in (i), each character x of G can be written in the

form
g

X =‘)_31r,%, (3.11)

where the r’s are non-negative rational integers. Hence, by repeated
application of (IV), it suffices to consider the simple Artin L-functions

L(s, ¥, K{K).
Let H be any subgroup of G, and let {; run through the simple characters
of H. Each ¢, induces a character £} of G, given, let us say, by
G = i)  forallpeg, (3.12)

in accordance with (3.11).
The restriction of ¢, to H is, itself, a character of H and therefore has an
expression of type (3.11) in terms of the {;’s. Moreover, by the theory of
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induced characters, this representation actually takes the form
Y=Y ruéx), allteH, (3.13)
i

where the coefficients r;; are the same as in (3.12).
Now take H to be a cyclic subgroup of G. Then if Q is the subfield of X
consisting of elements invariant under H, K/Q is abelian and so, by (V),

L{s, £7, K[k) = L(s, &;, K/Q),

which is an abelian L-function. To prove our result, it therefore suffices to
express each i, as a linear combination of characters of type &7,

Each element y of G generates a cyclic subgroup H, of G and so, by (3.12),
denoting the simple characters of H, by ¢{,, ;, we have

i) =§1"y;ﬂ¢;(u), allpeG. (3.14)

The system of equations (3.14) is described by a matrix with each fixed
pair (y,/) determining a row and each 7 a column and we shall prove that its
rank is equal to g.

Suppose on the contrary that the rank is less than g. Then the columns
are linearly dependent, i.e. there exist integers ¢y, ¢z,. . ., ¢, not all zero, such
that

g
Y er, ;=0 forallyeGandallj.
i=1
Thus, by (3.13), interpreted in relation to a particular ,,
PRAZOEDY Ci; rppbufe)  alltel,

i

=0, allte H,.
In particular, taking T =y, we arrive at
Yeyp(y)=0 forallyeG, (3.15)

i
contradicting the linear independence of the simple characters ¥y, ¥r,,. .., ¥,.

Following on from (3.15), multiply this relation by ,(y) and sum over all
the elements y of G. From (3.1} it follows that

ne, =0 (k=1,2,...,9) (3.16)

whence ¢; = ¢, =...=¢, =0 (so that, incidentally, we have here another
way of arriving at a contradiction). Either way, we have now that the system
of equations (3.14) can be solved for ¥, giving
Y= Z E uv:.fl"s;fz.f
166G J
where the coefficients u,, ;; € Q.
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The argument centering on (3.16) can be carried out modulo any prime p
which does not divide n, whence it follows that the coefficients u,, ; have
denominators composed of prime factors of n.

We have thus proved the following

THEOREM 7. For any character y of G, the Artin L-function L(s, x, K/k)
is given by
L(S, x: K/k) = 1:[ H L(Ss Elj: KIQi i
Kl

where each Gal(KfQ,) is cyclic, the &,’s are (abelian) characters of Gal (K/<)
and each ny; is rational with denominator composed of prime factors of n.

It has been proved by Brauer (1947) that the exponents in the above
theorem can be taken to be rational integers, and it follows, in particular,
that the Artin L-functions are meromorphic. Furthermore, if y is non-
principal, then the ¢’s in the above product representation of L(s, x, K/k) can
also be chosen non-principal. Hence Artin L-functions formed with non-
principal characters are, in addition, regular and non-zero for ¢ 2 1.

If, on the other hand, y = ¥, is the principal character, then L(s, %o, K/k)
has a simple pole at s = 1. Artin has conjectured that, apart from this simple
pole, in the case y = xq, the L(s, y, Kfk) are integral functions.

This conjecture would imply that {(s)/{;(s) is an integral function when-
ever k = K. If Kjk is normal, this is true by (3.10), (V(ii)) and a fundamental
theorem on group characters due to Brauer (see Lang, 1964 p. 139).

Artin’s conjecture has been verified when G is one of the following special
groups: S; and, more generally, any group of squarefree order; any group of
prime power order; any group whose commutator subgroup is abelian
(Speiser, 1927); S, (Artin, 1924). The conjecture has not been confirmed for
G = A 2.

By Theorem 7, each Artin’s L-function L{s, ) is seen to satisfy a functional
equation by virtue of the fact that each abelian L-function occuring on the
right satisfies its own functional equation. This equation will be of the form

O(s, x) = W()O(1—s,X)
where W is a constant of absolute value 1, and @ is of the form

0650 = 40T (5) " T(5) " Ko

with 4,5 in Q and A a positive constant.

At this point we recall that, in the definition of Artin’s L-function, we
omitted to include a factor corresponding to the ramified primes. Now we
introduce on the right-hand side of (3.17) the ramified local factors corre-
sponding to the abelian L-functions (see beginning of Section 2), and take
the new product as the definition of L. Then the above functional equation
is satisfied automatically by the redefined L-function.
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‘What is lacking in the theory of Artin L-functions is a non-local approach
(provided, in the abelian case, by a series definition of L-functions). This
lack causes the difficulties in extending these L-functions to the complex
plane.

Example: The case G = S;.
The elements of 55 fall into three conjugacy classes
Ci:(l); Cp:(1,2,3),(3,2,1); C5:(1,2),(2,3),3,1).
Hence there are three simple characters. Let i, be the principal character
and i, the other character determined by the subgroup C, u C,. These are
both of first degree and so, by (3.3), 5 is of degree 2. Thus, by (3.2) with
u' = 1, we have that
6, p=1,
n 2= {0

0, otherwis;a.
Hence the table of simple characters of S; can be set out as follows:
Yi W2 s
Cy 1 1 2
C, 1 1 -1
C; 1 -1 0.
Working from (3.6), we obtain the induced characters x* corresponding to
the characters y of

() H=4,:
U S 4
(ol 2 2 2
C, 2 -1 -1
C; 0 0 0;
Fr R
C, 3 3
C, 0 0
C, 1 -1;
Gii) H={1}:
Xe
C, 6
C, 0.
From these tables we see that
xt = ‘I’l +|»02a X? = x: = '103:
x: = 'Jll +'1039 x? = 'JIZ""WS’

xE =Y+ +20,.
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S, is the Galois group of any non-abelian normal extension K of k of
degree 6. Let Q,, Q, be the two intermediate fields fixed under the subgroups
A3, {(1),(1,2)} respectively. Thus Q, is a quadratic extension and Q, a
cubic extension of &, and X is therefore an abelian extension of each of them.,
Also, Q, is an abelian extension of k. Thus, by (V(ii)), and (IV),

Cx(s) = L(s, %0, K/K) = L(5, ¥y + 2+ 23, K[k)

= L\Pz L\PzL%Pa’

£a,(8) = L(s, 0, K[Q) = L(s, ¥y +V5, K[K)
=Ly, Ly,

Cn,(s) = L(S: Xos KIQ'Z) = L(S: ')l’l -+ 'ﬁs, Klk)
= L'h L\h’

and
gk(s) = L(S: Xos Klk) = L:h'
We remark that
L.p; = L(s, Y2, K[k) = L(s, x5, Q4/K)

Llh = L(S: 'lbai Kfk) = L(S, X2» K['Ql)
by (V). Hence L,, and L,, are integral functions.
Incideatally, this example verifies Artin’s conjecture for Gal(Kfk) = S;.
We conclude this brief survey of the non-abelian case by quoting Cebo-
tarev’s density theorem:
Let Kfk be normal and let G = Gal (K/k). Let C denote a given conjugacy
class in G. Then the class of all non-ramified primes p, each having the

by (III) and that

Kjk .
property that [TIB—] e C for somef prime P of X lying over p, has density
equal to

cardC
card G

Using arguments of the kind described above (see Section 2), this result
follows from the fact than an Artin L-function has no zeros on the line
Res=1.

Example. As an illustration of the theorem, let us consider the case of a
non-normal cubic extension Kyfk. A (non-ramified) prime p in & factorizes
in Kj; in one of the following three ways:

O p=P1PB. P,

(2) p="P,P, wherethedegP,/p=1,degPa/p=2

@) p=1.

. . K .
1 In fact, C consists of the Frobenius automorphisms [-%c] corresponding to those

%, lying over p.
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We wish to determine the density of primes p falling into each of these
categories.

Let K denote the minimal extension of K; that is normal over k. We study
the factorization of p in Kj, bearing in mind that in any decomposition of p
into primes of Kj, these all have equal order. Thus in (1) p decomposes
either in six primes (in Kg) of degree 1, or By, B, P, are themselves primes
of K, each of degree 2. The latter possibility is ruled out because K,fk is not
normal.

[Suppose, on the contrary that, each B, remains a prime in Kg, and hence is of

degree 2 in K,. Write
Kk
g; = {—l]
B

Then each o, is of order 2, and hence is a 2-cycle (note that Gal (Kglk) = Sa)-
Further, the &,’s span a conjugacy class, and hence are distinct transpositions.
Now K, is the set of elements of K invariant under some 2-cycle, say o;. Thus

a,(B; n K3) = P, n K,

But since there are three distinct prime ideals in Ka, and since each has a unique
extension to K, (for each remains a prime in K),

oPi=%P (=123)

Let the subfields jnvariant under o3 and o3 be K3 and X5, Then, in a similar way
we have (since K} and K are the conjugates of Xy)

ajq;i = s‘pi (i’j! = 1: 29 3)‘
But the transpositions generate S3. Hence

Ss‘-B: = ":Bi-
Thus there is no automorphism r such that
P8, = B,

and this is impossible.]

In (2), we must have p = q, 9, B, as the prime factorization over K, each
factor being of degree 2, with g, q, = B,. In (3), either p remains prime, ox
p decomposes into two primes of degree 3. The former would imply that

[K5/k

—p_] generates S, which is impossible. Hence the latter decomposition
must held.

Kk
We now apply the fact (Chapter VII, §2) that the order of [%]
equals the degree of q. From this it follows for each prime g of K lying

Kk .
over p that [—Z—lc] is an i-cycle in case (i) (f = 1,2, 3). Hence, by Cebotarev’s
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theorem, the required densities in cases (1), (2) and (3) are ¢, § and 1
respectively.

The following result is a direct consequence of Kummer's theorem (see
Chapter III, Appendix, or Weiss (1963), 4.9 and in particular 4.9.2).

“Suppose f € k[x], is irreducible, and 8 is a zero of f. Let p denote a prime
of k. Then, for almost all primes p of k, p splits in /(0) as f(x) splits over the
residue class field of £ modulo p.”

Now let n(p, f) denote the number of solutions of the congruence

f(x) = 0 (mod p);

then, for almost all p, n(p,f) may be regarded, alternatively, as the number
of prime factors from k(8) of p having degree 1 relative to k. Applying the
prime ideal theorem (Theorem 3) to primes of k({6), we arrive therefore at
the following

TreoreM 8. Using the notation defined above,

X
mp,Jy~— as x — 0.
N(ggx (P f logx

Corollary 1. More generally, if f is the product of 1 distinct irreducible
Sactors, then

x
nlp, l~1— as x — o0,
N(?;sx ®./) log x -

Corollary 2. If, for almost all p, f splits completely mod p, then f factorizes
completely over k[x].

Proof. If n' denotes the degree of f, then we are given that n(p,f) =n’
for almost all p. Hence, by the prime ideal theorem for &, I = n'.

It would seem plausible that if f has at least one linear factor mod p for
almost all p, then f has at least one linear factor in k[x]. However, the
following counter-examples show this to be false.

) f(x) = (x*~a)(x*—b}(" —¢)
where abe is a perfect square in Z, with none of @, b, ¢ a perfect square.
For, if a, b are quadratic non-residues mod p, then ¢ is a quadratic residue
mod p and hence f has two linear factors mod p.

(i) J) = (62 +3)(x* +2).

For if p=1 (mod3), x*+3 factorizes mod p, and if p=2 (mod 3),
x? 42 factorizes mod p.

However, we do have the following,

THEOREM 9. If f is a non-linear polynomial over k which has at least one

linear factor modulo p for almost all p, then f is reducible in k[x].
Proof. Assume that fis irreducible. Then it follows from Theorem 8 and
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the prime ideal theorem for k (Theorem 3) that

x
n —DN=o —)
5 E00=D = (i)
Hence, since #(p,f) = 1 almost everywhere, n(p, f) = 1 almost everywhere.

Let K be the root field of f over k, and q a prime ideal in &k which splits
totally in K. Then q splits totally in 4(6) and n(q, f) is equal to the degree of
£, with a finite number of exceptions. These q have positive density by the
prime ideal theorem (Theorem 3) in K. Hence fis linear.
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1. Introduction

Let k be an algebraic number field of finite degree and /, its class number,
i.e. the order of the finite group Cl, of divisor classes of k. One of the most
striking features of algebraic number theory—as compared to rational
number theory—is the existence of fields & with class number k; > 1, ie.
whose ring of integers is not a principal ideal ring.

There arises the question as to whether every such k can be imbedded into
an algebraic number field K of finite degree with hg = 1. We refer to this
problem as the imbedding problem for k, and to K as a solution of the
imbedding problem.

Let &, be the Hilbert class field of k. It can be defined as the maximal
unramified abelian field extension of k. The Galois group of k,/k is iso-
morphic to Cl, via the reciprocity isomorphism of class field theory. In
particular,

(k1 : k) = hk'
The principal divisor theorem states that every divisor of & becomes a prin-
cipal divisor in k,. But there may be divisors of k; which are not principal;
s0 let &, be the Hilbert class field of k,. Continuing, we obtain a tower of
fields
kck,ck,cke...

in which each field is the Hilbert class field of its predecessor. This is called
the Hilbert class field tower of k. We denote by k., the union of the fields &,.
This is an algebraic number field whose degree may be finite or infinite.

PropPOSITION 1. If the imbedding problem k = K with hg = 1 has a solution
K, then k, = K. In particular, the degree of k., is then finite.

Conversely, if the degree of k., is finite, then h, =1 and hence k., is then
the smallest solution of the imbedding problem for k.

Proof. (i) First we show k; < X for all . Using induction we may assume
i=1. The field extension k,/k is unramified and has abelian Galois group.

231
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Both these properties carry over to the composite field extension k, K/K.
Hence k, K is contained in the Hilbert class field K, of K. By assumption,
Ky :K)=hg=1. Itfollows k; = K.

(ii) Now we assume k,, of finite degree. Then k, =k, if i is large. Hence

by, =My, = (kg k) =1. QED.

By Proposition 1 we see that the imbedding problem for k is equivalent to
the problem of whether the Hilbert class field tower of k is finite. This
problem has been posed by Furtwingler and it is mentioned in Hasse’s
Klassenkdrperbericht 1926, in connection with the (then yet unsolved)
principal divisor theorem for k. Although the principal divisor theorem was
proved already in 1930 (Furtwingler), it was not until 1964 that the finiteness
problem of the Hilbert class field tower could be solved. The solution has
been given by Safarevi& (together with Golod) who showed that the answer
in general is negative, i.e. the Hilbert class field tower can be infinite.

The purpose of this course is to give a report about Safarevi&’s results,
together with the related work of Brumer.

Let p be a prime number. A field extension K/k is called a p-extension if it
is Galois and if its Galois group is a p-group. (Warning: if K/k is not Galois
it is not called a p-extension, even if its degree is a p-power.)

Let k" be the maximal p-extension of k contained in k, ; this is called the
Hilbert p-class field of k. Let k§ be the Hilbert p-class field of k{®. We
obtain a field tower

kekPckPckPe...
in which each field is the Hilbert p-class field of its predecessor. This is called
the Hilbert p-class field tower of k. The union of the k{® is called k%,

It is easy to see that k{”’ = k, and in fact k(P is the maximal p-extension of
k which is contained in k;. It follows K’ = k. In particular, if k2 is of
infinite degree we see that k, is of infinite degree too.

Hence we ask: Under what conditions is k% of finite degree, if p is a fixed
prime? The fact that we shall deal with k®) rather than with k., is due only
to the fact that p-groups are easier to handle than arbitrary solvable groups.

The following proposition is the analogue to Proposition 1 for the p-class
field tower and is proved similarly, using the fact that (k{’: k) = h{®) is the
p-power part of the class number /,. The proof is left to the reader,

PROPOSITION 2, Let p be a prime number. If the imbedding problem
k = K with p ¥ hy has a solution K, then k& = K. In particular, the degree of
k9 is then finite,

Conversely, if the degree of K is finite, then its class number is not divisible
by p and hence k) is then the smallest solution of the imbedding problem for
k with respect to p.

Now we state our main result. First a definition: If G is any group, we
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denote by G/p the maximal abelian factor group of G of exponent p, regarded
as a vector space over the field of p elements. We define the p-rank d”’G to

be the dimension of G/p:
aPG = dim G/p.

If G is finite abelian, then d®G is the number of factors of p-power order
which occur in a direct decomposition of G into cyclic primary components.

THEOREM 3 (Golod-Safarevi®). There exists a function y(n) such that

dPCl, < y(n)

for any algebraic number field k of degree n whose p-class field tower Is finite.

Remark 4. As we shall see in the proof of Theorem 3, we have
() dPCl, <2+2./(r+3P)
where r, denotes the number of infinite primes of k and 6”’ =1 or 0
according to whether the pth roots of unity are contained in k or not. Since
r, = nand 62 < 1 we see that we can take

y(n) = 24+2./(n+1).

In order to formulate our next theorem, we introduce the following nota-
tion. Let ¢ be a finite prime in the rational number field @, and let &3 be
any extension of g to k with the corresponding ramification degree e(f2).

Let us put
el(q) = ged e(R)
e

where £ ranges over the extensions of ¢ to & (ged means “greatest common
divisor””). We shall call g completely ramified in k if e,{g) > 1. Let {? be the
number of completely ramified ¢ such that p divides e,{g).
THrOREM 5 (Brumer). There exists a function c(n) such that
AP ClL, = 1P —o(n)
Jor every algebraic number field k of degree n.
Remark 6. One can show that
dPClL z (P ~rn
where r, has the same meaning as in Remark 4. Since r, £ n we see that we
can take
c(n) = n2
Actually, following Brumer, we are going to prove here Theorem 5 only
in a somewhat weaker version, insofar as we shall consider only Galois
extensions k of Q. We shall exhibit a function ¢'(n) such that for every Galois
extension kfQ of degree n the following inequality holds:
dPCl z 1P —c'(n).
Our proof of Theorem 5 in the general case requires the use of the Amitsur
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cohomology in number fields which we do not want to assume known in this
Chapter. For Galois extensions, we shall show that

@ 0,z d - (257 + w0 0)

where w,(n) denotes the exponent of p occurring in n, Since w,(n) S n—1
we see that we can take

ed(n)=m—-1)+n-1)=2@n-1).
Combining Theorems 3 and 5 we obtain the
COROLLARY 7. If k is an algebraic number field of degree n and if
1P 2 y(n)+e(n)
then the p-class field tower of k is infinite.
In particular, for any given degree n> 1 and any prime p dividing n, there

exist infinitely many algebraic number fields k of degree n with an infinite
p-class field tower, for instance the fields

k = Q(Y/(gy- - -an) with N Z y(n)+c(n)
where the q, > 0 are different prime numbers in Q.

Numerical examples: We consider the case n=p=2 and use the
estimates given by formulae (1) and (2). We have §'=1, w,(2) = 1.
Furthermore, {2 is just the number of finite primes of @ which ramify in k.
It follows: A quadratic field k has an infinite 2-class field tower if the number
of finite primes of Q which are ramified in k is 2 2+2./(ry+1) +r

If k is imaginary, we have r,=1. Since 2+2v/2+1 < 6 it follows that
any imaginary quadratic field with at least six ramified finite primes has an
infinite 2-class field tower. A small numerical example is

k = Q(/(~2.3.5.7.11.13)) = Q{/(—30030)).

If k is real, we have r, = 2. Since 2+2\/§ +2 < 8 we see that in the real
case we must have at least eight finite ramified primes in order to deduce the
infinity of the 2-class field tower. A small numerical example is

k = Q(/(2.3.5.7.11.13.17.19))
= Q(./(9699690)).

2. Proof of Theorem 3
We consider the following situation:

k  an algebraic number field of finite degree;
Cl, its divisor class group;

C, its idele class group;

U, the group of idéle units;

E, = U,nk the group of units in k;
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W, the group of roots of unity in k;

p  a fixed prime number

K =k¥ as explained in Section I;

G = G(K/k) the corresponding Galois group.

Under the assumption that (K:k) is finite we are going to prove the
inequality (1) of Section 1.

The proof will be divided into two parts. In the first part, we shall reduce
Theorem 3 to a purely group theoretical statement about finite p-groups. In
the second part, we shall prove this group theoretical statement.

The unit theorem says that E; is a direct product of the finite cyclic group
W, and a free abelian group with r,—1 free generators. (See Chapter II,
§18.) This gives

dPE, = (r,~1)+dPW, =(r—-D+ &P,
Therefore the inequality (1) to be proved can also be written as
dP Cl, < 2+2./(dP E,+1)
or equivalently, in rational form:
(3) 3d® CLY?—d® CY, < dPE,.
First we observe that

d®Cl, = d¥G.
Namely, we have

dP G =g (G“")
where G® is the maximal abelian factor group of G. This follows directly
from the definition of the p-rank of G as given in Section 1. Now, G is the
Galois group of the maximal subfield of K which is abelian over k; this
subfield is the Hilbert p-class field k%’. By the reciprocity isomorphism of
class field theory, we have therefore

G® = CIP
where CI{?? is the p-Sylow group of Cl,. By definition of the p-rank,
4® Cl},") = q» Cl,.

This proves our contention.

Therefore the inequality (3) to be proved may be written as
@ AP G —d PG < dPE,,

Any factor group of E, has p-rank < dPE,. In particular, this is true for
the norm factor group:

EJN x;::(Ex) =f O(G, Ep).
Hence it suffices to show that
') HdP G2 —dP G < dP A%G,Ey). ‘
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To determine the right-hand side, we use the exact sequence
15 By Ug—>Uy/Eg—1.
Since Kfk is unramified, Uy is cohomologically trivial as a G-module. (For
the proof, decompose Uy into its local components and prove the similar
fact for a local Galois extension and its unit group, cf. Chapter VI, § 2.5.)}
It follows that
HO(G» Ex) = H_I(G, UK/EK)'
Now we use the exact sequence
1- UK/EK—) CK'—} CIK - 1.
Here, the group Cly is of order prime to p. This follows from the fact that
K = k'? is the maximal field in the Hilbert p-class tower; see Proposition 2 in
Section 1. Since G is a p-group, we conclude that Clg is cohomologically
trivial as a G-module. Therefore
H™ (G, Ug/Ex) = H(G,Cx) = HG, D).
using Tate’s fundamental theorem of cohomology in class field theory
(Chapter VII, §11.3).

It follows that the inequality (5) to be proved may be written as
6) 1(d® G —d® G < dP H,(G, Z).
using the fact that

Hz(G, Z) = H-S(G! Z)
by definition of the cohomology groups with negative dimensions.

The inequality (6) is now a purely group theoretical statement; we shall see
that (6) is true for any finite p-group G.

According to our notation introduced in Section 1, let Z/p denote the
cyclic group with p elements. The homology groups H(G, Zfp) are annihi-
lated by p and may therefore be regarded as vector spaces over the field with
p elements. Let us put

dP G = dim H(G, Z/p).

Lemma 8. For any group G, there is a natural isomorphism H,(G, Z/p)=G/p.
In particular, dP G = 4P G.

Lemma 9. For any finite group G, we have

dP H,(G,Z) = dP G- dP G.
Proofs. Consider the exact sequence
0-Z—->Z-Z/p->0
P
where —- denotes the map “multiplication by p”’. Consider the corresponding

1 Recall that the absence of ramification for an imfinite prime means the corresponding
local extension is trivial, i.e. of degree 1.
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exact homology sequence
H(Z)—> H(Z) - H{(Z[p) ~ H,_(Z) = H;_,(Z).
P r

(For brevity, we have written H(Z) instead of H(G,Z).)

In general, if 4 is any abelian group, let 4, be the kernel of the map
A - A; its cokernel is 4/p. With this notation, we obtain the exact sequence
(N 0 H(Z)/p— H(Z[p) —» H,.,(Z),— 0.

First, take i = 1. We have Hy(Z) = Z which has no p-torsion; it follows
Hy(Z), = 0 and therefore
® H(Z)/p = H\(Z/p).

Here, H,(Z) = H,(G,Z) = G* is the maximal abelian factor group of G.
(See Chapter IV.) By definition of G/p, we have G/p = G*/p. This proves
Lemma 8.

Secondly, take { = 2 in formula (7). Since G is finite, all groups occurring
there are finite; hence they are finite dimensional vector spaces over the field
with p elements. Comparing dimensions:

dgp) G= d(p)Hz(Z) +dim Hl(z)p‘
In general, if A is any finite abelian group, we have
dim 4, = dim A/p
which is proved by decomposing 4 into cyclic direct factors. Applying this
to A = H,(Z) and using formula (8) we obtain
dim H,(Z), = dim H,(Z/p) = 4 G.
This proves Lemma 9.

Using Lemmas 8 and 9, we see that the inequality (6) to be proved is
equivalent to the following.

THEOREM 10. Let G be a finite p-group, p a prime number. Then

4P G > HaP 6y,
where d\P'G = dim H(G,Z/p).
We use the following notations:
A = Z(G) is the infegral group ring of &;
I is the augmentation ideal of A, defined to be the kernel of the
augmentation map A = Z;
A/p is the group ring of G over the field of p elements.

First we prove two preparatory Jemmas.

Levmma 11, Let G be a finite p-group and A a G-module with pA = 0.
Then the minimal number of generators of A as G-module equals

dim Ho(G, A) = dim AJIA,
the dimension to be understood over the field with p elements.
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More precisely: Let a;e A, Then the a; generate A as a G-module if and
only if their images a; in A[IA generate A{I4 as a vector space.

Proof. Assume the a; generate A/I4. Let B be the G-submodule of 4
generated by the @ Then the natural map B/IB — A[fIA is epimorphic,
which is the same as the map Hy(B) - Hy(A). The exact sequence

0—-B->A—-A/B->0
yields the exact homology sequence
Hy(B) = Hy(A) = Hy(A/B) -0
from which we infer that Hy(A/B) = 0. Since A/B is annihilated by p and
G a p-group, it follows A/B = 0, i.e. A = B, (See Chapter IV, §9.) QED.
LeMMA 12. Let G be a finite p-group and A a G-module with pA = 0. Then
there exists a resolution
oY 2 Y2420
with the following properties:
(i) Each Y, is a free module over Afp.
(ii) The number of free module generators of Y, over Afp equals
dim H(G, 4).

(iii) The image im(Y,,) is contained in.1. Y.

Proof. Put d=dim HyG, 4). By Lemma 11 there is a free A-module X
on d generators and an epimorphism X - 4. Since p4 =0 we obtain by
factorization an epimorphism X/p— 4. Put ¥= X/p. Then ¥ is a free
A/p-module on d generators. In particular,

H(Y)=0foriz1.
Let B be the kernel of ¥ — 4 so that

0B Y—=24-0
is exact. The exact homology sequence

v Higpo(Y) > Hyy (4) » H(B)—H(Y) ...
yields
&) H{(B) = H;,,(4)
for i =z 1. As to the case i = 0, we have the exact sequence
0— H,(d) - Hy(B) » Ho(Y) — Ho(4) > 0.

By construction, ¥ and 4 have the same minimal number of generators as
G-modules; hence dim Hy(Y) = dim Hy(4) by Lemma 11 which shows that
Hy(Y)— Hy(A) is an isomorphism. We conclude that (9) holds also in the
case i = 0.
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Since Hy(Y)— Hy(A) is an isomorphism, the map
B/IB = Ho(B)— Hy(Y) = Y/IY
is zero; hence
(10) Bel.Y.

Now put Y= ¥,. Then ¥;-+ 4 — 0 is the first step in the resolution to
be constructed. The second step is obtained by applying the same procedure
to B. We obtain ¥, = B— 0 with a kernel C such that

H{C) = H;+1(B) = H;1,(4)
for iz 0, and
Ccly,.

Y, is a free Afp-module on dim Hy(B) = dim H,(4) generators. If we
define ¥, — ¥, to be the composite map ¥, —» B— ¥,, then (10) says that
m(Y,) <Y,

Continuing this process, we obtain Lemma 12 by induction. QED.

Let us apply Lemma 12 to the case A = Zfp. Then Hy(G,Z/p) = Z/pis
of dimension 1. Hence Y, is free with one generator. By (iii), the kernel of
Y, — Z/p is contained in I. ¥,,. Since Y /I. Y, is of dimension 1, this kernel

is precisely 1. Y,. Hence ¥; - I.¥,— 0 is exact. Changing notation, we
obtain the

COROLLARY 13. Let G be a finite p-group and put d = dP G, r = dP’ G.
Then there is an exact sequence
R-D-I E—-0Qwithim(R)cI.D

where E, D, R denote the free Afp-modules with 1, d, r generators respectively.
Proof of Theorem 10: We use the abbreviations of Corollary 13.
For any finite G-module A with p4 =0 we introduce the Poincaré
polynomial

PA(t) = Z C,,.(A).t" with C,,(A) = dim I”.A/I‘H-IA.
0=n

(Note that c,(4) = 0 if n is sufficiently large.) We put
Since ¢y(E) = dim E{JE = 1 we have

Puty =20,

Also, since D=E is the d-fold direct product of E, we have ¢ (D)=d.c(E)
and therefore
Similarly,

PR(I) = P.P(t).

ANT. 9
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In general, if 0 < f < 1 is a real variable, then
P~ = T (A with 5,d) = Y, ci(d) = dim 4[I"* A,
1—t o3h 02isn
Also,

t
PA(‘) = z su-l(A)In
1—-t o0z

where we have to interpret s_,(4) = 0.
From Corollary 13 we obtain an epimorphism I"*!D — ["**E. Hence,
if R, ., denotes the foreimage of I"*1D in R then the sequence

0— R/R, s, — DJI"*D - IE/I"*?E -0
is exact. This gives
Sn(D) = n(IE)—l-di“l R/Rn-l-l'

By Corollary 13, image(R) = ID, hence image (I"R) = I"*D, 'R< Ry,
Therefore,
dim R/R,;; < dim R/I"R = 5,_,(R).
This gives
S,,(D) é Sn(IE) +Su— I(R)°
The numbers occuring in these inequalities are the coefficients of power
series as given above. It follows that

1 1 t
P £ P +F ®O =y
or equivalently
4.P() < ﬁ)t_-l +r.P(t) if 0<t<l.

In other words:
1S P(H).(rt2—dr+1) if O<t<l.
Since P(¢) has positive coefficients, we conclude that
0<rii—dt+1 if 0 <t <.

d
Substituting ¢ — P we get
r>id*

d . . . .
as contended. The substitution f -+ 7 is permissible since we know from

)
Lemma 9 that 4 < ¢ < 2r, hence 0 < ;—' < 1. QED
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Remark 14. Actually, Golod and Safarevié have proved in their paper only
dPG > HdPG—1)*. The inequality as given here has been obtained
independently by Gaschiitz and Vinberg.

Remark 15, Theorem 10 is important not only for the class field tower
problem but also for various other problems in the theory of p-groups.
This is due to the fact that the homological invariants d{’G and d¥G
permit the following group theoretical interpretations if G is a finite p-group:
d{PG is the minimal number of generators of G (Burnside’s basis theorem;
see Chapter V, § 2.5) and 4% is the minimal number of relations among
these generators which define G as a p-group (see Serre, ““Cohomologie
Galoisienne™).

3. Proof of Theorem 5 for Galois Extensions

Let k/Q be a Galois extension of finite degree », and p a prime number,
As said in Section 1, we are going to prove the inequality

(L) APl = 9 — (’5 + w,,(n).é}}’)).

Again, the proof will be divided into two parts. First, we shall reduce the
proof to a group theoretical statement about the cohomology of finite
groups. Secondly, we shall prove this group theoretical statement.

Let K =k, be the Hilbert class field of k;

G the Galois group of Kfk;
G* the Galois group of KfQ;
g the Galois group of k/Q.
Then g = G*/G and we have the inflation-restriction sequence of cohomo-
logy groups
1— H'(g, E;) ~ H'(G*, Ex) > H'(G, Eg)
where E, as in Section 2 denotes the group of units in k. We conclude that
d(p)HI(G*s EK) é d(p)Hl(G, EK) + d{p)Hl(g) Ek)‘

Hence the inequality (11) to be proved is an immediate consequence of the
following three statements:

(12) HYG,EQ) = Cl,
(13) APHY(G*, Eg) = 17
(14) dPHY (g, E,) < '1:_11 + w, (). 6.

We are going to prove these three statements.
For any algebraic number field K of finite degree we consider the com-
mutative and exact diagram:
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1 1 1
! 1 !

1= Ey » U UglEg—>1
! l l

1sK*> I+ Cg -1
! ! !

1_“ PK —’DK") CIK '_>1
1 ! !
1 1

where K* is the multiplicative group of K;

I the idele group;

Dy the divisor group;

Py the group of principal divisors;
and the other groups have the same meaning as before in Section 2. The
arrows denote the natural maps. (In Section 2 we have used already the
first row and the last column of this diagram.)

If K is a Galois extension of a subfield k with Galois group G then all

groups and maps of this diagram are G-permissible and we obtain a corre-
sponding commutative and exact cohomology diagram:

1 1 i
! ! J 1
1 Ex ~— U, = (UKIEK)G —~HYG,Ex)— H'(G,Uy)
! 0 r i e
1i- k* - I - C, - i
! S 1
1- P¢ - D¢ = Cif
! ! “
HY(G,Eg) - H'(G,Uy)
17 !
1 1
where we have twice used Hilbert’s Theorem 90:
HY G, K*)=1
and also the corresponding local statement:
HYG,Iy) = 1.

LemMa 14. Let K be an algebraic number field of finite degree which is a
Galois extension of a subfield k with Galois group G,

Assume D§ < Py, i.e. that every invariant divisor is principal. Then there
is a natural exact sequence

1 Clk - HI(G, EK) - H l(G, UK) = 1.
@
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Proaf. We use the cohomology diagram as explained above. Observe that
the natural map

(p:HI(G5EK)_’Hl(G’ UK)

occurs twice in this diagram. We have to show that, under the assumption
of Lemma 14, ¢ is epimorphic and its kernel is Cl,.

The assumption in Lemma 14 means P§ = D§.

Looking at the left lower corner of our cohomology diagram we see there-
fore that ¢ is epimorphic.

On the other hand, P§ = DY shows that x =1. Hence aoé=fon=1.
Since # is epimorphic, § = 1. Hence y is an isomorphism. Looking at the
right upper corner of our diagram we see that

kernel (@) = image (8) = (Uy/Ez)%/image (¢);
the isomorphism y shows that this equals
Cy/image (y o &) = Cfimage (i o {) = I,/k. U, = Cl,. QED.

Proof of (12): We use Lemma 14 in the case where (as in (12)) X is the
Hilbert class field of k. Since K/k is unramified, we have H'(G, Ug) = 1,
as already observed in Section 2. In view of Lemma 14 it suffices therefore
to show that the assumption of Lemma 14 is satisfied if X is the Hilbert class
field of k.

Since H'(G, Ug) = 1 we infer from our cohomology diagram above that
¢ :I,— Df is epimorphic. On the other hand, its image is IjU, = D,.
Hence D, = D§. Now, the principal divisor theorem for the Hilbert class
field says that D, = P,. QED.

Proof of (13): We want to apply Lemma 14 to the Galois extension K/Q,
where K (as in (13)) is the Hilbert class field of k. First we have to show that
the assumption of Lemma 14 is satisfied for K/Q.

G* is the group of K/Q and G the group of Kfk. We have therefore G = G*
and DY’ = D§. The foregoing proof shows D§ = Py. Hence D" c Py.

Since Clg = 1 we infer therefore from Lemma 14 an isomorphism

HY(G*, Eg) = H'(G*, Uy).
For any finite prime g of Q let ex(g) denote the ramification index of some

extension L of ¢ to K. (Since K/Q is Galois, this does not depend on the
choice of Rlg.) Let Z/ey(q) denote the cyclic group of order ex(g). Then

HYG*, Uy) =T] Zjex(q).
q
(For the proof, decompose Uy into its local components and prove the similar

fact for a local Galois extension and its unit group.)
Now K/k is unramified and therefore

ex(q) = efq)
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for every ¢. Hence we obtain
HYG* Ey) =[] Z/a(a).
q

The p-rank of the direct product on the right-hand side is equal to the number
of ¢ with plex(q), i.e. to P QED. '

Proof of (14): The torsion group of E, is the group W, of roots of unity
in k& which is cyclic of p-rank 8. Moreover, the unit theory says that
E,/W, is a free abelian group on r,—1 generators. Hence (14) is an imme-
diate consequence of the following group theoretical statement:

LemMma 15. Let G be a finite group of order n and p a prime number. Let
A be a finitely generated G-module with torsion group tA, and let p(A4) be the
number of free generators of AftA as an abelian group. Then

dPHYG,A) £ g(ii + wy(n).dP 1A
P—
Proof. Consider the restriction map
HYG, Ay » H(G?, 4)
of G to its p-Sylow subgroup G, This is a monomorphism of the p-primary
components (Chapter 1V, Prop. 8, Cor. 3). In particular,
dPHY(G, 4) £ dPHY(GP, 4).

Hence we may assume in the following that G = G is a p-group. (Observe
that w,(n) = w,(n®) where n'® is the order of G

Now consider the exact sequence

0otd->A—- AftA=0
and the corresponding exact cohomology sequence
HY(G,t4) - HY(G, A) > H'(G, AJtA).
It follows that
dPHYG, A) < dPH(G, tA)+dPH (G, AftA).
We shall show that
dPHY (G, 14) < w,(n).dP 1A
and
)
p-1
In other words: We shall treat the following two cases separately: (I) A is a
torsion module; (II) 4 is torsion free.
(I) The torsion case: We have
dPG = dim G/p £ w,{n)

dPHYG, AltA) &
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and therefore it suffices to show:

(15) dPHY(4) £ dPG 4P 4.

(For brevity, we omit the symbol G in the notation of the cohomology groups.)
Let Z%(4) be the module of crossed homomorphisms f: G— A. Letg,,.. ., g
be a minimal system of generators of G; Burnside’s basis theorem for P-groups

tells us that d = d”’G. Every crossed homomorphism fis uniquely determined
by its values f(g;), 1 £ i < d. In other words: The map

f=(fgy),. ... f(g)
is an injection of Z'(4) into the d-fold direct product 4% of 4. It follows
d(’)Zl(A) < d(")(Ad) — d.(d(")A) =4VG 4P 4.
Since H'(A) is a factor module of Z'(4), we obtain (15).
Remark 16. In the proof just given, we have not made use of the fact that
A is a tarsion module. Hence the inequality (15) holds for every finitely

generated G-module A. This means that we have proved instead of (14) the
inequality

dPH (9, E) S w,(n)(r,—1+8)
and therefore instead of (11) the inequality
dOCL 2 P~ (m)(r,—1+57).
This would suffice to obtain a function ¢'(n) with
a®Cl, = 1P —c'(n),
as explained in Section 1. Namely, since wy(r) < n—1, we could take
cM=m-1.n
The following proof, which permits to obtain a better estimate in the

torsion free case, is needed only in order to obtain the better estimate
¢'(n) = 2(n—1) as stated in Remark 6 of Section 1.

(1) The torsion-free case: We begin with

Lemma 17 (Chevalley). Let G be a group of order P and A a finitely
generated G-module. Then

dPH(G, A)—d(")HZ(G, A) = P(A)—P.P(AG)-.
p—1
Proof. (i) Let us put
d;-2(4) = dPHY(4)— dPH?(4).
Note that p. Hi(4) = Osince G is of order p. Hence d® H(4) is the dimension

of H'(A4) over the field of p elements; the order W(4) of H(A) is therefore p
to the power dPH'(4). If we define the Herbrand quotient

hl/z(A) = hl(A)/hz(A),
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then it follows that

hyja(A) = Pd'_zu)-
We may therefore regard d, _ ,(A4) as an additive analogue to the Herbrand
quotient. The properties of the Herbrand quotient, as stated in Chapter IV,
§ 8, can therefore be applied mutaris mutandis to d,_,. In particular, we
have:

If 0= A— B— C— 0 is an exact sequence of G-modules, then
d;2(B) = d; {4} +d, _,(C).

We say therefore that d, _, is an additive function of G-modules.

Let us say that two finitely generated G-modules A, B are rationally
equivalent if A®Q and B® Q are isomorphic as Q(G)-modules. (The
tensor product is to be understood over Z and Q(G) = Z(G) @ Q is the
group ring of G over Q.) We may regard 4/t4 as a submodule of A @ Q
and in fact as a G-invariant lattice of the rational representation space
A ® Q of G. In view of Propositions 10 and 11, Section 8 of the cohomology
course, we have;

If A and B are rationally equivalent, then d;_,(A4) = d, _,(B).

We say therefore that d, _,(d4) is a function of rational equivalence classes.

(i} For brevity, we define the function
p(A)—p.p(4%)

p-1
We claim that 1(4) too is an additive function of rational equivalence classes,
and have to show that both p(4) and p(4°) are.

It follows from the definition of p that

~ p(A) =dimg A®Q and p(4°) = dimg A°®Q.
From the first relation we infer that p(4) is a function of rational equivalence
classes. From the second relation we infer the same for p(4%) since

AfFRQ=(4®Q)°
If0— 4= B> C—0is exact then
02 4ARQ—-BRQ-CRQY—~0

is exact too. This shows the additivity of p(4). As to the additivity of
p(A%), we have to use the fact that

0 (42Q)° - (BRQ)° —»(C®Q)° -0
is exact too, since H'(G, 4 ® Q) = 0 because 4 ® Q is uniquely divisible.
(iii) We have now seen that 4,_, and t are both additive functions of
rational equivalence classes. Furthermore, an easy computation shows

d;-2(Z) =o(Z) =1
dy_»(A) =1(A) =0

() =
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where we consider the integers Z and the group ring A = Z(G) as G-modules.

Hence the contention of Lemma 17 follows from the following statement:
Every additive function f of rational equivalence classes of finitely generated

G-modules A is uniquely determined by its values for the modiules Z. and A.
(iv) Proof of the statement in (jii): The exact sequence

0=I-2A-Z-0

shows f(I) = f(A)—f(Z), so that f(I) is determined by f(Z) and f(A). Hence
it remains to be shown that every finitely generated G-module A is rationally
equivalent to a direct sum of G-modules which are isomorphic either to Z
or to f. In other words:

AQQ =) 4,8Q

where 4; =7 or 4,=1I Since 4 ® Q as a representation space of G over Q
is a direct sum of irreducible representation spaces V;, this amounts to showing
that every irreducible representation space ¥ s 0 of G over Q is either iso-
morphicto Z@Q=Qorto IQQ.

Now every such ¥ is isomorphic to a direct summand of Q(G) = A ® Q.

Hence we have to determine the direct decomposition of Q(G). The exact
augmentation sequence

0-I®Q-Q(G)-»Q-0
splits; the corresponding map Q — Q(G) being given by

X—X.e (xeQ)
where e is the idempotent

1
e=- 3 g.

Pgec

We have therefore the direct decomposition

QG ={I®Q)®Q.¢
and it remains to show that J®Q is irreducible, ie. that I® Q, as a
Q-algebra, is a field,

Let K denote the field of pth roots of unity. Let ¥ denote an isomorphism
of G on to the group of pth roots of unity in X. By linearity, x extends
uniquely to an algebra homomorphism of Q(G) on to K. Its kernel contains
e since the sum of all the pth roots of unity in X is 0. Hence x defines an
algebra homomorphism of Q(G)fe =7® Q on to X, Since

dimg K=p—1=dime/®Q
it follows that this is an isomorphism of I ® Qonto X QED.
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LemMa 18, Let G be a finite p-group and A a finitely generated G-module
which, as an abelian group, is torsion free. Then

d(p)H I(G, A) < M)

p—1
In particular, it follows that
A
dAPHYG, A) £ %(——i

which we wanted to prove.
Proof. First let G be of order p. Then Lemma 17 shows

. G
dPH I(G, A= p_(A) pilp(i) + dPH 2((;’ A).

Since G is cyclic, HX(G, A) = A%G, 4) is a certain factor group of A° and
has therefore p-rank < d®A4% = p(4%), the latter equality holding since 4¢
is torsion free.

It follows

APHY(G, A) < + p(A%)

p(A)—p. p(4°%)
p-1
which proves our assertion if G has order p.
Now let G be of order = p%.
Let U be a proper normal subgroup. The inflation-restriction sequence
1 - HY(GJU, AY) =+ HY(G, 4) » H'(U, A)
shows
dPHYG, A) £ dPHNGIU, A+ dPH U, A).
Using induction, we may assume that
AU _ &
dPHYGIU, A7) < KA ‘1’(‘4 )

and
p(4)—p(4Y) .

dOHY U, A =
H'(U,4) £ p—1

Adding, we obtain our contention. QED.
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Introduction
Section 1 contains the basic definitions and statements of some fundamental
results of an algebraic nature. Sections 2 and 3 are devoted to certain
arithmetical questions relating to algebraic groups defined over local or
global fields. Throughout, very few proofs are given, but references are given
in the bibliography.
For more information on recent progress in the theory of algebraic groups,
the reader is referred to the proceedings of the following conferences:
Colloque sur la Théorie des Groupes Algébriques, Bruxelles, 1962.
International Congress of Mathematicians, Stockholm, 1962.
Summer Institute on Algebraic Groups and Discontinuous Subgroups,
Boulder, 1965.

References to the bibliography are at the end of this Chapter.

1. Algebraic Theory

Basic reference (Chevalley, 1956-58).

1. Algebraic groups over an algebraically closed field (Chevalley, 1956-58
and Rosenlicht, 1956)

Let & be an algebraically closed field. An algebraic group defined over k is
250
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an algebraic variety G defined over k, together with mappings (x, y)— xy
of Gx G into G and x> x~* of G into G which are morphisms of algebraic
varieties and satisfy the usual group axioms. From now on, the words group,
subgroup, efc., shall mean algebraic group, algebraic subgroup (i.e. closed
subgroup with respect to the Zariski topology), etc.

An algebraic group G is /inear if it is affine as an algebraic variety. For
example, GL,(k) is a linear algebraic group, since it can be represented as
the set of points (x;,y) in k™*! which satisfy the equation y.det (x;;) = 1.
Hence any (closed) subgroup of GL,(k) is a linear algebraic group, and it is not
difficult to show that conversely every linear algebraic group is of this form.
The additive and multiplicative groups of k, considered as one-dimensional
algebraic groups, are denoted by G, and G,, respectively; they are both linear
{G. = GL,). A torus is a product of copies of G,. A linear algebraic group
G is unipotent if every algebraic representation of G consists of unipotent
matrices (i.e. matrices all of whose latent roots are 1). A connected algebraic
group which is projective as an algebraic variety is an abelian variety. Every
abelian variety is commutative. For example, any non-singular projective
elliptic curve carries a structure of an abelian variety.

If G is any algebraic group, the connected component G, of the identity
element of G is a normal subgroup of finite index. G, has a unique maximal
connected linear subgroup G,, which is normal, and G,/G is an abelian variety
(Chevalley’s theorem: proof in Rosenlicht, 1956). G, has a unique maximal
connected linear solvable normal subgroup G,, called the radical of G, and
G,/G, is semi-simple, i.e. it is connected and linear and its radical is (1).
G has a unique maximal connected unipotent subgroup G, which is normal
in G,, and G,/G, is a torus. G, is called the unipotent radical of G,.

Thus we have the following chain of subgroups of G;

G

|  finite
connected G,

abelian variety
linear G,

semi-simple
solvable G,
torus

G

M

Example. G = GL,. G is linear and connected, hence G = G,;. The radical
G, is the centre of GL,, consisting of the diagonal matrices (= G,), and
G/G, is simple.

unipotent
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‘We shall concentrate our attention mainly on sem -simple groups.
2. Semi-simple groups over an algebraically closed field (Chevalley, 1956-58)

Let k be an algebraically closed field, and G a semi-simple group defined over
k. A Cartan subgroup of G is a maximal torus, and a Borel subgroup of G is
a maximal connected solvable subgroup. For example, if G is the special
linear group SL,, then the group of diagonal matrices contained in G is a
Cartan subgroup (it is clearly a torus, and it is maximal because it is equal
to its centralizer), and the group of upper triangular matrices in G is a Borel
subgroup.

A homomorphism ¢: G — H is an isogeny if G, H are connected groups of
the same dimension and the kernel of ¢ has dimension zero (i.e. is finite),
It follows that ¢ is surjective, since ¢(G) is connected and of the same dimen-
sion as H. (For example, SL,— PGL, is an isogeny: its kernel is the group
of nth roots of unity.) If the characteristic of k is zero, the kernel of ¢ is
contained in the centre of G. In characteristic p > 0 there are unpleasant
phenomena connected with the Frobenius automorphism. For example, let
G = H = SL, and let ¢ be the mapping x = (x;;)— (x{)), which is an isogeny.
If the x,; are in the field k and @(x) = 1, then x = I; ¢ is bijective but is not
an isomorphism, since ¢! is not algebraic. If we allow the x;; to be, say,
dual numbers (that is, elements of the k-algebra k[e], where & = 0), then
x = 1-+gy is in the kernel of ¢ for every y € G, but is not in the centre. We
want to exclude this type of phenomenon, so we define a central isogeny to
be an isogeny whose kernel is contained in the centre, for points with coor-
dinates in any k-algebra. If ¢ : G = H is a central isogeny, G is said to be a
central covering of H.

Among the groups which centrally cover G there is a maximal one, G,
which admits no proper central covering, and among the groups centrally
covered by G there is 2 minimal one, &, which centrally covers no other
group. Gis called simply connected, and G is the adjoint group of G. Example:
G =SL,, & =PGL,

In order to classify semi-simple groups, it is enough to classify the simply-
connected groups, and then to look for the possible central isogenies.

Every simply-connected group is uniquely expressible as a product of
almost simple groups {i.e. groups G with finite centre C such that G/C is
simple). SL, is an almost simple group.

The classification of almost simple groups is the same as for simple Lie
groups:

An: SLn+l

Cn: SPZn

B, D,: isogenous to orthogonal groups
E¢, E 4 Eg, F,, G, exceptional groups.
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3. Semi-simple groups over perfect fields
(For groups over non-perfect fields, see Demazure and Grothendieck, 1963-64)

Let k be a perfect field, with everything defined over k: this means that the
coefficients of the defining equations lie in k. A k-forus is an algebraic group
defined over k& which over the algebraic closure k of k becomes a torus, i.e.
is isomorphic to a product of groups G,, = GL;; it is split over k if it is iso-
morphic to such a product over k. A semi-simple group is said to be split
over k if it has a maximal k-torus which is split over k; it is quasi-split over
k if it has a Borel subgroup defined over k. As this terminology indicates, a
split group is quasi-split. For example, SL, is split, and the group of elements
of norm 1 in a quaternion division algebra over k is neither split nor quasi-
split.

l:)In the decomposition of a simply-connected semi-simple group Gasaproduct
Gy X ... %G, of almost simple groups, the factors G; and the isomorphism
G = [1G; are defined over k, not necessarily over k. The Galois group
I" = Gal(k/k) permutes the G, and the product of the G; belonging to a
given transitivity class is a group defined over k. Thus we may assume that
I" permutes the G, transitively. The isotropy group of G, is a subgroup of
finite index in I, whose fixed field is a finite extension / of k, and G, is
defined over I. G is said to be obtained from G, by restriction of the field of
definition from I to k:G = Ry, (G,) (Weil, 1961). This procedure allows
one to reduce many questions to the case of almost simple groups, so we
shall assume from now on that G is almost simple.

In view of the classification of almost simple groups over k mentioned in
Section 2, it is natural to ask whether, for each of the types 4,,...,G,,
there exists a group defined over k. In fact it is true that for each type there
is a group G defined over k and split over k; and G is unique up to k-iso-
morphism if we require in addition that it should be simply-connected or
adjoint (Chevalley, 1955; Demazure and Grothendieck, 1963-64). The
classification of the various k-forms of G, i.e. of groups G’ isomorphic
to G over k, is a problem of Galois cohomology.

2. Galois Cohomology
Basic reference (Serre, 1964).

1. Non-commutative cohomology

Let G be a group and let A be a G-group, i.e. a (not necessarily commutative)
group on which G acts. (If G is profinite we require that the action of G
should be continuous with respect to the discrete topology on 4.} The action
of se G on ae A4 is denoied by “a.

We define H%(G, A) to be the group 4% of G-invariant elements of 4. Next



254 M. KNESER

we define a cocycle to be a function s—a, on G with values in A4 which
satisfies
ag=4a.%a, (510G
Two cocycles a,, b; are equivalent if there exists ¢ € 4 such that
by=c"t.a,.%c (seG).
The set of equivalence classes of cocycles is the cofomology set H'(G, A).
This is a set with a distinguished element, namely the class of the identity
cocycle. Both H%(G, 4) and H'(G, A) are functorial in 4.

If 14—+ B—->C—1is an exact sequence of G-groups and G-homo-
morphisms, then one can define a coboundary map H%G, C)— HY(G, 4),
and the sequence (of sets with distinguished elements)

1 - H%G, 4) -» H%G, B) = H%G, C) » H'(G, A) » H'(G,B) - H(G, C)
is exact. (Exactness is to be understood in the usual sense, the kernel of a
map being defined as the inverse image of the distinguished element of the
image set.) If A is contained in the centre of B (so that A is abelian and
therefore H*(G, A) is defined) then one can define a coboundary map
HY(G, C)— H*(G, A) which extends the exact sequence one stage further.

Let K be a perfect field and L a Galois extension of X, with Galois group
G. Let 4 be an algebraic group defined over X, and A4 the group of points
of 4 which are rational over L. Then A; is a G-group, and we write
HY(L/K, 4) in place of H{(G, A;). If K is the algebraic closure of K, we write
H'(K, A) in place of H(K/K, A).

2. K-forms

Let V,V’ be algebraic varieties with some additional algebraic structure
(for example, algebraic groups, or vector spaces with a quadratic form, or
algebras) all defined over a perfect field X. Suppose that f: V' — ¥ is an
isomorphism for the type of structure in question, defined over a Galois
extension L of K. If s is any element of the Galois group G of L/K, then s
transforms f into an isomorphism 3: V= V', and a, = f 1 . *fis a cocycle
of G with values in Aut (V). It is easily seen that such a “K-form” V' of
V is K-isomorphic to another K-form ¥” of ¥ if and only if the corresponding
cocycles are equivalent, and therefore we have an injective mapping of the
set of K-forms of ¥V (modulo K-isomorphism) into the cohomology set
HYL(K, Aut(¥)). In many important cases (algebraic groups, vector spaces
with a finite number of tensors) this mapping is bijective. In such cases the
problem of classifying K-forms is solved by (i) classification over the algebraic
closure K of K, and (i) computation of H'(X, Aut (V).

Consider for example the classification of X-forms of simply-connected
semi-simple linear algebraic groups. As we have seen in Section 1, it is
enough to consider almost simple groups, and then the classification over
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K is known. Let G be the split group of a piven type; then the group of inner
automorphisms of G is isomorphic to the adjoint group G =G/C where C
is the centre of G, and the quotient Aut (G)/G is isomorphic to the group
Sym {G) of symmetries of the Dynkin diagram of G. So we have an exact
sequence

1-G— Aut(G)— Sym(G)— 1
and the derived cohomology sequence:

L4

H°(K,Sym(G)) - H'(K, G) » HY(K, Aut(G)) = HY(K, Sym(G)).
The Galois group g of K/K operates trivially on Sym(G), so that a cocycle
of g with values in Sym (G) is 2 homomorphism g — Sym (G}, and therefore
HYK, Sym(G)) is a quotient of the set Hom (g, Sym(G)). In fact ¢ is
surjective, and for each o eH'(K,Sym(G)) the fibre ¢~ *(2) contains a
quasi-split K~form G, of G, which is unigue up to K-isomorphism (Steinberg,
1959); and the elements of ¢~ () correspond to those K-forms G of G such
that there exists an isomorphism f:G,— G’, defined over K, for which
£~ ¢ *fis an inner automorphism of G, for all s € g. By a twisting argument
(cf. Serre, 1964, I-5.5) ¢~ *(a) is seen to be a quotient of the cohomology
set HY(K, G,).

3. Fields of dimension <1

A field X is of dimension <1 if the Brauer group Br(L) is zero for every
algebraic extension L of XK. Examples of such fields are all finite fields, and
the maximal unramified extension K,, of a field X which is complete with
respect to a discrete valuation.

THeOREM 1 (Steinberg, 1965). If K is a perfect field of dimension <1, and if G
is a connected linear algebraic group defined over K, then HY(K,G) = 1.
In the case where X is finite, this theorem was proved earlier by Lang.

From Steinberg’s theorem and the results stated in Section 2, it follows
that ¢~ '(«) contains exactly one element, so that every K-form of G is
quasi-split, and the K-forms are classified by H'(X, Sym (G)).

4. p-adic fields
If K is a p-adic field (i.e. a completion of a global field with respect to a

discrete absolute value) it is no longer true that H'(K,G) =1 for every
connected group G. However, there is the following result:

TreoreM 2 (Kneser, 1965). If K is a p-adic field and G is a simply-connected
semi-simple linear algebraic group defined over K, then H\(K,G) = 1.

The proof in Kneser (1963) proceeds by reduction to the case of almost
simple groups and then deals with each type 4,,..., G, separately, For the
classical groups the theorem is closely related to known results on the
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classification of quadratic, hermitian, etc., forms over a p-adic field. More
recently Bruhat and Tits (1965) have indicated a uniform proof, based on
results of Iwahori and Matsumoto (1965).

If G is the simply-connected covering group of an orthogonal group,
Theorem 2 is essentially equivalent to the classification of quadratic forms
over a p-adic field. Let ¢ be a non-degenerate quadratic form in n>23
variables over a p-adic field X of characteristic %2, let O be the orthogonal
group of g, and SO the special orthogonal group of ¢. All non-degenerate
quadratic forms in » variables are equivalent over the algebraic closure K of
K, so the classification over K of non-degenerate quadratic forms in n
variables is equivalent to the determination of H(X, O).

We have an exact sequence

125S0-50-p,—1
where p, = {£1}; now the map H(K,0)— H(K, t;), ie. Og— p, is
surjective, hence we have an exact sequence (of sets)
a d
1- H'(K,S0)— H'(K, 0) - H'(K, pi5). )

By a twisting technique it may be shown that o is injective. To compute
HY(K, j1,) we use the exact sequence

2

) 1o, K*>K*>1
where K*—+ K* is the map x+»x2. This exact sequence gives rise to a
cohomology exact sequence (of groups)

2 2
K* - K* > H'(K, piz) » 1 » 1 » H¥(K, p13) - Br (K) = Br(K)
(since H'(K, K*) = 1 by Hilbert's Satz 90). We deduce that
HY(K,p;) = K*K*?,  HY(K, ) = Br(K),

where Br(K), denotes the group of elements of order 2 in the Brauer group
Br(X). (Since Br(K) = Q/Z, we have Br(K), = p,.) The exact sequence (1)
now becomes

[ d
1 - HY(K,S0)—~ H'Y(K,0) - K*/[K*%,

Here d is essentially the discriminant: more precisely, if £ € H'(K, 0), d(£) is
the discriminant (modulo squares) of the quadratic form defined by £
divided by that of g (and therefore d is surjective). The quadratic forms
defined over X which have the same discriminant {modulo squares) as g are
classified by H'(K, SO).

The simply-connected covering of SO is the spin group: Spin. We have an
exact sequence

1oy, —» Spin-S0—1
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and hence a cohomology exact sequence {of sets)

Spittg = SO - K*/K** — HA(K, Spin) > H'(K, S0) - Be (K);.
Here & is the spinor norm and A is closely related to the Witt invariant of a
quadratic form. From Theorem 2 we have H'(K, Spin) = 1; hence
(i) the spinor norm & : SO, — K*/K*? is surjective;
(ii) every quadratic form with the same discriminant 4 and the same Witt
invariant as g is K-isomorphic to g.
Conversely, (i) and (ii) imply that H(K, Spin) = 1.

5. Number fields
Let K be an algebraic number field, G a linear algebraic group defined over
K. If vis any prime of K and if K, denotes the completion of X at », we have
mappings
H'(K,G)- HY(X,,G)

obtained by restriction together with the embedding Gy — Gg,, hence a
mapping

6: HY(K,G) - [ H'(K,, G). )]

The theorem of Minkowski~-Hasse states that two quadratic forms defined
over K are isomorphic over X if and only if they are isomorphic over K, for
all v (discrete and archimedean). In terms of Galois cohomology, this
theorem is equivalent to the injectivity of the map

8: HY(X,0) - [ H\(X,,0)
where O is the orthogonal group of a quadratic form.
The map 6 defined by (1) is not always injective, even if G is connected and

semi-simple (Serre, 1964). However, if G' is simply-connected, the following
theorem seems to hold:

THEOREM 3. Let K be an algebraic number field, G a simply-connected semi-
simple linear algebraic group defined over K. Then

0: HY(K,G) > ] H'(K,, G)
is bifective.

In fact, H'(K,, G) is trivial for all discrete » (Theorem 2), so that Theorem 3
is equivalent to

THEOREM 3'. The mapping
H' (K, G) - [T H! (X, )
vew

is bijective, where oo denotes the set of archimedean primes of K.
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The proof of Theorem 3 proceeds by reduction to the case of almost-simple
groups, and then by examination of each type A,,. . ., (7, separately. For the
classical groups it is related to known results on quadratic, hermitian, etc,,
forms. For the exceptional groups other than E; see Harder (1965). The
case Ej is still open.

3. Tamagawa Numbers

Basic reference (Weil, 1961).
Introduction

Let X be an algebraic number field, 4 the adéle ring of K. The letter v will
denote a prime (discrete or archimedean) of K; K, denotes the completion of
K at v, and o, the ring of integers of K, if v is discrete.

Let G be a connected linear algebraic group defined over K. G is isomorphic
to a subgroup of a general linear group GL,, and we may therefore regard G
as a closed subset of affine m-space (m = n®+1, see Chapter 1, Section 1)
when convenient. The adéle group G, of G is the set of all points in A™
which satisfy the equations of G. We give G, the topology induced by
the product topology on A", and G, is then a locally compact topo-
logical group. G, may also be defined as the restricted direct product of
the groups Gy, with respect to their compact subgroups G, where Gy,
(resp. G, ) is the set of points of G with coordinates in X, (resp. o,). At first
sight, G, appears to depend on the embedding of G in affine space. But it is
not difficult to show that if we change the embedding we change &, at
only a finite set of primes v, and hence G, is unaltered.

Examples. If G = G,, then G, = 4. If G = G,,, then G is the idéle group
of K.

Since K is a discrete subgroup of A4, it follows that Gy is a discrete subgroup
of G,. Since G, is locally compact, it has a left-invariant Haar measure,
unique up to a constant factor. The product formula shows that right
multiplication by an element of Gy does not change the measure on G4, and
therefore we have an induced left-invariant measure on the homogeneous
space G,/Gg.

There is a canonical choice of the Haar measure on G, called the
Tamagawa measure T (Section 1). Once this is defined there is the problem of
computing the Tamagawa number ©(G) = 1(G,/Gy) (Section 2). This,
applied to the case where G is an orthogonal group, is equivalent to the
classical arithmetical results of Minkowski and Siegel on quadratic forms
(Section 3).

1. The Tamagawa measure

Let V be an algebraic variety of dimension n, defined over K. Let x° be a
simple point of ¥ and let xi,...,x, be local coordinates on ¥ at x° (not
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necessarily zero at x°). A differential n-form on V is defined in a neighbour-
hood of x° in ¥ by an expression
@ =f(x)dx, ...dx,

where £ is a rational function on ¥ which is defined at x°. The form o is
said to be defined over K if f and the coordinate functions x; are defined over
K. The rule for transforming @ under change of coordinates is the usual one.
If ¢ : W— ¥V is a morphism of algebraic varieties, a differential form w on V
pulls back to a differential form @*(w) on W.

Suppose now that V is a connected linear algebraic group G. The left
translation 4, : x+» ax (¢ € () is a morphism ¥ — V and therefore transforms
a differential form w on G into a differential form A¥(w). Thus we can define
left-invariant differential forms on G, and the basic fact is that there exists a
non-zero left-invariant differential #-form @ on G, defined over K, and w is
unique up to a constant factor ¢ € K*.

Examples.
G=0G, w=dx; G =G, o=dxx;
G - GL", W= (H dx”)/(det x;j)“.

We shall use w to construct measures w, on the local groups Gg,. For this
purpose we need to fix Haar measures p, on the additive groups K,J. When
K = Q we fix u, (p a finite prime) by u,(Z,) = 1, and p,, we take to be ordinary
Lebesgue measure on R. When X is an arbitrary number field, there are
various possible normalizations: all we require is that

(i) p0,) =1 for almost all discrete v, and
(i1) if g = [] n, is the product measure on 4, then u(4x/K) = 1.

(One such normalization is to take u,(o,) = 1 for all discrete v, and u, to be
c, times Lebesgue measure for archimedean o, where the ¢, are positive real
numbers such that

[T co=2"7[de| 7,

veow
where oo denotes the set of infinite primes of K| r, is the number of complex
infinite primes, and dy is the discriminant of K.)

To define w,, we proceed as follows. The rational function f can be written
as a formal power series in #; = x;~x with coefficients in K. If the x{ are
in K, then fis a power series in the x; with coefficients in K,, which converges
in some neighbourhood of the origin in XJ. Hence there is a neighbourhood
U of x® in Gy, such that ¢ : x> (zy,.. ., 1,) is a homeomorphism of U onto
a neighbourhood U’ of the origin in K7, and such that the above power
series converges in U’. In U' we have the positive measure |f{f)|, dt, . . .d,
(where di,. . .dt, is the product measure y,x ... xu, on KJ); pull this back
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to U by means of ¢ and we have a positive measure w, on U. Explicitly, if
g is a continuous real-valued function on Gy, with compact support, then

Jgo= [sto™ OOl .. ar,

The measure o, is in fact independent of the choice of local coordinates x,.
In the archimedean case this follows from the Jacobian formula for change
of variables in a multiple integral, and in the discrete case from its p-adic
analogue,
If the product
[T w(G.,,)
véco

converges absolutely, we define the Tamagawa measure by
=] o,
b1

Explicitly, if .S is a finite set of primes such that co € § and if, for each
vesS, U, is an open set in Gy, with compact closure, then 7 is the unique
Haar measure on G, for which
T U, x |16, ) =]} w(U) x || @wfG,,).
(,,I;Is 0 l;{s ) JIEXCE ”];[S oGo,)
If the product
1] @.(G.,)
v§w
does not converge absolutely, we have to introduce factors to make it
converge., A family (1,) of strictly positive real numbers, indexed by the
primes v of K, is a set of convergence-factors if the product
[1 4 '0/G,,)
v

is absolutely convergent. The Tamagawa measure 7 (relative to the A,) is then
=[] 2; ‘e,

In either case, © does not depend on the choice of the form w. For if we
replace @ by cw (¢ € K*) then (cw), = |¢|,w,, and [T [¢], = 1 by the product
formula. v

Let k(v) denote the residue field at v (v discrete) and let G denote the
algebraic group defined over the finite field 4(v) obtained by reducing the
equations of G modulo the maximal ideal p, of o,. Then it can be shown by
a generalization of Hensel’s lemma that for aimost all v we have

w,(G,,) = (Nv)~" card (G{}},), 0}

where Nv is the number of elements in k(v), and G¥), is the group of points
of G rational over k().
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Examples. If G =G,

w, (G, ) =1

If G= Gy,
1

wU(Gou) =] - ]VU’

if G = GL,, then
1 1

wu(Gnu) = (1 - m) e (1 - (Nv)m) »

if G = SL,, then
1 1
={l-—=]...[1=——].

06,0 = (1~ ) (- aw y

Since

1 -1
];I (1 - (NU)S) = CK(S)
is convergent for Re (s) > 1 but not for s=1, it follows that the product

[Tw.(G,,) converges when G = SL,, but not when G = GL,. In the latter
v

case we may take

as convergence-factors.
PROPOSITION. If G is semi-simple, the product [| (G, is absolutely con-
v

vergent (and so convergence-factors are not needed).

In outline, the proof is as follows (for details, see Ono (1965)). From (1)
we have to prove that the product

[T {(Nv) " card (G2} [¥))

is absolutely convergent. Using the theorem (due to Lang) that isogenous
groups over a finite field have the same number of rational points we can
reduce to the case where G is simple over the algebraic closure K of X i.e.
has no non-trivial algebraic normal subgroups defined over K. For such a
group the order of G{f), can be explicitly determined and is of the form

(Noy"{1+O((Nw)™2)}.

The convergence of (2) now follows from the convergence of the zeta-function
{p(s) for Re () > 1.
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2. The Tamagawa number
The Tamagawa number ©(G) is defined to be (G ,/Gy).

THEOREM 1 (Borel and Harish-Chandra, 1962). If G is senti-simple, ©(G) is
finite,

For another proof of this theorem see Godement (1962-63).

THEOREM 2 (Ono, 1965). Let G be a semi-simple group, G its universal (i.e.
simply-connected) covering, C the (finite) kernel of the covering map G - G,
and let C denote the character group Hom (C,G,). Then

«G) _ K(C)

WG W)
where h%(C) = Card H*(K,C) and i'(C) is the number of elements in the
kernel of the map H'(X,C) - [] HY(X,, ©).

Hence it is enough to compute one Tamagawa number in each isogeny
class, for example ©(G). In this direction, there is Weil’s

ConJECTURE. 7(G) = 1.

This conjecture is proved for many of the classical groups [(Weil, 1961,
1964, 1965) for all groups of types B, and C,, and some of types 4, and D,;

and (Mars, 196 ?; Weil, 1961) for some exceptional groups]. Langlands gave
a non-enumerative proof for all split semi-simple groups (Bruhat-Tits (1965)).

Example. G = §0, (n > 3). Here C has order 2, and it can be shown that
KAC)/i*(C) = 2. So in this case (&) =1 is equivalent to ©(G)=2. As we
shall see (Section 3), 7(G) = 2 is equivalent to the theorems of Minkowski—
Siegel on quadratic forms.

3. The theorem of Minkowski and Siegel

Let X be an algebraic number field, ¥ an n-dimensional vector space over K
(n 2 3), g a non-degenerate quadratic form on V defined over K, G = S0(g)
the group of all automorphisms of the vector space ¥ which preserve ¢ and
have determinant 1. We regard G as acting on ¥ on the righr. We shall
identify ¥ with K" by choosing a fixed basis of V; then the elements of G
are nx n matrices.

A lattice M in V is a finitely generated o-submodule of ¥ of rank n, where
o is the ring of integers of X. In particular L = 0" js a lattice, called the
standard lattice (with respect to the chosen basis of V). Two lattices M, M’
are isomorphic if M’ = Mx for some x € G;. For each finite prime v, let
M, =0, ® M, which is a lattice in X?. It can be shown that M is uniguely
determined by the M, [namely M = r;\(M” N V)]; that M,= o for

almost all v; and that, conversely, if M, is a lattice in X for each finite v,
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such that M, = o] for almost all v, then there is a unique lattice M in K"
whose local components are the Af,.

The adéle group G, operates on the set of lattices in X" as follows: if M
is a lattice and x € G,, then (Mx), = M, x, (observe that, since M, = o!
for almost all », and x, € G,, for almost all », we have {Mx), = o for almost
all v). The orbit of M under G, is the genus of M, which therefore consists
of the lattices in ¥ which are locally isomorphic to M at all finite primes.
The class of M is the orbit of M under Gy, i.e. the set of all lattices globally
isomorphic to M.

The stabilizer of the standard laitice L in G, is the open subgroup

Gy, = ( IT G,,u) X (H va) =G,xG, say,
véw VE®

where ¢ denotes the set of archimedean primes of K. Hence the lattices in
the genus of L are in one-one correspondence with the cosets G, xin G,
and the classes in the genus with the double cosets G 1.XGk in G4. For any
semi-simple group, the number of double cosets G, _xGy in G, is finite
(Borel and Harish-Chandra, 1962). In our special case G = SO(g), this is
the well-known finiteness of the number of classes in a genus. Let / denote
this number.,

We have

[

(G) = 1(G,/Gy) = Z (G4, %, Gr/Gy)

i=]

1
= g,lf(xf ! G4, % Gx/Gy) 10

since 7 is left-invariant. The group x; ' G,_x, is the stabilizer of Lx; in G,.
Hence we need consider only one term in this sum, say (G, Gx/Gx). We
have G, Gg/Gg = G,_/G, (since G, n Gg = G,). Hence

(G4, Gx/Gg) = 1(G 4, [G,) = ©(F)
where F is a fundamental domain for G, in G A 1.€. a Borel set in G, which
meets each coset xG, exactly once. The projection G, = G,x G, — G,
restricted to G,, embeds G, injectively in G, and we may take F to be a set

of the form G,xF,, where F, is a fundamental domain for G, in G,
Hence we have

WG4, G/Gyg) = (G, x F w)
= ]_—[ wv(Gou) x wm(Gleo)
v o
where

0, =[] o,

PeE o

If we replace L by Lx;, G,, is replaced by x+ G, x; , and therefore the term
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w,(G,,) is unaitered (since w is right-invariant as well as left-invariant, for
any semi-simple group); and G, = Gy n G, is replaced by

Gn(x;) = GK &) x,-l GAmxi.
Hence

101G, % Gx/Gr) = [] 0Go) X 0 (Gonf Golx)) oy

v

and therefore, from (1) and (2),

h
2 = T(G) = I_I wv(G.ou X 2 woo(GmlGn(xi)):
v i=1
that is,

h
i=Zl ww(GmlGn(xt)) = zvl;lomv(Go,) L (3)

Suppose now that the form ¢ is forally definite, i.e. that each archimedean »

is real and that g is definite at each archimedean completion K,. Then
= H Gy,
v g o

is a product of real orthogonal groups and is therefore compact, and G (x;)
is the group of units E(Lx)} of the lattice Lx,, i.e. the group of all integer
matrices which transform Lx; onto itself, and is finite. (If .S; issthe matrix of
g with respect to a basis of Lx;, then E(Lx;) is the group of all integer matrices
X such that X'8; X = §;; since §; is definite, E(Lx;) is clearly finite.) Hence
(3) now takes the form

h 1 2 1 2
X Card (BLw) ™~ 0u(0) o oG~ 761 @

When K = Q, this is equivalent to Minkowski’s formula for the weight of a
genus of definite quadratic forms.

Similarly, we can recover Siegel’s theorem (1935-37) on the number of
representations of one quadratic form (in » variables, say) by another (in
m variables), by considering an m-dimensional vector space V endowed with
a non-degenerate quadratic form ¢, an »-dimensional subspace W and the
Tamagawa number of the group G of all g-orthogonal transformations
which induce the identity on W. For details see Kneser (1961) and Weil
(1962).
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CHAPTER X1

History of Class Field Theory

Hermut HASSE

1. The notion of class field is generally attributed to Hilbert. In truth this
notion was already present in the mind of Kronecker and the term was
coined by Weber, before Hilbert’s fundamental papers appeared.

Kronecker, in his large treatise “Grundziige einer arithmetischen Theorie
der algebraischen Grissen” of 1882, discusses at length the “zu assoziierenden
Gattungen” (species to be associated). What he means by this is, in modern
terminology, an algebraic extension K of a given algebraic number field &
such that all divisorst in k& become principal divisors in XK. By his investi-
gations he had found that for imaginary quadratic fields k the “singular
moduli” generate such extensions K. By this notion Xronecker anticipates
the principal divisor theorem of class field theory, stated and in special cases
proved by Hilbert.

Weber (1891, 18974, b, 1898, 1908), however, did not define the notion
of class field on this basis, a basis which, as we know today, is unsuitable
for building the theory. What he postulated is part of the law of decomposition,
Whereas Hilbert in his later definition considered only the case of absolute
divisor classes, Weber gave his definition in full generality, viz.

Let k be an algebraic number field and A/H a congruence divisor class group
in k. An algebraic extension K{k is called class field to AfH, if exactly those
prime divisors in k of first degree which belong to the principal class H split
completely in K. .

In order to define Weber’s notion of a congruence divisor class group AJH
in k, consider integer divisor moduli m in k, i.e. formal finite products com-
posed of finite prime spots (prime divisors) of & with positive integer expo-
nents and real infinite prime spots of & with exponents 1. Call a number or
a divisor in k prime to mu if it is prime to all prime divisors contained in n1,
and understand congruence mod m as congruence modulo all prime divisor
powers contained in m and equality of sign for all real prime spots contained

t I use throughout the term “divisor” instead of the classical term “ideal”, because
valuation theory, derived from the Kronecker-Hensel notion of divisor, has been nowadays
adopted widely as a more suitable foundation of algebraic number theory than Dedekind’s
ideal theory.
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in m. Further consider quotient groups 4,,/H,, where 4, is the group of
all divisors in k prime to m for a given integer divisor modulus m and H,, is
a subgroup containing all numbers ¢ = 1 mod win & {considered as principal
divisors in k). Call two such quotient groups A,,,/H,,, and 4, .[H,,, “equal”
to each other if for the least common multiple m = [n;, m,] {and hence
for every common multiple of m; and m;) there holds the equality
Hgn, 0 A, = Hy, 0 A, which implies the isomorphy 4,,,/H,,, =< 4,,,/H,,,.
Each set of quotient groups A, [H,, Aw,/Hy,s - - . that are all “equal” to
each other defines a congruence divisor class group A/H in Weber’s sense.
The single quotient groups A, [Hy., Aw,/Hy,, ... are called the interpre-
tations (Erklarungen) mod m,, mod m,,... of A/H. The lowest possible
interpretation modulus (Erklarungsmodul) f, which turns out to be the
greatest common divisor of all possible iy, m,,... is called the conductor
(Fiihrer) of A/H. Occasionally the single interpretations are also called
congruence divisor class groups.

Besides the theorems on class fields proved by Weber which will be
adduced presently, in the cases he treated he further observed also the
fundamental isormorphy theorem:

The Galois group G(K/k) is isomorphic to the class group A/H, and hence
is surely abelian.

Already Kronecker (1853, 1877) knew that the cyclotomic fields are class
fields in the above sense. He stated his famous completeness theorem:

Every abelian field over the rational number field is a cyclotomic field, and
hence is a class field. '

This was first proved completely by Weber (1886, 1887) and later more
simply by Hilbert (1896, 1897); further proofs were given by Weber (1909),
Speiser (1919) and Delaunay (1923).

Further Kronecker (1883-1890), by his investigations on modular func-
tions and elliptic functions with “singular moduli”, had ascertained that their
transformation and division equations generate relatively abelian fields K
over imaginary quadratic fields k. It was his “liebster Jugendiraum™ (1880)
{dearest dream of his youth) to prove also in this case the completeness
theorem, that every relatively abelian field K over an imaginary quadratic
field k is obtained by such transformation and division equations. This was
proved later, first partially by Weber (1908) and Fueter (1914), then com-
pletely by Takagi (1920) and once more by Fueter (with Gut) (1927).

Weber (1897, 1898) conceived his notion of class field from those examples,
By making use of Dirichlet’s analytic means (L-series) he deduced from his
class field definition the firstt fundamental inequality of class field theory:

[A:Hl=h<n=[K:k],

1t In modern terminoclogy: second.
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further the unigueness theoren::
H=H K=K,
the ordering theorem:
HaoHeKckK,
and the following presupposition for the isomorphy theorem:
K[k is normal.

From the introduction to Weber (1897, 1898) it is safe to conclude that
he was convinced of the validity of the general existence theorem:

To every congruence divisor class group A/H in k there exisits a class
field Kjk.

He points out that from the existence of a class field K/k follows the
existence of an infinity of prime divisors in the single classes of 4/H, ie.
a far-reaching generalization of Dirichlet’s famous theorem on primes in
prime residue classes. He did not know, however, other examples for the
existence of class fields than those from the theory of cyclotoric, modular
and elliptic functions.

2. The preceding references to Weber’s share in the origin of class field theory
are not meant to detract from the great merit of Hilbert in the development
of this theory, but only to put it in the right light. Hilbert himself had a
high opinion of Weber; he has repeatedly quoted and duly acknowledged
his ideas and results on class fields.

The publications of Hilbert (1898, 18994, b, 15004, b, 1902) on class field
theory are apparenily concerned only with the special case of absolute
divisor classes, i.e. where the principal class H contains all principal divisors
{without or with sign conditions). Moreover, he had carried through the
proofs only for the relatively quadratic number fields—i.e, n = 2—with class
number h = 2. Before his mind’s eye, however, he had throughout the most
general case. For instance, in his lecture (18994) before the DMV (German
Mathematical Association) meeting at Braunschweig (Brunswick) in 1897 he
declared (in free translation):

“In this lecture we have restricted ourselves to the investigation of
relatively abelian fields of second degree. This restriction however is
only a provisional one, and since all conclusions in the proofs of the
theorems are capable of generalization, it is to be hoped that the
difficulties of establishing a theory of relatively abelian fields will not
be insurmountable.”

In this sense he had in mind in full generality the main theorems of class
field theory already mentioned (existence theorem, uniqueness theorem,
ordering theorem, isomorphy theorem and decomposition law),

For Hilbert class field theory was not only, as it was for Kronecker and

Y e e L

il
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Weber, a means towards proving the completeness theorem and towards
generalizing Dirichlet’s prime number theorem. As clearly stated in utter-
ances like that quoted above and in the headline to his note (1898, 1902)
in the Géttinger Nachrichten, he rather regarded it as a “Theory of relatively
abelian fields”. A further aim of his was the problem of the higher reciprocity
Jaws, handed down from Gauss, Jacobi, Eisenstein and Kummer, and
appearing in his famous Paris lecture of 1900 as Problem 9. Indeed, one of
Hilbert’s most profound achievements is the conception of the reciprocity
law as a product formula for his norm residue symbol

(%)=

Here k is assumed to contain the nth roots of uinty and p runs through all
prime divisors of k, including what we call today the infinite prime spots,
introduced by him as symboels 1, 1, 1%,.... He pointed out the analogy of
this formula (given by him only in special cases) to the residue theorem for
algebraic functions—the prime spots p with norin residue symbol 31
corresponding to the ramification points of the Riemann surface.t This
analogy was later splendidly justified by the subsummation of the product
formula in algebraic function fields with finite constant field under the

.residue theorem by Schmid (1936) and Witt (1937). Moreover, Hilbert

stated (again only in special cases) the norm theorem:

(a;)b) = 1 for all p<> a is relative norm from k(3/b),

so important for the further development of the theory. This theorem was
proved later in full generality by me (1930c).

Due to the restriction to the absolute divisor class group AJH, Hilbert’s
list of class field theorems contains, in addition to those already mentioned,
the discriminant theorem:

K{k has relative discriminantd = 1,
He further stated the principal diviSor theorem, already touched upon earlier
in this Chapter:
All divisors from k become principal divisors in K.
Moreover, he asserted:
The class number of K is not divisible by 2,
and this not only under his original restriction, that k has class number
h=2, but also for b = 4.

+ From today’s standpoint this is not quite correct, In number theory the norm residue
symbol may be different from 1 also without ramification, namely by inertia. In algebraic
function fields over the complex number field this does not occur; so that for them only
ramification comes into guestion.
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Excepting only this lafter assertion, which is true for A = 2 but not
necessarily for s = 4, all Hilbert’s assertions on class fields have proved
true in the general case. For the principal divisor theorem, however, things
turned out to be much more complicated than Hilbert apparently thought,
One cannot help feeling the greatest admiration for his keen-mindedness
and penetration, which enabled him to conceive with such accuracy general
laws from rather special cases.

3. As to the reciprocity law, in 1899 the “Kénigliche Gesellschaft der Wissen-
schaften zu Géttingen”, presumably on Hilbert’s suggestion, had set as prize-
subject for 1901 the detailed treatment of this law for prime exponents
! # 2. This problem was solved by Furtwingler, In the prize-treatise (1902,
1904) itself he gave the solution only for fields & with class number not
divisible by 7, and without distinguishing between the /—1 different non-
residue classes. In further papers (1909, 1912, 1913, 1928), however, he
proved the law of reciprocity for prime exponents / (including 2) in full
generality. Not only did he prove it in the classical shape:

(g) = (g) ,if a and b are primary (and in case | = 2, totally positive),
i I

but also in the shape of Hilbert’s product formula for the norm residue
symbol. According to a very beautiful idea of his, the law in the classical
shape—by passing to the extension field k& = k(/(ab™')) over which
k(!/a) = k(}/B) is unramified and hence contained in the absolute class
field K—comes back to the decomposition law in K/k. In other words, that

b .
(E) = (]—J) over k depends only on the absolute class in k to which p
I i

belongs. This decomposition law was at his disposal since he had previously
proved the existence theorem for the absolute class field (1907).

4. A decisive step forward was taken by Takagi (1920, 1922) in two highly
important papers on class field theory and the law of reciprocity. Takagi
had been studying Hilbert’s papers on the theory of numbers at the turn of
the century and had investigated the relatively abelian fields over the Gaussian
number field. This resulted in his solution (1903) of Kronecker’s famous
completeness problem over this field by means of the division theory of
elliptic functions in the lemniscatic case (i.e. where the pericd parallelogram
is a square}.

In his big class field paper of 1920 Takagi gave class field theory the
decisive new turn by starting from a new definition of the notion of “class
field”. His new definition was more suitable than Weber’s because it allows
one to envisage the important completeness theorem right from the
beginning.
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For an arbitrary relative field K/k he makes correspond to each integer
divisor modulus 1 in k& a congruence divisor class group interpretated
(erklart) mod m, viz. the smallest quotient group A,./H,, whose principal
class H,, contains all relative norms N() of divisors % in X prime to m
and hence consists of all divisors a in & prime to m with

. ]
a ~ N(W) mod m, ie., N = a =1modm (aek).
For m sufficiently high, more precisely for all multiples m of a lowest { (the
conductor of K/k) the class groups A4,/H,, turn out to be “equal” and hence
constitute a congruence divisor class group A4/H in Weber’s sense with
conductor f. According to Weber there holds the already mentioned first
fundamental inequality
[A:H]=h<n=[K:k],

proved by analytic means. Takagi’s class field definition then runs:

Kk is called class field to the congruence divisor class group A[H, if and
only if the equality h = n holds.

The main theorems of class field theory proved by Takagi, and based on
this definition, may be summarized as follows:

The class field relation establishes a one-one correspondence between all
relatively abelian fields Kk and all congruence divisor class groups A/H in k.

This statement comprises the existence theorem, uniqueness theorem,

completeness theorem in the older terminology, and also the limitation
theorem:

h < n if Klk is not relatively abelian,
which was added later.
For “partners” in the said one-one correspondence there hold the follow-
ing further facts:
K K'«+H2H' (ordering theorem),
G(Kfk) = A[H
p splits in K into prime divisors of relative degree f and relative order e
ifand only ifp! is the least power of p in H,, where A{H, is the maximal factor

group of A{H with conductor prime to p, and where e = [H,: H] (decom-
position law),

(isomorphy theorem),

Hence
p[o=plf,
an assertion which was later supplemented by me (1926, 1927, 1930a, 1930d)
to
b=]If, f=Mf,
x 4

AT ¢
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(conductor-discriminant theorem) where y runs through the characters of

AJH and §, denotes their conductors, while M denotes the least common
X

multiple taken over all y.

Whereas the existence theorem is obtained from the uniqueness theorem
and completeness theorem by a suitable enumeration, the proof of the
completeness theorem comes back to the secondt fundamental inequality:

hzn

This is obtained by a far-reaching generalization of the classical theory of
genera from Gauss’ Disquisitiones Arithmeticae. Nowadays the theory of
cohomology has permitted one to systematize the rather complicated chain
of conclusions that leads to this inequality.

5. As to the reciprocity law, the above mentioned further paper of Takagi’s
(1922) already gave considerable simplifications of Furtwingler’s rather
complicated argument (only 40 instead of 80 pages!). These simplifications
were possible because of the availability of the full class field theory instead
of that only for the absolute class field. It was not before Artin, however,
that an entirely new idea of fundamental importance was brought to bear
on this law. He found the key to its conceptual (as opposed to formal)
significance in explicitly giving a canonical isomorphism of the class group
AJH onto the Galois group ®(Kjk).

Artin (1927) showed that such an isomorphism is obtained by making
correspond to each prime divisor ptb, or rather to its class in A/H, the so-
called Frobenius automorphism F, of K/k with respect to p. This auto-
morphism is defined by

Afe = A% mod p, for all integers Ae K,
where R(p) is the absolute norm of p. Today one writes

=)

. . Kk e . :
and one defines from this the Artin symbol ) esa multiplicative function

on the group 4; of all divisors a in k prime to d or, what is the same, to f.
The isomorphy between A/H and G(K/k) may then be expressed by Artin’s
reciprocity law:
k
(Iﬂ—) =l<acH,
a
Artin (1924) had conceived this reciprocity law four years earlier, and had
proved it in simple special cases. However, it was not until he came to know

+ In modern terminology; first.
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Tchebotarev’'s method of crossing the classes of A/H with the congruence
classes corresponding to a relatively cyclotomic field, that he succeeded in
giving a general proof. Tchebotarev (1926) had invented this method in
order to improve on a theorem of Frobenius (1896), viz.: The prime divisors
P of a normal K/k with Frobenius automorphism Fy in a given division
(Abteilung) S ~'F} S (v prime to the order of Fy, S running through G(K/k))
have a density, namely the relative frequency of the division in the whole
group ®(K/k). The method in question enabled Tchebotarev to generalize
this theorem to a single conjugacy class S~ FyS.

For a Kummer field X = k(/b) (where k contains the nth roots of unity)

. . Kik . .
the Frobenius automorphism (—;—) changes /b into (s) /b, as is clear
from the definition of the power residue symbol (f—;) by Euler’s criterion.

n
Hence Artin’s reciprocity law yields the assertion:

b
(p) depends only on the class to which p belongs in the congruence class
n

group mod §, corresponding to k(%/b).
Here f, denotes the conductor of k(%/5).

b
On the other hand, from the definition (—) depends only on the residue

class to which b belongs mod p. From this it is easy to deduce the reciprocity
in its classical shape and also in the shape of Hilbert’s product formula.
Thus it becomes understandable and justified that Artin called the above
isomorphy assertion the “general law of reciprocity™.

With the help of this law, Artin (1930) could also reduce the principal
divisor theorem, enunciated by Hilbert and not yet proved by Takagi, to a
pure group-theoretical proposition, which then was proved by Furtwingler
(1930). Further proofs of this proposition were given by Magnus (1934),
Iyanaga (1934), Witt (1936, 1954) and Schumann and Franz (1938), whereas
Taussky and Scholz {1932, 1934) investigated more closely the process of
“capitulation”, i.e. of becoming a principal divisor in the subfields of the
absolute class field. Exhaustive results concerning this latter problem,
however, have not been achieved up to now.

6. Analogously to the process of basing the power residue symbol (g) on
: Kk )
the more general Artin symbol (% ), Isucceeded (1926, 1927 and 1930¢, b) in

basing the Hilbert norm residue symbol (‘I’Tb) (where k contains the nth



274 HELMUT HASSE

roots of unity) on a symbol (a, f/k) over an arbitrary k (which need not
contain the nth roots of unity). At first, for all prime spots p of k, my defini-
tion followed the round-about way Hilbert was forced to take for the prime
divisors p|r. As a consequence of this, the connection of thfe symbvol wi.th
the norm residues became apparent only on the strength of Artin’s rec1prc_>gty
Jaw. Shortly afterwards, however, I was able to give (1933) a new deﬁnftfon
from which this connection was immediately clear. My new definition
proceeded on a conceptual basis from the theory of algebras.

I had shown previously (19315) that every central simple algebra of degree n
over a local field k, with prime element 7 possesses an unramified (and hence
cyclic) splitting field Z,. Consequently such an algebra has a canonical
generation

w=n"  u,'Zu,= Zfe
(F, the Frobenius automorphism). On the strength of this, the residue class

% mod* 1is invariantly associated with the algebra. For a global relatively
Fi

cyclic field K/k I put then

when the cyclic algebra over k, generated by
w=a, u 'Ku=K5
a . N vp +
after extension to the completion k,, has the invariant P mod™ 1. In par-

ticular, for a Kummer field K = k(4/b) (where k contains the nth roots of
,Kfk P a,b\ ,
unity) the automorphism (a pl ) changes /b . into (—5) /b,

From this definition one infers immediately the /ocal property:

(aLK_/!c) = 1 <> a norm from K*[k,,
p
where K® denotes the isomorphy type of the completions Ky for the prime

a, Kk is now called simply the norm

divisors PBlp. Hence the symbol (
symbol. Globally 1 could prove (1926, 1927, 19304, 1930c) the norm theorem:

(aﬂk) = | for all p<>a norm from K[k,
p

anticipated by Hilbert for his symbol, as mentioned before. So Hilbert’s
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product formula for his symbol became the product formula for the norm

symbol:
a,K[k)
fI[{l—)=1
v( P

This is equivalent to my sum theorem for central simple algebras (1933):

Y. 20 mod* 1.
e it
Whereas the definition of the norm symbol generalizes from relatively
cyclic to arbitrary relatively abelian fields K/k by formal composition, I
showed (19314} that the norm theorem does not remain true in this generality.
In connection with the local property of the norm symbol I was led (1930¢)
to establish the main theorems of a class field theory over local fields k,.
Here one has a one-one correspondence between all relatively abelian fields
K?/k, and all congruence number class groups 4,/H, in k,, such that

*k
(a,—’i / _P) gives a canonical isomorphism of A /H, onto G(K*/k,). The

connection with class field theory over global fields & is given by the relations:

(i K[k, represents the isomorphy type of the completion of K/k for
the Pip;
(i) G(K?/k,) is the decomposition group of K/k for the Plp.

Subsequently, Schmidt (1930) and Chevalley (19334) gave a systematic
development of local class field theory without making reference, as I had
done, to that connection with global class field theory. Here I should also
mention the essential contributions made by Herbrand (1931 and 1932) to
the group theoretical mechanism of certain proofs in local as well as global
class field theory, and to the higher ramification theory of normat extensions.

7. In Takagi’s class field theory the characterization of the relatively abelian
fields Kfk by means of the corresponding congruence divisor class groups
AfH in k has a disadvantageous fault of beauty. This fault arises from the
approximations A,,/H,, to A/H by a kind of limit process with ascending
divisor moduli m. After p-adic concepts and methods had been brought to
bear on class field theory in the manner described before, Chevalley (19334)
had further the happy idea of replacing also the Weber-Takagi characteriza-
tion in terms of the congruence divisor class groups 4/H by a smoother
p-adic characterization. In this he succeeded by introducing his ideal elements,
or briefly idéles, namely vectors

a=(..,a,...)

with components g, from the single completions %, satisfying a suitable
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finiteness condition, viz.,
a, =1 for almost all p.

He replaced the Weber-Takagi congruence divisor class groups A/H by
factor groups A/H of the absolute idéle class group AJk¥, where k* denotes
the group of principal idéles (..., a,...) corresponding to the numbers
_a# 0from k. He proved that the symbol

(%) -m(=7)

named after him the Chevalley symbol, gives an isomorphism between an
ideéle class group A/H and the Galois group ®G(K/k). Here, the principal
class H consists of all those absolute idéle classes in k that contain idele
norms from K. In Chevalley’s class field theory this id¢le class group takes
the role of Takagi’s congruence divisor class group 4/H. To the set of all
relatively abelian fields K/k corresponds in this way the set of all idéle class
groups A/H with open principal class H in a suitable topology of-A, namely
that in which the idele units = 1 mod m for all divisor moduli m form a
complete system of neighbourhoods of 1.

Thus one can say that by Chevalley’s ideas (not to say: idéles) the local-
global principle has taken root in class field theory.

There is a further fault of beauty in Takagi’s class field theory that was
obviated by Chevalley (1940). This is the recourse to analytic means
(Dirichlet’s L-series) for the proof of the first fundamental inequality A<n.
Chevalley succeeded in proving this inequality in a purely arithmetical
manner,

8. There still remains much to be said about further developments arising
from the class field theory delineated up to this point. For instance, what lies
particularly close to my heart, the explicit reciprocity formulae (determination

of the norm symbol (a,?fa) for prime divisors p|n); further inclusion of
n
infinite algebraic extensions Kjk, class field theory over congruence function

fields (algebraic function fields with finite constant field), Artin’s L-series and
conductors, and so on. I must, however, refrain from talking about those
subjects here, because that would exceed the frame of this lecture.

I cannot touch either on the further development of class field theory
after the war, but suppose I must conclude my survey of the historical
development at this point.

If 1 have understood rightly, it was my task here to delineate for the
mathematicians of the post-war generation a vivid and lively picture of the
great and beautiful edifice of class field theory erected by the pre-war
generations. For the sharply profiled lines and individual features of this
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magnificent edifice seem to me to have lost somewhat of their original
splendour and plasticity by the penetration of class field theory with
cohomological concepts and methods, which set in so powerfully after the
war,

I should like to think that I have succeeded to some extent in this task.
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Cuarter XII
An Application of Computing to Class Field Theory

H. P. F. SWINNERTON-DYER

Let G be a connected algebraic group. Chevalley has shown that G contains
a normal subgroup R such that R is a connected linear group and G/R is an
Abelian varietyt; and these properties determine R uniquely. The general
theory of algebraic groups therefore depends on theories fof linear groups
and for Abelian varieties. In Chapter X of this book Kneser has described
the known number-theoretical properties of linear groups, and the same
thing will be done here for Abelian varieties. But there is a fundamental
difference between these two topics. Kneser has expounded a theory which is
reasonably complete and satisfactory—the major results have been or are on
the point of being proved, and there is no reason to think that there are
important theorems as yet undiscovered. For Abelian varieties, on the other
hand, very few number-theoretical theorems have yet been proved. The most
interesting results are conjectures, based on numerical computation of special
cases, and the fact that one has no idea how to attack these conjectures
suggests that there must be important theorems which have not yet even
been stated.

The original calculations are largely due to Birch and Swinnerton-Dyer;
and their results can be expressed in respectable language through the efforts
of Cassels and of Tate. One object of this chapter is to describe the numerical
evidence, to show how far the conjectures are directly based on it, and to
explain why it seems right to state the conjectures in very general terms
although all the evidence refers to cases of one particular kind,

With the advent of electronic computers, calculations which would
previously have been out of the question are now quite practicable, provided
that they are sufficiently repetitive. There must be many topics in number
theory in which intelligently directed calculation would yield valnable results.
(At the moment, most number-theoretical calculations merely pile up lists
of integers in the manner of a magpie; they are neither designed to produce
valuable results nor capable of doing s0.) The second object of this chapter

1 An Abelian variety is a connected algebraic group which is also a complete algebraic
variety; the group operation on an Abelian variety must necessarily be commutative. The
simplest example of an Abelian variety is an non-singular cubic curve in the projective
plane, together with a point on it which is the identity for the group operation.
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is to show what can reasonably be done on a computer, and what the number-
theorist must consider before he can ask someone to do his calculations
for him.

When a modein algebraist defines something, he usually begins by taking
the quotient of one very infinite object by another. A process of this kind
czn seldom be carried out on a computer even in theory; and it never can in
practice. Thus an object which can only be defined in this sort of way is not
effectively computable. Conversely, if something has to be computed it must
be defined in a way which is more down-to-earth, even if less canonical. This
applies not only to the final result of the calculation, but to anything which
turns up in the course of it. This may be difficult or even impossible: for
example the Tate-Safarevié group (defined below) has at the moment no
constructive definition.

Once a number-theorist has phrased his problem in computable terms, he
can estimate how much machine time it will take. This depends on the
number of operations involved—an operation for this purpose being an
addition, subtraction, multiplication or division. (This is a crude method of
estimation, and ignores for example the time spent in organizational parts
of the program; but it will give the right order of magnitude.) A calculation
which takes 10° operations is trivial, and is worth doing even if its results
will probably be useless. A calculation which takes 10® operations is sub-
stantial but not unreasonable. It is worth doing in pursuit of any serious idea,
but not just in the hope that something may turn up; moreover, the method
of calculation should now be reasonably efficient, whereas for a smaller
problem one chooses the simplest possible method in order to minimize the
effort of writing the program. Finally, a calculation which takes 10'?
operations is close to the limit of what is physically possible; it can only be
justified by a major scientific advance such as landing a man on the moon.

When a calculation is complete, one must still ask whether the results are
reliable. A typical program, in machine-coded form, is a string of several
thousand symbols; and a slip of the pen in any one of them will change the
calculation being carried out by the computer. Most errors have disastrous
results, and can therefore be detected and removed; but some errors are
analogous to mistakes in a formula, and will merely cause the production of
wrong answers. Sorme calculations are self-checking: one example is given
below, in which an integer is obtained as the value of a complicated analytic
expression—if this had been wrongly evaluated, the result would not always
have come out to be approximately an integer. There are other calculations
in which once the answer has been found it can be checked with relatively
little effort: for example in searching for a solution of a diophantine equation.
But in general it is desirable either to work out some typical results by hand,
for comparison with those obtained from the machine, or to have the whole
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calculation repeated ab initio by a different programmer on a different
machine.

If T is a curve defined over Q, the field of rationals, under what conditions
can we say that T' contains rational points? This problem is completely
solved for curves of genus 0, for T is then birationally equivalent over Q to
a straight line or a conic; so it is natural to consider the case when I has
genus 1. This is equivalent to saying that if Py, .., P, @y, .., O,_, are any
points on T then there is a unique @, such that the P; are the poles and the
Q; the zeros of some function on I, It follows that for any given point O
on I' we can give I the structure of a group with O as the identity; for if
Py, P, are any points on I' we define Q = P, -+ P, by the property that
Py, P, are the poles and O, @ the zeros of some function on I". Moreover if
O and T are defined over Q, then so is the group law; thus the set of rational
points on I" form a group, which we call T,

We can associate with T" another curve J, the Jacobian of T, as follows.
On T x I we define an equivalence relation by writing Py x @, ~ P, x O,
if and only if Py, Q, are the poles and P,, @, the zeros of a function on T
J is defined (up fo birational equivalence) as the curve, each point of which
corresponds to an equivalence class on I x I'. J is defined over Q and
certainly contains a rational point, corresponding to the class of points
P x PonT x T;and we can write the equation of J in the form

y*z = x> — Axz? - Bz, 4y

We say that I is a principal homogeneous space for J. Clearly I is birationally
equivalent to J over Q if and only if it contains a rational point; and because
J has a canonical rational point it has a canonical group structure.

The problem of rational points on I now breaks up into two parts:
(i) is there a rational point on T, and (ii) what is the structure of the group
of rational points on JT Of these, the second is more attractive because
there is more structure associated with it. Mordell in 1922 proved the
following theorem.

MorbeLL’s THEOREM. The group of rational points on J is finitely
generated.

It is easy to find the elements of finite order in this group, in any particular
case. Thus it is natural to ask for a means of finding g, the number of
independent generators of infinite order, and if possible for an actual set of
generators. Mordell’s argument is semi-constructive, in that it gives in any
numerical case an upper bound for g which is not absurdly large; and by
using the ideas underlying his proof one can usually find g and an actual set of
generators. But the process can be very laborious and there is no guarantee
that it will always work. Moreover g is not connected with anything else in
the theory. What should it be connected with?
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‘We can regard a solution of the equation (1) as the result of fitting together
a compatible set of solutions of the congruences

2z = x¥— Axz?— Bz® (mod p"). )

One can hope that if these congruences have a lot of solutions it will be
relatively easy to find compatible sets, and so (1) will have a lot of solutions
and g will be large. Hence we look for a measure of the density of solutions
of the congruences (2). Let N, be the number of essentially distinct primitive
solutions of (2). Except at finitely many bad primes p it follows from Hensel’s
Lemma that

Npp = p"'lN‘,
and we are therefore led to consider the infinite product
[TW,/p). 3

We can also define N, as the number of points on (1) considered as a curve
over the finite field of p elements. For finitely many primes we expect that the
factor in (3) is wrong, but it is not yet clear what to put in its place.
There is a more respectable reason for considering the product (3), though
in the end it will turn out to be misleading. We have
N, = p—o,—d,+1
where |a,| = p"'?; and the local zeta-function of T is defined as

(1=e,p™)(1-&,p°)

N e TN
The numerator of the right-hand side has the value N,/p at s = 1; if we write
Li(s) = [T [ =a,p™ (A =&, p~ )} " @
then
{s)E(s—-1)
Ee(s) = 11 &r p(8) = LG

and formally
L™ = [1Wip)-

The product (4) is only known to converge in %s > 3/2, though it is
conjectured (and in special cases known) that Lp(s) can be analytically
continued over the whole plane. Moreover one can at best hope that the
product (3) is finitely oscillatory, because one expects that Ly(s) will have
complex zeros on #s = 1. However, it is easy to calculate the finite products

fP) =TT (N,/p)
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taken over all p < P for values of P up to several thousandt. To a sympathetic
eye, the results suggested that f(P) oscillates finitely when g = 0, and tends to
infinity when g > 0; and this led to the linked pair of conjectures

S (P) lies between constant muitiples of (log PY,
Ly(s) has a zero of order g at s = 1.

(Of course the constants in the first conjecture depend on I'.) By looking at
the behaviour of f(P), Birch and Swinnerton-Dyer were able to predict the
value of g for individual curves, and the predictions were right in about
909% of the cases tried; these were curves for which g = 0,1, 2 or 3. But
there seems to be no objective numerical method for estimating g accurately
in this way.

To do better than this, we have to know more about L(s). It is therefore
natural to consider curves J which admit complex multiplication, since there
is then an explicit formula for N, and L(s) is a product of Hecke L-series.
The simplest such curves have the form

¥’z = x°— Dxz?, 5)

in which we can assume that D is an integer and is fourth-power-free; and
if we write (..), for the biquadratic residue symbol in Q(i} we have the
following formulae.

THEOREM (DAVENPORT-HASSE). For the curve y*z = x*— Dxz?,

p+1 Jor p = 3 mod 4,

ptl-—m|{=]| —@|—
n/a /a4

where in the second case p = a7 in Q(i) with n,% = 1 mod (2 + 2i).

There is no easy proof of the full theorern. That «,/x is a power of i goes
back to Jacobsthal, who gave an elementary proof which makes it look like
a piece of good luck. The reason why such formulae exist in this case is
that Q(7) is here the ring of endomorphisms of J in characteristic 0. Thus if
p = 1 mod 4, Q@) must be the whole ring of endomorphisms of J in
characteristic p; for the known structure theorems rule out any strictly larger
ring. Hence «,, being the image of the Frobenius endomorphism, must lie
in Q(f); and since «,&, = p we find that /7 is a unit in Q).

Jorp = 1 mod 4,

T The naive way of calculating IV, is to set z = 1 in (1) and test all possible pairs x, y;
this would have taken O(p?®) operations, and used more machine time than was justifiable.
But because (1) can be written as

P=w=x*—4x—B
it is only necessary to tabulate for each value of w the number of ways in which it is a

square; for each value of x one can then read off the number of solutions. In this way,
N, can be found after only O(p) operations.
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Using the values above for the N, we have
/DN
L) =Ly = [] (+797 ] [1-np (a)]
p=3Imodd p=imod4 T/a
D -x
1—7p( =
[ Tcp(n)‘]

- (9 e 5(2) v

where the product is taken over all Gaussian primes # = 1 mod (2 + 2i),
the sum is over all Gaussian integers ¢ = 1 mod (2 + 2i) and ¥ is the norm
for Q())/Q. Writing ¢ = 16D + p, where A runs over all Gaussian
integers and p over a suitably chosen finite set of values, we have

Lys)=73 (3)4 ; (No)™%.

#
We cannot yet write s = 1, for the inner series would not converge; thus we
write

ars) = : lz, v;ﬂ{;:v‘l’zs_ﬁﬁ[ _s_jc+&(1;s)]},

which converges for %5 > 1, and after some reduction we obtain

Lp(s) = (16D)* =2 [Z(D) ¢(16D )+4(1 S)CQ(E)(S)Z lGD(D) ]

N
Here we can at last let s tend to 1; and since y («, 1) = {(a), the Weierstrass
zeta function, we obtain

1 D i T _{D
L= 52(0), () - 22 () ©
This is an explicit finite formula from which the value of Ly(1) can be
computed.

In the interests of simplicity, I have derived a relatively clumsy formula for
Ly(1). In fact, if A is the product of the distinct odd primes dividing D,
then Lp(1) can be expressed as a sum of O(A?) terms instead of the o(DY
given above, and can therefore be calculated in O(A?) operations. The
constant implied in this formula is quite large because each term is com-
plicated; but it was possible to evaluate Ly(1) for all | A | < 108, which gave
some very large values of D, Moreover, provided that | A | > 1 the second
term in (6) vanishes for a suitable choice of the p and Lp(1) can be written
as a sum of terms involving Weierstrass g-functions. In this way it can
be shown that )

DL, ())/w is a rational integer if D > 0
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where w is the real period of the Weierstrass g-function defined by
pr=4p’-4p.
The proof is in two parts: 2¥*A L,(1)/w is an algebraic integer, because of
the addition formula for g; and DY Lp(1)/e is rational, because of the
Kronecker Jugendtraum. There is a similar result for D < 0. Frora this,
and the approximate calculations of Ly(1), which are accurate to one part
in 10°, we can obtain the exact values of L(1) for a large number of
particular curves; and all these support the conjecture that
Ly(l) = 0ifandonly ifg > 0.

However, the numerical results still leave something to be explained away
or fitted into the theory, to wit, the rational integer DL, (1)/ when g = 0.
The possible non-trivial factors from which this can be built up are (i) (D),
the number of rational points of finite order on J; (ii) m (D), the order of
the Tate-Safarevié group of J; (iii) “fudge factors” corresponding to the
finitely many “bad” primes. For the curve (5), #(D) is 4 if D is a square
and 2 otherwise. ‘“Bad” primes are those for which J has a bad reduction
modulo p; that is, those which divide 2D. One has also the right to deem
“infinity” to be “bad” if this is expedient,

We have next to define the Tate~Safarevi$ group. There is an equivalence
relation among the principal homogeneous spaces I' for a fixed Jacobian J,
defined by birational equivalence over Q. The equivalence classes under this
relation form the Weil-Chételet group,f which is a commutative torsion
group of infinite order. Those I which contain points defined over each
p-adic field and over the reals, fill a certain number of equivalence classes;
and these classes form the Tate-Safarevié group. It is conjectured that this
group is always finite, though there is no case in which this has yet been
proved; however Cassels has shown that when it is finite its order is a perfect
square. The whole group is not constructively defined, and is not computable;
but it is theoretically possible to compute those of its ¢lements which have
any given order (of which there can only be finitely many), and for the curve
(5) it is practicable to find the elements of orders 2 and 4 at least.

Fudge factors must be purely local, and there are now two plausible
alternatives: (i) fill in the missing factors of Ly(s) by means of the functional
equation—this is possible whenever there is complex multiplication; (if)
supply the missing factors of the product [](N,/p) by considering the
Tamagawa measure of the curve J.

T This can also be defined as the cohomology group H*(Q,J}—see Chapter X for the
details of a paraliel case, The group law can be defined geometrically as follows. There is
a map I' x I'—J which can be written P x Q—(P — Q) in an obvious notation. On
Ty x I's we define an equivalence relation by writing P, X Py ~ 0, X O, if and only if
Py — h = Q2 — Py, Now Iy + I'; is defined as T, the curve whose points are in one—
one correspondence with the equivalence classes on I'y x T's.
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It must be emphasized that these two alternatives do lead to numerical
different results, and that the second one appears to work while the first
definitely does not. To define the Tamagawa measure, let @ be a differential
of the first kind on J; this induces a measure @, on J over each p-adic field,
and the Tamagawa measure of J is defined to be

HJJ W,

taken over all primes including infinity, Here o is defined up to multiplication
by an arbitrary constant, and the contributions of this constant to the
infinite product evidently cancel out.
LemMA. If p is a “good” finite prime then [y @, = N,/p.
Here “good” means that both J and o have a good reduction mod p. We
can take o to be
dx  dy
2y 3x2-D
possibly multiplied by a p-adic unit, Let (x,,,) be any solution of
¥* = x*—Dxmod p

®

with ¥, & 0 mod p. By Hensel’'s Lemma, to each p-adic x = x, mod p there
corresponds just one y = y, mod p satisfying y* = x> — Dx; all these
solutions together contribute to [ @, an amount equal to the p-adic measure
of the set of x = x, mod p, which is p~*. A similar argument works for the
solutions with y3 = 0 or <@, This proves the Lemma.,

If we define @ to be (8), which is in fact the cancnical form for the
differential on J, then the bad primes are just those which divide 2D o0, It
can be shown that

fa:w = 20D *if D >0

with a similar result for D < 0. Thus the Tamagawa measure of J, defined
by (7), is formally equal to

20D7*[Ly(V)]* [] [ @, = ©(D), say, ©)

where the product is taken over the finite bad primes p. This is a rational
number. The contributions from the bad primes can be found by arguments
similar to those of the Lemma, though more tedius; and it can be shown that
[ ©, for a bad prime p is just the number of components into which J
decomposes under reduction modulo p in the sense of Néron (Modéles
minimaux .., Publ. IHES, 21).
The numerical results lead to the conjecture that the Tamagawa measure
(9) is equal to
[n( D) fux(D). (10

They cannot be said to support this conjecture directly since m(D) cannot
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be calculated; but if we write
¥(D) = [n(D)Y[<(D),

the conjectural value of m(D), it has the following properties in every case
in which it has been calculated. (i) (D) is a perfect square, and usually
contains no prime factor other than 2; in most cases (D) = 1. (ii) Whenever
the exact power of 2 which divides m(D) has been calculated, this is also
the exact power of 2 which divides y(D). In the outstanding cases, m(D)
must be and p(D) is divisible by a substantial power of 2. Moreover, a
comparison of the conjectures for the isogenous curves y* = x* — Dx and
y? = x* 4+ 4Dx yields an explicit formula for (-~ 4D)/m(D); this has sub-
sequently been proved by Cassels.

The surprising part of this conjecture is the presence of a square in (10).
We expect to measure a union of representatives of the elements of the
Tate—Safarevi& group modulo the group of rational points on this union; and
the measure turns out to be n(D) rather than a constant.

To desctibe what happens for g > 0, or for more general curves T, it
is convenient to define the modified L-series

L) = L[] [ o, (1

in which the product is taken over all bad primes including infinity, and
L(s) is defined by (4) in which the product is taken over all good primes.
If J admits complex multiplication, we can give explicit formulae for the
coefficients of the power series expansion of Lp({s) about s = 1 by arguments
similar to those above; the only change is that instead of Weierstrass zeta
functions the formulae involve series which converge but have no interesting
theoretical properties.
Nelson Stephens, a student of Birch, has carried out these calculations for
curves of the form
J:y? = x*— Dz, 12

which also admit complex multiplication. His results are consistent with the
formula

LE(s) = 2%(s— 1) m(7){[n())]* (13)
in which g is the number of independent generators of Jg, of infinite order,
n(J) is the order of the forsion subgroup of Jg, mi(J) is the order of the
Tate-Safarevié group of J, and x measures the size of the generators of
infinite order for Jg in the following way. Let P = (x, y, z) be a rational
point on J, where x, y, z are integers with no common factor, and write

R(P) = log [Max (Ix|,|»|.|z])].
Tate has defined the canonical height of P to be
R*(P) = lim n"2R(nP);
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he has shown that this limit exists and behaves like a quadratic form on
the additive group Jo. In particular it gives rise to the bilinear form

<Py, P> = 3 [R¥(P+P;)— R*(P)— R¥(P,)].
If Py, .., P, are the elements of infinite order in a base for Jg» then
K = det (<Pi$Pj>)

which clearly does not depend on the particular base chosen.

The conjecture (13) is meaningful for any elliptic curve, although all the
evidence so far given for it relates to curves with complex multiplication.
Shimura has shown that Ly(s) can be analytically continuved for those
elliptic curves which can be parametized by modular functions, and has
suggested that it should be possible to verify the conjecture for some of them.
The few such curves that appear in the literature all have g = 0 and can be
easily shown to have L(1) # 0. Birch has been able to calculate L* (1)
for one of them, and to show that it has the value which the conjecture
demands. But we have not yet been able to mechanize the process of finding
such curves—though they appear to be extremely common—nor that of
calculating L*(1).

It is natural to generalize these conjectures to apply to other varieties.
Assuming the Weil conjectures, let ¥ be a complete non-singular variety of
dimension #; then its local zeta-function has the form

_ Ly o)Ly 2(8) oo Ly 24(5)
Ly, ,(8) = L, 1(5) oo Ly 20-1(5)

Lp,m(s) = H 4 _amjpns)-l- (19)

Here |a,,;| = p™?, and the product (14) has B,, factors, where B, is the
mth Betti number of V. Moreover, we can write

L(s) = [1Lpuls)

where the product is taken over all primes for which ¥ has a good reduction
modulo p. In general we do not know how to define the factors corresponding
to the bad primes, and so cannot go on to obtain L¥(s); the one exceptional
case is when V is an Abelian variety 4 and m = 1 or 21 — 1. In this case
we can proceed as we did for J; the only novelty is we must now distinguish
between A and its dual 4, whereas for an elliptic curve J = J. Since the
proper generalization of (13) should follow from (13) when 4 is a product
of elliptic curves, it ought to be

L3y (s+n=1) = LI(s) & 2(s— 1Pk (A) n(A)n(A). (15)
The form of the denominator on the right has been obtained from the role

which duality plays in the proof of Cassels’ relation between m(/,) and
m(J,) for two isogenous elliptic curves J, and J,.

where
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Except in this special case, we can only try to generalize the weaker
conjecture that L (s) has a zero of order g at s = 1. In these terms, there is
a natural analogue of (15) for general V:

Lon—1(s) has a zero of order g at s = n, where g is the rank of the group of
rational points on the Picard variety of V.

But the extra generality is spurious, for one believes that L,,.,(s) depends
only on the Picard variety of ¥ and not on V itself.

For even suffices, Tate in his Wood’s Hole talkf produced a remarkable
new conjecture:

L, {s) has a pole of order v at s = r + 1, where v is the rank of the group
of r-cycles on V defined over Q, modulo algebraic equivalence.

Note that L, (s} converges in s > r + 1, so that this conjecture can be
given a meaning even if L,,(s) cannot be analytically continued; by contrast,
all the previous conjectures have refered to a point which is a distance % from
the region of known convergence. Tate’s conjecture is known to hold for
rational surfaces, and he has proved it for other varieties of certain special
types. Moreover, by applying it to the »-fold product of an elliptic curve
I" with itself, he has been able to state the distribution of the characteristic
roots a, and &, of I" as p varies; and these predictions have been verified
numerically,

Is there a comparable conjecture for L,._;(s)? One expects to associate
L,,(s) with r-cycles modulo algebraic equivalence, and L,,_,(s) with (r—1)-
cycles algebraically equivalent to zero. Moreover, any conjecture must
generalize the one stated above for L,,_,(s), and must take into account the
duality between L, (s) and L,,_.{(s). Bearing these facts in mind, there is
one plausible form that such a conjecture could take. Let a, and a, be two
algebraically equivalent r-cycles on V’; this means that there is a non-singular
variety W whose points correspond to r-cycles on ¥, and there are points P,
and P; on W which correspond to a, and a, respectively. We shall say that
a, and a, are Adbelian equivalent if it is possible to choose W,P, and P, in
such a way that the image of P, x P, in the Albanese variety of W is the
identity. It is known that this gives an equivalence relation, though it is
one about which very little has been proved. The most natural conjecture
now is as follows:

Ly._y(s) has a zero of order at least v at s = r, where v is the rank of the
group of (r — 1) — cycles on V defined over Q and algebraically equivalent to
zero, modulo Abelian equiivalence.

t Published paradoxically in ** Arithmetical Algebraic Geometry. Proceedings of a Con-
ference held in Purdue University, December 5-7, 1963.” (BEd. O. F. G. Schilling.)
Harper & Row.
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This is supported by unpublished results of Bombieri and Swinnerton-Dyer
for the cubic threefold, and for the intersection of two guadrics in 2n + 1
dimensions. In both these cases the conjecture appears to hold with actual
equality. However, numerical calculations show that for the n-fold product
of an elliptic curve with itself we can have either inequality or equality,
depending on the particular curve.
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Introduction

A central problem of algebraic number theory is to give an explicit con-
struction for the abelian extensions of a given field K. For instance, if K is Q,
the field of rationals, the theorem of Kronecker-Weber tells us that the
maximal abelian extension Q®** of Q is precisely Q%°, the union of all
cyclotomic extensions. There is a canonical isomorphism

Gal(Q**/Q) = I,I U,

so we have an explicit class-field theory over Q (Chapter VII, § 5.7).

If Kis an imaginary quadratic field, complex multiplication does essentially
the same. We get the extensions K** > K o K (K is the absolute class field
the maximum unramified abelian extension) essentially by adjoining points
of finite order on an elliptic curve with the right complex multiplication.

1. The Theorems

Let E be an elliptic curve over C (the complex field); in normal form, its
equation may be taken as y*>=4x’—g,x—g,. We know that £~ C/T
where I" is a lattice in C. An endomorphism of E is a multiplication by an
element ze C with 2T’ <. In general, End(E) = Z; if End(E) is larger,
then End(E)®Q = K must be an imaginary quadratic field.

Let R be the ring of integers of such a field X; then End(E) is a subring of
R of finite index. Every such subring of R has the form Ry=Z+fR
(/=1 is the “conductor”); so, if E has complex multiplication, there is a
complex quadratic field K with integers R, and an integer £, such that
End(E) = R;. Conversely, given R, there are corresponding elliptic curves.

THEOREM. The elliptic curves with given endomorphism ring R ' correspond
one—one (up to isomorphism) with the class group CI(R ).
292
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[CI(R,) is the same as Ko(Rf), the group of projective modules of rank 1
over R;. If f=1, it is simply the group of ideal classes of R.]

Stketch of Proof. Such a curve E determines a lattice I’ by E= C/T" (so
essentially I is 7,(E)). I is an R,-module of rank 1, whose endomorphism
ring is exactly R,; this implies that I" is an R -projective module of rank 1.
Conversely, given such a I', C/T is an elliptic curve with End(C/T') = R,.

CoroOLLARY. Up to isomorphism, there are only finitely many curves E with
End(E) = R;; in fact, there are precisely by = Card(Cl(R)).

To each E, associate its invariant j{E); so there are A, such numbers
associated with R,. For simplicity, take /= 1.

THeoreM (Weber-Fueter). (i) The j(E) are algebraic integers.
(ii) Let « = j(E)be one of them. The field K(or) is the absolute class field of K.
(iii) Gal(K(«)/K) permutes the j(E)'s associated with R transitively.

There are analogous results for > 1; in particular, the j(E) are still
algebraic integers. In fact, we can be more explicit. Call EI(R,) the set of
elliptic curves with endomorphism ring R,; if E = C(T" € ElI(R), write j(T')
for its invariant; I" is an inversible ideal of R, and j(I') depends only on its
class. Hasse (1927, 1931) has proved the following theorem.

TueoreM. Let p be a good prime of K, with (p,.)={(1); let y,=p N R,
be the corresponding ideal of R,. Then the Frobenius element F(p) acts on

J(T') by
(O)HF® = (T p;").

CoroLLARY (f=1). If E—ee CWR), and the Artin map takes ¢ € CKR)
to o, € Gal(K(2)/K), then o (&) =e—c. .
Briefly, CI(R) acts on Ell(R) by translation with a minus sign.

2. The Proofs

We describe Deuring’s algebraic proof of these theorems (Deuring, 1949,
1952); for generalizations, see the tract of Shimura and Taniyama (1961).

First, we must make sure that everything we are using is algebraically
defined. So, as before, let K be a complex quadratic field with integers R.
A curve E defined over an algebraic closure K by y? = 4x° — g, x— g3 has
an invariant j = 172843/A where A = g3—27¢3; and End(E) is well-defined
algebraically. We consider the set Ell(R,) of (classes of) curves with
endomorphism ring R;.

Qur correspondence EI(R,)«+CI(R,) was obtained using the topology
of C; so it must be replaced by something algebraic. We assert that ElI(R,)
is an affine space over CI(R,) (in other words, given x ¢ Ell and ye Cl we
can define x—y € Ell). In fact, if E is a curve and M is a projective module of
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rank 1 over R,, we may define M*E = Hom(M, E). More explicitly, take a
resolution

’ —ér R;->M-0;
then Hom(R, £) = E, so Hom(M, E) is the kernel of ¢ : E" - E™.

Proof of the Theorem. Certainly j(E) is an algebraic number; for if it were
transcendental, there would be infinitely many curves with complex multiplica~
tion by Ry, but CI(R,) is finite. In fact, the j(E) are algebraic integers, but we
will not prove this (one needs other methods; for instance, show there is a
model of E over a finite extension of K with a *good reduction’ everywhere),

G = Gal(K/K) operates on the set ElI(R,) and preserves its structure of
CI(R)-affine space; hence G acts by translations. This means that there is a
homomorphism ¢ : G — CI(R,) such that the action of ¢ € G on EIl(R)) is
translation by ¢(e).

We make the following assertions.

@ ¢ is onto.

If p is a good prime, let F, € CI(R,) be the image of the Frobenius element
by ¢.

(i) F, = Cl{p).

Clearly, (ii) implies (i); for, given (ii), Cl(p) € #(G) for all good p and
trivially CI(R,) is generated by the Cl(p)’s. The assertion (i) tells us that the
Galois group permutes the j(E) transitively, and (i) and (i) taken together
tell us that K{j(E)) is the absolute class field (for f = 1). Note that it is
actually enough to know (ii) for almost all primes p of first degree; class
field theory takes care of the others.

Proof of (ii). Let E be an elliptic curve defined over L, where L/K is
abelian. If P is a prime of L, not in a finite set §* of bad primes, E has a
good reduction Ey modulo . Suppose that Pip,p a prime of K, If Np is

the absolute norm of p, (Ey)™® is got by raising all coefficients to the Np-th
power. We assert

(iii) (Eg)"® = prEy = (p*E)y.

Now (iii) implies (ii), for by (i), j(E)"® = j(p*E) (modulo ), so the
Frobenius map j(E) —j(E)"? is the translation j(E) > j(p* E).

Proof of (iii). The inclusion map p — R, induces p*E « R *E = E. This
map E-— pxE is an isogeny of elliptic curves, and we see easily that its
degree is Np. Taking reductions modulo P, we have an isogeny £ — p+E.

Case 1. p of degree 1, Np = p. The map E - p*E has degree p, and may
be seen to be inseparable (look at the tangent space). Hence, it can only be
the map x+—x” of E— EP. For our application, this is actually enough. But
we had better sort out the other case:
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Case 2. p of degree 2, so Np = p? where p is inert in X/Q. Then one can
show that E has Hasse invariant zero; that is, it has no point of order p.
The map £~ p*E accordingly has trivial kernel, so again it is purely
inseparable, so it is £ — EP*,

Example. ‘There are either 13 or 14 complex quadratic R/’s with
class number 1, namely Q(,/—d) with =1 for d = 1,2,3,7,11,19,43,67,163,
and possibly ?, and also Q(/—1), Q(/—3) and Q(/—7) with f=2 and
Q(,/—3) with f=3. Hence there are 13 or 14 curves with complex multi-
plication with j € Q. Their invariants are: (see end of chapter)
j= 2633, 2653’ 0, _3353’ _215, _21533, _2133353’

—2193353113, 2183353233293 _(77)3,
2333113, 243%5°, 3353173, —3121553,
3. Maximal Abelian Extension

We want the maximal abelian extension K*® of K. As a first shot, try K, the
union of the fields given by the js of the elliptic curves of EI(R,), for
F=1,2,...; this field is generated by the j(z)’s where Im(z) > 0 and 1€ K.
Now enlarge K’ by adding the roots of unity; we get a field K" = Q% K?

which is very near K®®, The following theorem states this result more
precisely:

THEOREM. Gal(K*®/K™) is a product of groups of order 2.

This follows easily from class field theory and the results of Section 2.

Let now K be the absolute class field of X, and let E be an elliptic curve
defined over K, with End(E) = R. Let L; be the extension of K generated
by the coordinates of the points of finite order of E. This is an abelian
extension of K, whose Galois group is embedded in a natural way in the
group U(K) = [ U(K), where U,(K) means the group of units of X at the
finite prime v. By class field theory, Ly is then described by a homomorphism

Op: Iz = U(K)
where I is the idele group of K. Let U be the group of (global) units of X,

so that U = {£1} unless K is Q(,/—1) or Q(,/—3). One can prove without
much difficulty that the restriction of 8 to the group U(K) is:

Oe(x) = Ngsx(x™1). pe(x)
where pg is an homomorphism of U(K) into U,
The extension Lg, and the homomorphism pp, depend on the choice of E.
To get rid of this, let X' = E/U be the quotient of E by U (X is a projective
line), and let L be the extension of K generated by the coordinates of the

images in X of the points of finite order of E. This extension is independent
of the choice of E.
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THEOREM. L is the maximal abelian extension of K.
This follows by class field theory from the properties of 8, given above.

Remark. If U is of order 2 (resp. 4, 6) the map E— X is given by the
coordinate x (resp. by x%, x*). Hence K® is generated by j(E) and the
coordinates x (resp. x%,x%) of the points of finite order on E; this has an
obvious translation in analytical terms, using the j and g functions.

[For further and deeper results, analogous to those of Kummer in the
cyclotomic case, see a recent paper of Ramachandra (1964).]
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Stop PrEss

H. M. Stark has shown (Proc. Nat. Acad. Sci. U.S.4. 57 (1967), 216-221) that
there is no tenth imaginary quadratic field with class-number 1 (the ? of the
Example at the end of §2). Practically simultaneously A. Baker (Mathematika,
13 (1966), 204-216) proved an important general theorem which reduces the
problem of its existence to a finite amount of computation.
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Introduction

Let I be a rational prime, Q a group of order / (multiplicative). For a pro-
finite group G, we shall denote by H'(G) the cohomology group H'(G, Q),
G operating trivially on Q. If G is the Galois group of a field extension X/k,
we shall sometimes write H'(K/k). We shall be interested in these groups
particularly for i = 1, 2 in the case where k is a local or global field and K
its maximal l-extension, i.e. the maximal normal extension whose Galois
group is a pro-/-group.
1. Two Lemmas
Lemma 1. Consider a fomily (@¢,) of morphisms of exact sequences of

pro-l-groups:

1-R->F-G-1

ot S I N |

1-R,=»F,—~G,—~1

where (@) F, F, are freet (H*(F) = H*(F,)) = 1).
(b) F, F, are built from a minimal system of generators.
G, G, resp. (H(G) » H'(F), etc., are surjective).

Then R is generated (as a closed normal subgroup of F) by the totality of
images @ ,(R,)} <> the map

HXG) - [ H¥G,)
is injective.

Proof. In analogy to Prop. 26 of Serre (1964) we have: R generated by
the ¢ (R,) < H'(R)® » J] H(R,) injective. On the other hand, the trans-
v

1 Cf. Serre (1964) for the meaning of freedom, etc., in this context.
297



298 K. HOECHSMANN

gressions (T'g) in the diagram

Te
HYR)? - H*G)
l Tg l
H'(R,)* = H*G,)
are isomorphisms by the exactness of the Hochschild-Serre sequence and
our hypotheses (a) and (b).

LeMMa 2. Given field extensions as shown in the diagram (everything
K’ Galois over k), where Kjk and K'fk' are l-extensions,
E = Gal (K'[k) is finite with order prime to I, consider the
il obvious map 0: Gal (K'fk’) - Gal (Kfk). Suppose
I
k

(@) HY(K'/K) = 1 and

(b) Res: H*(K'fk) » H*(K'[L) to be trivial.
Then @ induces an isomorphism

6%: H¥(Kjk) - H*(K'[k')E.
Proof. 6* is the composition of
Inf: H3(K[k) - HX(K'[k)
and
Res: HX(K'[k) - H*(K'[k')E.

The bijectivity of Res follows from the fact that / is prime to the order
of E. To see it, one could use dimension-shifting on finite subextensions and
the Hochschild-Seire sequence. Hypothesis (2) yields the exactness of the
pertinent Inf-Res sequence in dimension 2, hence the injectivity of Inf. Its

surjectivity then follows from hypothesis (b) and the injectivity of the
restriction from (X'/K) to (K'(L).

2. Local Fields

Let k be a finite extension of the rational p-adic field Q,, K the maximal
l-extension of k, and G = Gal (Kfk).
Put § = rank of /torsicn part of k¥,
_— [£:Q,] ifl=p
0 otherwise,

We are interested in the numbers d* and d? of generators and defining
relations for G: i.e. the ranks of H'(G) and H*(G).

THEOREM 1.
di=n+6+1, d*=4.

Proof. By the Burnside Basis Theorem, it suffices to count generators of
G/G'[G, G}, which by local class field theory amounts to looking at k*/k*.

I-EXTENSIONS 299

The 1 in the formula for d! comes from the infinite cyclic group generated
by a prime element, the n+ 3 from the group U of units, For U is the direct
product of a finite cyclic group and a free Z,-module of rank [£:Q,] (cf.
Hasse (1962) II. 15. 5). So much for d*.

To find 42, we distinguish two cases.

(1) & = 1. Inject Q into K obtaining an exact sequence
1
1—>Q:>K*—>K*—> 1,
where / means raising to the /th power. Because of Hilbert 90, we have an
isomorphism
i: HY(G) - H¥G,K*"),
lower I meaning l-torsion part. These are the Brauer classes of order /,
by local class field theory a group of order /.
(2) & = 0. Adjoin /th roots of unity obtaining a field k" and, by construc-
tion of its maximal l-extension X', a diagram as in Lemma 2, The hypotheses
of Lemma 2 are readily verified.
(a) H'(K'/K) = Hom (Gal (K'/K), Q) = 1, since a nontrivial element
would yield a proper lextension of K,

(b) Already the restriction from H*(K'/k") to H*(K'/L) is trivial, since
elements of these groups can, as in (1), be identified with Brauer
classes of order /; these die in the vastness of L/k’.

By Lemma 2,
H*(G) ~ HYK'[K")".
E is cyclic; let ¢ be a generator. Our injection
Q- K™

is not an s-map. Indeed, for w e Q, we have

i(ew) = i(w) = [si(@)]",
where m € Z such that e~ *{ = {™ for /th roots { of unity. Accordingly, we
get a commutative diagram

H(K'[I) - Br(K)
el i } em
HAK'jk’) - Br (k')
i.e. for @ e H*(K'[k’) we have:
inv[i(e®)] = m.inv [(ia)*] = m.inv[ia],
which shows that, for a« € H3(K'[k")E, ix = 1 and hence a = 1.

Remark. The invariants d! and d? and the exponent #* of the Jtorsion
part of k* determine G completely except in the case 6 =1, F'= 2. If
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= 0, we are dealing with a free group, and the remark is trivial. If§ = |,
G has the properties:

() HYG) =~ Q.
(2) The pairing H'(G) x H'(G) - Q defined by cup-product and (1)
is non-degenerate.

(Via the Kummer isomorphism H!(G) =~ k*/k*, this pairing corresponds
to Hilbert’s l-power residue symbol.) Pro-/-groups having a finite number ¢
of generators and satisfying (1) and (2} are called Demuskin groups. If G
is any Demu$kin group such that the exponent I of the torsion part of
G/[G, G] is greater than 2, generators x,, ..., x; of G can be found such
that the relation defining G takes on the form

x'f[xl,xz] v K- X =1,

square brackets denoting commutators, If I = 2, there are several group
types depending on a more subtle invariant. For details, see Labute (1965)
and Serre (1964).

In the present context, all this machinery is necessary only if / = p. If
! # p, the cardinality g of the residue class field of kX must be =1 (mod /) in
order for 6 to be =1, Let FFlg—1, s maximal; { be a primitive I-th root of
unity in k. Then G has two generators ¢ and ¢ obtained by arbitrary exten-
sion to K of the norm residue symbols for n (prime element) and {. Every
finite subextension Lfk is metabelian with the unramified part T/k left fixed
by <. Therefore 1 = (£, L/T), where ¢ € T may be chosen to be a root of
unity. Hence o167 = (¢, L/T) = (£, L/T) = 1%, this relation holding
on every finite L/k and hence on K/k.

3. Global Fields

Let k be a finite extension of Q, and X the maximal /-extension of k with
Galois group G.

For each prime v of k consider the completion %, and its maximal l-exten-
sion K, (here we deviate from standard notation!) with Galois group G,.

We fix an extension w of v to K, obtaining an injection

PG, G

whose image is the decomposition group of w.
Let &, 8, be the Itorsion rank of k*, k¥ resp,

THEOREM 2. The ¢, induce a monomorphism
¢* : HY(G)~[] HYG,)

whose cokernel has rank 5.
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Proof. We proceed as in the proof of Theorem 1.
(1) § = 1. An injection i{:Q — K* yields corresponding injections
i:Q — K¥ to make commutative diagrams
HYG) ~ H*G.K™);

l |
HZ(G‘,) = HZ(GU’K:)I
bijectivity of the horizontal arrows being furnished by Hilbert (Theorem 90)
via the exact sequence

: i
1-Q-K*aK*>1
and its local counterpart. We use the right-hand sides of these diagrams

and Hasse’s characterization of Brauer classes by their local invariants to
obtain the exact sequence

15 HYG) > [[HYG) > Q1.

where y denotes the sum of invariants written multiplicatively.

(2) 6 = 0. Again we adjoin /th roots of unity obtaining a field k. We
extend each place ¢ of k' to a place w' of the maximal Fextension K’, so that
w' agrees with the already chosen w on K. We now have a diagram as in
Lemma 2 for the global fields and, for each o', a similar local one, showing
Kk, and K[k, with Galois groups G, and G} resp. The commutation
rule: ¢, 0 0, = 0o @, (V'|v) yiclds a2 commutative diagram

[
H*(G) » HYG;)
ol g, o
HXG) - H*G,)
for each v'.
Taking all these diagrams together and noting the injectivity of 8* (since
HYK'IK) = 1, again by maximality of K), we deduce the injectivity of
¢* = [] @¥ from that of [] @}, which was established in (1).

To prove surjectivity, we note that, by Lemma 2, the image of #* is
H*(G"Y, hypothesis (b) being verified as before by identifying H*(K'/k"),
H?*(K'/L) with the ltorsion of Brauer groups over k' and L resp. and
watching the former die (locally everywhere) as we restrict them to L. Next
we observe that H%(G,) # 1 < J, = 1 <> v splits completely in &', and that
we can limit our attention to the set S, of these places. We now have a
diagram

HYG)E - 1] HXG,)
9*T o* v T
H*G) — ]I B*G,)

vESo



302 K. HOECHSMANN

where 0* is a bijection, and propose to prove the surjectivity of ¢* by showing
that the map
HG~ [I HYG)
velSohb
is no longer injective, if we leave out any b e S, from the product on the
right. This amounts to finding a non-trivial « € H*(G")E such that ¢J(a) = 1
for all ¢ not lying over b.
Arguing as at the end of the proof of Theorem ! and using the notation
introduced there, we find
inv,, [i(a®)] = m.inv,, [ia]
(NLB. this time & operates on the places, too.) Therefore
o e H*(G")E < inv,, [ia] = m.inv, [ia].
We define the desired o by prescribing the invariants of jx:
0 ifv'}b
nv, [ia] = {m’
1
where &’ is a fixed place above b, and r = [k’ : k]. Since

ifo'=¢b" (j=0,...,r—1)

r=1
Ym=0 (modl),
i=o

this does define a Brauer class ix of order [,

Remark. By Lemma 1, this result can be translated into a theorem of
H. Koch (1965) about relations defining the group G. If we present G, G,
as factor groups of free groups F, F, and extend ¢, to a morphism of the
corresponding exact sequences as in Lemma 1, it follows from Theorem 2
that R is generated by the images ¢ (R,). Now, R, is generated by a single
relation #,, which is trivial if §, = 0 (cf. Theorem 1). Theorem 2 also asserts
that the ¢,(r,) form a minimal system of relations if § = 0 and that, if 6 = 1,
a minimal system is obtained by leaving one of them out.

APPENDIX
Restricted Ramification

Let .S be a set of places on the field k considered in the preceding paragraph,
and let X(S) be the maximal Fextension of X unramified outside of S. So
far, we have been dealing with the case S = all places; the other extreme,
S = @, isthe topic of Roquette’s Chapter IX. We wish to conclude with some
remarks about the general situation.

In Koch (1965), G(S) = Gal (K(S)/k) is studied as a factor group of G.
Generators of G are obtained from the norm residue symbols for generators
of Ifk*I* (I = idéles of k). More precisely, one considers the exact sequence

1= U AU = Ik* - CliCl' = 1
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{U = idéle units; Cl = ideal classes), and chooses for generators: (1) pre-
images of a basis of the finite cokernel and (2) for each place v a basis B,
of U,jU.. The natural map

G—G(S)
is then given by setting T = 1 whenever 1€ B,, v ¢ .5 (the elements of B,
lie in the inertia group of ).

If we had a description of G in terms of these generators and some defining
relations, we should get a corresponding description of G(S) by simply cross-
ing out the unwanted ©’s everywhere. But Theorem 2, gives relations for G
only if we start with 2 minimal system of generators; and our system is not
minimal! Indeed, a certain finite number of elements of U B, has to be

eliminated to make it minimal, and the outlined procedure works only if §
is large enough to include the v’s corresponding to these elements. In
general this approach is still strong enough, to yield a fundamental inequality
of Safarevié (1963, Theorem 5), and in favourable special cases it leads to a
satisfactory description of G{(S). For details, see (Koch, 1965).

In Brumer (1967), the methods used by us to prove Theorem 2 (case (1))
are directly applied to the more general problem. It is assumed that §, = |
and that § contains all primes lying above /. Then the extraction of Ith
roots of S-units leads to extensions unramified outside of .5 and thus to an
exact sequence

i 1
1-0- E(S)—> E(S)— 1.
where E(S) denotes S-units of K(§). Passing to cohomology, we have

i
1 H'(G(S), E(S)) » H(G(S)) » H*(G(S), E(S)), — 1.

where, for abelian groups X, ;X means X/X’. It is not difficult, to identify
the last term with a subgroup of Br (k),, more precisely: with those Brauver
classes of order / whose localizations are trivial outside of S. Furthermore,
HYG(S), E(S)) turns out to be isomorphic to ideal classes of k modulo
classes containing elements of §'; we shall call this group A(S). We obtaip
an exact sequence

1= A(S)~ H¥(G(S) ~» [ B*(C) >~ 1

analogous to the one in the proof of Theorem 1 (part (1)).
The more difficult case (6 = 0) has not yet been successfully dealt with
by this method.
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ABSTRACT

We lay the foundations for abstract analysis in the groups of valuation vectors
and idéles associated with a number field. This allows us to replace the
classical notion of {-function, as the sum over integral ideals of a certain type
of ideal character, by the corresponding notion for idéles, namely, the integral
over the idéle group of a rather general weight function times an idéle
character which is trivial on field elements. The role of Hecke’s complicated
theta-formulas for theta functions formed over a lattice in the #-dimensional
space of classical number theory can be played by a simple Poisson formula

T This is an unaltered reproduction of Tate’s doctoral thesis (Princeton, May 1950).
The editors were urged by several of the participants of the Conference to include this thesis
in the published proceedings because although it has been widely quoted it has never been
published. The editors are very grateful to Tate for his permission to do this and for the
comments on recent literature (p. 346).
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for general functions of valuation vectors, sunnnqd over the disc.rete subgrm}p
of field elements. With this Poisson formula, which is of great 1}nportance in
itself, inasmuch as it is the number theoretiq analogue of the Riemann-Roch
theorem, an analytic continuation can be given at one stroke for all qf the
generalized {-functions, and an elegant functional equation can be estal;]nshed
for them. Translating these results back into classical terms one obtalps the
Hecke functional equation, together with an interprqtatlon of the com.pllcated
factor in it as a product of certain local factors coming from the archlpledean
primes and the primes of the conductor. The notion of local {-function has
been introduced to give local definition of these factors, and a table of them
has been computed.

1. Introduction
1.1. Relevant History

Hecke was the first to prove that the Dedekind {-function of any algebraic
number field has an analytic continuation over the whole plane and satisfies
a simple functional equation. He soon realized that his method would wqu,
not only for the Dedekind {-function and L-series, but also for a {-function
formed with a new type of ideal character which, for principal ideals depends
not only on the residue class of the number modulo the “conductor”, but
also on the position of the conjugates of the number in the complex field.
Overcoming rather extraordinary technical complications, he showed (1918
and 1920) that these “Hecke” {-functions satisfied the same type of funci-
tional equation as the Dedekind (-function, but with a much more compli-
cated factor. .

In a work (Chevalley, 1940) the main purpose of which was to take analysis
out of class field theory, Chevalley introduced the excellent notion of the
idele group, as a refinement of the ideal group. In idéles Chevalle'y had not
only found the best approach to class field theory, but to algebraic number
theory generally. This is shown by Artin and Whaples (1 945). They deﬁ_ned
valuation vectors as the additive counterpart of ideles, and used these notions
to derive from simple axioms all of the basic statements of algebraic number
theory. ‘

Matchett, a student of Artin’s, made a first attempt (1946) to continue
this program and do analytic number theory by means of ideles and_vectors.
She succeeded in redefining the classical {-functions in terms of integrals
over the idéle group, and in interpreting the characters of Hecke as exactly
those characters of the ideal group which can be derived from idele characters.
But in proving the functional equation she followed Hecke.

1.2. This Thesis

Artin suggested to me the possibility of generalizing the n_otion of C-func-tion,
and simplifying the proof of the analytic continuation and functional
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equation for it, by making fuller use of analysis in the spaces of valuation
vectors and idéles themselves than Matchett had done. This thesis is the
result of my work on his suggestion. I replace the classical notion of {-func-
tion, as the sum over integral ideals of a certain type of ideal character, by
the corresponding notion for idéles, namely, the integral over the idéle group
of a rather general weight function times an idéle character which is trivial
on field elements. The role of Hecke’s complicated theta-formulas for theta
functions formed over a lattice in the n-dimensional space of classical
number theory can be played by a simple Poisson Formula for general
functions of valuation vectors, summed over the discrete subgroup of field
elements. With this Poisson Formula, which is of great importance in itself,
inasmuch as it is the number theoretic analogue of the Riemann-Roch
theorem, an analytic continuation can be given at one stroke for all of the
generalized {-functions, and an elegant functional equation can be estab-
lished for them. Translating these results back into classical terms one
obtains the Hecke functional equation, together with an interpretation of
the complicated factor in it as a product of certain local factors coming from
the archimedean primes and the primes of the conductor. The notion of
local {-function has been introduced to give a local definition of these
factors, and a table of them has been computed.

I wish to express to Artin my great appreciation for his snggestion of this
topic and for the continued encouragement he has given me in my work.

1.3. “Prerequisites”

In number theory we assume only the knowledge of the classical algebraic
number theory, and its relation to the local theory. No knowledge of the
idele and valuation vector point of view is required, because, in order to
introduce abstract analysis on the idéle and vector groups we redefine them
and discuss their structure in detail.

Concerning analysis, we assume only the most elementary facts and
definitions in the theory of analytic functions of a complex variable. No
knowledge whatsoever of classical analytic number theory is required.
Instead, the reader must know the basic facts of abstract Fourier analysis
in a locally compact abelian group G: (1) The existence and uniqueness
of a Haar measure on such a group, and its equivalence with a positive
invariant functional on the space L{G) of continuous functions on G which
vanish outside a compact. {2) The duality between G and its character
group, G, and between subgroups of G and factor groups of G. (3) The
definition of the Fourier transform, f, of a function e L,(G), together with
the fact that, if we choose in G the measure which is dual to the measure
in G, the Fourier Inversion Formula holds (in the naive sense) for all functions
for which it could be expected to hold; namely, for fuactions fe L,(G)
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such that f is continuous and feL(G). (This class of functions we denote
by B,(G).) An elegant account of this theory can be found for example in
Cartan and Godement (1947).

2. The Local Theory
2.1. Introduction

Throughout this section, k denotes the completion of an algebraic number
field at a prime divisor p. Accordingly, k is either the real or complex field
if p is archimedean, while k is a “p-adic” field if p is discrete. In the latter
case k contains a ring of integers o having a single prime ideal p with a
finite residue class field o/p of Np elements. In both cases k is a complete
topological field in the topology associated with the prime divisor p.
From the infinity of equivalent valuations of k belonging to p we gselect

the normed valuation defined by:

|| = ordinary absolute value if k is real.

l«| = square of ordinary absolute value if k is complex.

o] = (Np)~", where v is the ordinal number of o, if k is p-adic.

We know that k is locally compact. The more exact statement which one
can prove is: a subset B < k is relatively compact (has a compact closure)
if and only if it is bounded in absolute value. Indeed, this is a well known
fact for subsets of the line ‘or plane if % is the real or complex field; and one
can prove it in a similar manner in case k is p-adic by using a “Schubfach-
schluss” involving the finiteness of the residue class field.

2.2. Additive Characters and Measure

Denote by k™ the additive group of k, as a locally compact commutative
group, and by ¢ its general element, We wish to determine the character
group of k*, and are happy to see that this task is essentially accomplished
by the following:

LevMA 2.2.1. If & = X(&) is one non-trivial character of k*, then for each
nek*, & X(n&) is also a character. The correspondence 1 <+ X(n&) is
an isomorphisim, both topological and algebraic, between k* and its character
group.

Proof. (1) X(é) is a character for any fixed i because the map & — n{
is a continuous homomorphism of k* into itself.

(2) Xy +12)8) = X1 &+n28) = Xy E)X(n, &) shows that the map
1 — X(#€) is an algebraic homomorphism of k* into its character group.

C(3) X(e) =1, all ¢=>nkt #k* =>n =0 Hence it is an algebraic
isomorphism into. .

@) X&) =1, all n=>k*E# k™ =& =0. Therefore the characters

of the form X(y¢) are everywhere dense in the character group.

i W T o’ Tt
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(5) Denote by B the (compact) set of all & € k™ with |¢| < M for a large M.
Then: 5 close to 0in &* = nBclose to 0 in k¥ = X(1.8) close to 1 in complex
plane = X(n&) close to the identity character in the character group. On the
other hand, if £; is a fixed element with X(&,) s 1, then: X(n&) close to
identity character == X{nB) close to 1, closer, say, than X(&) = &, ¢ 9B =y
close to 0 in k*. Therefore the correspondence < X(né) is bicontinuous.

(6) Hence the characters of the form X(#&) comprise a locally compact
subgroup of the character group. Local compactness implies completeness
gnd therefore closure, which together with (4) shows that the mapping
1s onto.

To fix the identification of &% with its character group promised by the
preceding lemma, we must construct a special non-trivial character. Let
p be the rational prime divisor which p divides, and R the completion of
;hf] rational field at p. Define a map x -» i(x) of R into the reals mod 1 as
ollows:

Case 1. p archimedean, and therefore R the real numbers.

Mx) = —x (mod 1)
(Note the minus sign!)

Case 2. p discrete, R the field of p-adic numbers. A(x) shall be determined
by the properties:

(a) A(x) is a rational number with only a p-power in the denominator.
(b) A(x)—x is a p-adic integer.

gTo find such a A(x), let p"x be integral, and choose an ordinary
mteger n such that n = p'x (mod p*). Then put A(x) = nfp*; A(x) is
obviously uniquely determined modaulo 1.)

LemMMA 2.2.2. x - A(X) is a non-trivial, continuous additive map of R into
the group of reals (mod 1).

Progf. In case 1 this is trivial. In case 2 we check that the number
A(x)+1(y) satisfies properties (a) and (b) for x+y, so the map is additive.
It is continuous at 0, yet non-trivial because of the obvious property:
A(x) = 0 <> x is p-adic integer.

Define now for { e k™, A€) = A(Syrt). Recalling that S, is an additive
continuous map of &k onto R, we see that & — ¢2™A®) {5 a non-trivial
character of k*. We have proved:

THEOREM 2.2.1. k* is naturally its own character group if we identify the
character & - &™) with the element ne k.

.LEval.:x 2.2.3. In case p is discrete, the character e*™ "% gssociated with
n is trivial on o if and only if 1 €d™Y, b denoting the absolute different of k.
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Proof. .
A(yo) = 0<> A(Sy/z(n0)) = 0> Sy p(n0) c 0> H €D .
Let now y be a Haar measure for k™.

Lemma 2.2.4. If we define p,(M) = peM) fora # O€k, and M a measur-
able set in k*, then p, is a Haar measure, ond consequently there exists a
number @(e) > 0 such that uy = e@)p.

Proof. & — of is an automorphism of k*, both topological and algebraic.
Haar measure is determined, up to a positive constant, by the topological
and algebraic structure of k*.

LeMMA 2.2.5. The constant @) of the preceding lemma is o, i.e. we have
plaM) = |alp(M). . o

Proof. If k is the real field, this is obvious. If k is complex, it is just as
obvious since in that case we chose |a| to be the square of the ordinary
absolute value. If k is p-adic, we notice that since o is both compact and
open, 0 < u(o) < oo, and it therefore suifices to compare the size of o with
that of «o. For a integral, there are /4 (ao) cosets of o in o, hence
ooy = (M(o0)) ™ *p(0) = |x|p(0). For non-integral «, replace & by o~ 1.

We have now another reason for calling the normed valuation the natural
one. || may be interpreted as the factor by which the additive group ktis
“stretched” under the transformation & — .

For the integral, the meaning of the preceding lemma is clearly:

dp(d) = o du(s);

J @ du@) = |l [ f(a) dp(C).

So much for a general Haar measure g, Let us now select a fixed Haar
measure for our additive group k*. Theorem 2.2.1 enables us to do this
in an invariant way by selecting the measure which is its own Fourier
transform under the interpretation of k™ as its own character group estab-
lished in that theorem. We state the choice of measure which does this,
writing d¢ instead of dp(¢), for simplicity:

dE = ordinary Lebesgue measure on real line if & is real.
d = twice ordinary Lebesgue measure in the plane if k is complex.
d4¢ = that measure for which o gets measure (Nd)~% if k is p-adic.

TueorREM 2.2.2. If we define the Fourier transform f of a function
feLy(k*) by:

or more fully:

foiy = [ f@e 2 ruo ag,

then with our choice of measure, the inversion formula

& = [ Jloy e dy = f(~&)
holds for fe B,(k*).
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Proof. We need only establish the inversion formula for one non-trivial
function, since from abstract Fourier analysis we know it is true, save
possibly for a constant factor, For k real we can take f(&) = ¢~"KV*, for
k complex, f(&) = e~#*8¥l; and for k p-adic, f(£) = the characteristic
function of o, for instance. For the details of the computations, the reader
is referred to Section 2.6 below.

2.3. Multiplicative Characters and Measure

Qur first insight into the structure of the multiplicative group k* of & is
given by the continuous homomorphism « — |a| of &* into the multiplicative
group of positive real numbers, The kernel of this homomorphism, the
subgroup of all & with Jz| = 1 will obviously play an important role. Let
us denote it by #. u is compact in all cases, and in case k is p-adic, u is also
open.

Concerning the characters of k*, the situation is different from that of k™,
First of all, we are interested in all continuous multiplicative maps a -» ¢(a)
of k* into the complex numbers, not only in the bounded ones, and shall call
such a map a quasi-character, reserving the word *‘character” for the con-
ventional character of absolute value 1. Secondly, we shall find no model
for the group of quasi-characters, or even for the group of characters, though
such a model would be of the utmost importance.

We call a quasi-character unramified if it is trivial on #, and first determine
the unramified quasi-characters.

Lemma 2.3.1. The unramified quasi-characters are the maps of the form
c(@) = |off = e*°¢ 18l where 5 is any complex number, s is determined by ¢ if
p is archimedean, while for discrete p, s is determined only mod 2rniflog A'p.

Proof. For any s, |«|° is obviously an unramified quasi-character. On the
other hand, any unramified quasi-character will depend only on |a|, and
as function of [«] will be a quasi-character of the value group of k. This
value group is the multiplicative group of all positive real numbers, or of
all powers of 4'p, according to whether p is archimedean or discrete; it
is well known that the quasi-characters of these groups are those described.

If p is archimedean, we may write the general element o e k™ uniquely
in the form o = &p, with dewu, p > 0. For discrete p, we must select a
fixed element = of ordinal number 1 in order to write, again uniquely,
o = &p, with & € u and, this time, p a power of =. In either case the map
a — & is a continuous homomorphism of k* onto u which is identity on #.

THeoreM 2.3.1. The guasi-characters of k* are the maps of the form
o — clo) = @Nal?, where & is any chargeter of u. & is uniquely determined
by ¢. s is determined as in the preceding lemma.

Proof. A map of the given type is obviously a quasi-character. Con-
versely, if ¢ is a given quasi-character and we define & to be the restriction
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of ¢ to u, then & is a quasi-character of u and is therefore a character of u
since w is compact. « - ¢(®)/&(@) is an unramified quasi-character, and
therefore is of the form |«|* according to the preceding lemma,

The problem of quasi-characters ¢ of k* therefore boils down to that of
the characters & of u. If k is the real field, u = {1, —1} and the characters
are &(@) = &, n = 0, 1. If k is complex, u is the unit-circle, and the characters
are &(d@) = &", n any integer. In case k is p-adic, the subgroups 1+p”, v > 0,
of u form a fundamental system of neighborhoods of 1 in ». We must have
therefore #(1+p") = 1 for sufficiently large v. Selecting v minimal (v = 0
if & = 1), we call the ideal f = p* the conductor of & Then ¢ is a character
of the finite factor group #/(1+1) and may be described by a finite table of
data.

From the expression ¢(o) = é&(@&)|«|® for the general quasi-character given
in Theorem 2.3.1, we see that |e(¢)| = |o|”, where 6 = Re (s) is uniquely
determined by e{e}. It will be convenient to call ¢ the exponent of c.
A quasi-character is a character if and only if its exponent is 0.

We will be able to select a Haar measure da on k* by relating it to the
measure d¢ on k*. If g(e) € L(k*), then g(&)|&~* e L(k* —0). So we may
define on L(k*) a functional

)= | oefeltae.
If Mo} = g(Bo) (B e k*, fixed) is a multiplicative translation of g(x), then
o= | oBDle™ dt = 9(g),
as we see by the substitution £ — f71£; d& — || ~! d¢ discussed in Lemma
2.2.5. Therefore our functional @ which is obviously non-trivial and positive,

is also invariant under translation. It must therefore come from a Haar
measure on k*. Denoting this measure by d, &, we may write

[o@dia= [ g@lgaz
k¥—0
Obviously, the correspondence g(e) < g(£)|€|™" is a 1-1 correspondence

between L(k*) and L{(k* ~0). Viewing the functions of L (k*) and L,(k* -0
as limits of these basic functions we obtain:

LemMa 232,  g@) eL,(k*) < g(&)|é| " e Ly(k*—0), and for these
Junctions

fodia= | ol at.
k¥~
For later use, we need a multiplicative measure which will in general give
the subgroup u the measure 1. To this effect we choose as our standard

FOURIER ANALYSIS IN NUMBER FIELDS AND HECKE'S ZETA-FUNCTIONS 313

Haar measure on k*:

dot

dou=dja= l-——l, if p is archimedean.
o

do = Ny o= __Np (—I‘f
T Np=11'" Np-—1lof
LemMa 2.3.3. In case p is discrete,

f da = (D)%

if p is discrete.

Proof.
Np-—1

fd1a=f|§|"‘d§=fdé= N dé.

Therefore

fda:Nfilfd1a=fd§ = (#D)"%,

[

2.4. The Local {-function; Functional Equation

In this section (&) will denote a complex valued function defined on k*;
f(&) its restriction to k*. We let 3 denote the class of all these functions which
satisfy the two conditions:

3,) (&), and f(¢) continuous, & L,(k"); i.e. f(&) e By(k*)

32) f(@)|o]” and f()|«|” € L,(k*) for ¢ > 0.
A {-function of k will be what one might call a multiplicative quasi-Fourier
transform of a function fe 3. Precisely what we mean is stated in

DErINITION 2.4.1. Corresponding to each fe3, we introduce a function
(S, ©) of quasi-characters ¢, defined for all quasi-characters of exponent
greater than O by

U9 = [ fl@)elayda,

and call such a function a {-function of k.

Let us call two quasi-characters equivalent if their quotient is an unrami-
fied quasi-character. According to Lemma 2.3.1, an equivalence class of
quasi-characters consists of all quasi-characters of the form () = co(e)|el’,
where c¢4(e) is a fixed representative of the class, s a complex variable. It
is apparent that by introducing the complex parameter s we may view an
equivalence class of quasi-characters as a Riemann surface. In case p is
archimedean, s is uniquely determined by ¢, and the surface will be isomor-
phic to the complex plane. In case p is discrete, s is determined only
mod 2miflog A'p, so the surface is isomorphic to a complex plane in which
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points differing by an integral multiple of 2miflog #'p are identified—the
type of surface on which singly periodic functions are really defined. Looking
at the set of all quasi-characters as a collection of Riemann surfaces, it
becomes clear what we mean when we talk of the regularity of a function
of quasi-characters at a point or in a region, or of singularities. We may
also consider the question of analytic continuation of such.a function,
though this must of course be carried out on each surface (equivalence
class of quasi-characters) separately.

LemMa 2.4.1. A {-function is regular in the “domain’ of all quasi-characters
of exponent greater than 0.

Proof. We must show that for each ¢ of exponent > 0 the integral
[ f@)e(o)|e|*de represents a regular function of s for s near 0. Using the
fact that the integral is absolutely convergent for s near 0 to make estimates,
it is a routine matter to show that the function has a derivative for s near 0.
The derivative can in fact be computed by “differentiating under the integral
sign”.

It is our aim to show that the {-functions have a single-valued meromorphic
analytic continuation to the domain of all quasi-characters by means of a
simple functional equation. We start out from

LEMMA 2.4.2, For ¢ in the domain 0 < exponent ¢ < 1 and &) = |alc™ (&)
we have

UL UG &) = U, Bl(g, )
for any two functions f, g €3.

Proof. U(f, O)l(g, & = § f@)cler) dee. | §(BYe™1(B)IB| B with both integrals
absolutely convergent for ¢ in the region we are considering. We may write
this as an absolutely convergent “double integral” over the direct product,
k* x k*, of k* with itself:

[[ fde@etap=)\Bd, B).

Subjecting k* x k* to the “shearing” automorphism (e, £) — (&, af), under
which the measure d{x, f) is invariant we obfain

[ [ fedd@pe()lapldl, B).

According to Fubini this is equal to the repeated integral

[ (] Fedaaplofde)e(s= 1814,

To prove our contention it suffices to show that the inner integral
[f(@)g(aP)|e| doe is symmetric in £ and g. This we do by writing down the
obviously symmetric additive double integral

[[ 1&gt e=2740 4z, m),
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changing it with the Fubini theorem into

[ 1&([ gtye™245m an) dt = [ fQ)a(EB) dé,

and observing that according to Lemma 2.3.2 this last expression is equal to
the multiplicative integral

f J@)gp)|ejd, o = constant.J f(0)d(of)]ar|dac.

We can now announce the Main Theorem of the local theory.

THEOREM 2.4.1. A U-function has an analytic continuation to the domain of

all quasi-characters given by a functional equation of the type
{(f,©) = p()(J, &),

The factor p(c), which is independent of the function f, is a meromorphic
function of quasi-characters defined in the domain O < exponent ¢ < 1 by the
functional equation itself, and for all quasi-characters by analytic continuation.

Proof. 1In the next section we will exhibit for each equivalence class C
of quasi-characters an explicit function f;; € 3 such that the function

p(C) = C(sz C)/C(sz 6)

is defined (i.e. has denominator not identically 0) for ¢ in the strip 0 < expo-
nent ¢ < 1 on €. The function p(c) defined in this manner will turn out to
be a familiar meromorphic function of the parameter s with which we
describe the surface C, and therefore will have an analytic continuation
over all of C.

From these facts, which will be proved in § 2.5, the theorem follows
directly. For since C was in any equivalence class, p(c) is defined for all
quasi-characters. And if f(&) is any function of 3 we have according to the

preceding lemma
C(f 3 C)C(f Cs &= C(fs a)C(f o) C),
(£, ) = ple) (. 2),

if ¢ is any quasi-character in the domain of 0 < exponent ¢ < 1, where
t(f, ©) and [(f, &) are originally both defined, and C is the equivalence
class of .

Before going on to the computations of the next section which will put
this theory on a sound basis, we can prove some simple properties of the
factor p(c) in the functional equation which follow directly from the
functional equation itself.

therefore

Lemma 2.4.3,
o=D
(L) p(d) = o0

(2) p(&) = (= Dp(c).
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Proof.
(1) {(f,©) = p(e)(, &) = pIp(D)UF, &) = e = (S ©)
because /() = f(—a) and &a) = c(o)). Therefore p(c)p(&) = o(—1).
@ (7,0 = U70) = pD(].&) .
= p(&)e(— DY, &) = p(©)e(— 1S, )
because f(@) = f(—o) and 2() = &x). On the other hand,
t((f,0) = p(0) {(,2).
Therefore p(¢) = o(— Dplo).
CoroLLARY 2.4.1. {p(c)] = 1 for ¢ of exponent $.

Proof. (exponent ¢) = + = c(&)é(e) = le(@)|? = |a] = c(o)e(e) = &) = &(a).
Equating the two expressions for p(¢) and p(¢) given in the preceding lemma

yields p(e)p(c) = 1.
2.5, Computation of p(c) by Special [-functions

This section contains the computations promised in the proof of theorem
2.4.1. For each equivalence class C of quasi-characters we give an especially
simple function £ & 3 with which it is easy to compute p(c) on the surface C.
Carrying out this computation we obtain a table which gives the analytic
expression for p(c) in terms of the parameters on each surface C. It will
be necessary to treat the cases k real; & complex; and % p-adic separately,

k Real
¢ is a real variable. e is a non-zero real variable.
A(®) =~-¢&, || is the ordinary absolute value,
. d
d¢ means ordinary Lebesgue measure. da = iﬁ .

The Equivalence Classes of Quasi-Characters. The quasi-characters of the
form o, which we denote simply by |{° comprise one equivalence class.
Those of the form (sign o)jal*, which we denote by + [, comprise the other.

The Corresponding Functions of 3. We put

J@ = and fi(Q)=¢e

Their Fourier Transforms. We contend

JO=78 and Ju(&) =ifs(®)

Indeed, these are simply the two identities

Y o
je—uu1+1xi{u dﬂ = e—zéz and fﬂe'”":”"""dq = lf e—agl
w0 =

familiar from classical Fourier analysis. The first of these can be established
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directly by completing the square in the exponent, making the complex
substitution # — 4, which is allowed by Cauchy’s integral theorem,

and replacing the definite integral j e~ ™’ dE by its well-known value 1

. . 1 d
The second identity is obtained by applying the operation i T to the
first.

The {-functions. We readily compute:

[+

A ff(ot)]a]’da _ f e'""lal’ﬁ

-

= zfeuualas-l dCC = ﬁ_ir(g),
0

0 oo

§(f¢»i”s) ff:t(“)("‘hl‘)d“" f“e “2( 1)]°‘| I | _[ ”mzlal |oc|

— oo
oo

s+1 1
=2fe""“loc’doz=fc 2 I“(S; ),

o

Wi =i §=nT F(lzs)

(l-s)+*r((1—s)+1).

-~ -
Jer 2| = Uif e, £||' o =in 2 >
Explicit Expressions for p(c):

cir()

el = ;—_—-1-_2_3—1_—‘-(17__3) = 2'7*g "% cos ( 2) T(s)

- L fs+1

Here the quotient expressions for p come directly from the definition of p
as quotient of suitable {-functions; the second form follows from elementary
I-function identities.
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k Complex

& = x+iy is a complex variable. o =re® {s a nonm-zero complex
variable.

A(E) = —-2Re(§) =—2x. |a] = #? is the square of the ordi-
nary absolute value.

dt = 2|dx dy| is twice the ordinary _du 2rldrdd| 2

Lebesgue measure. do = M T Tt T, |dr 0.

Equivalence Classes of Quasi-Characters. The characters ¢, («) defined by
c,(re®) = ", n any integer, represent the different equivalence classes.

The nth class consists of the characters ¢, («)|«|®, which we denote by ¢, |I*.
The Corresponding Functions of 3. We put

140 = {‘x—iy)'"* e 50

(x+iplrle=2n=4r 5 <,
Their Fourier Transforms. We contend

F&) = i™f_ (&), forall n.

Let us first establish this formula for » > 0 by induction. For # = 0, the
contention is simply that f,(&) = e~ 2****" {5 its own Fourier transform.
This can be shown by breaking up the Fourier integral over the complex
plane into a product of two reals and using again the classical formula

+ o0

j e—uu‘+2n1xudu — e—nxz.

-
(The factor 2 in the exponent of our function f,(£) just compensates the
factor 2 in d€ and in A(£).)

Assume now we have proved the contention for some # > 0. This means

we have established the formula

[fme2menay = ivp_ (),

which, written out, becomes
aa 0

f j(u—iu)”e‘z"(“z“"z"""’“"‘"_”")2du dv = {"(x+iy)"e 2T,

—a T}
_1(o, 0
 4mi \Ox ay)

to both sides (a simple task in view of the fact that since z" is analytic,

Applying the operator
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D(x+iyy" = 0), we obtain

-]

o
J‘ f(u+iv)n+1 e—Zn(ul+ulj+4ai(xu—yu)2du do = iu+1(x+iy)n+l 8-2"(x2+’2).

This is the contention for n+ 1. The induction step is carried out,
To handle the case n < 0, put a roof on the formula F_. (&) = i"f (&)
which we have already proved, and remember that
J-® =i~ O = (=D_(®).
The {-Functions. For o = re" we have
f:,((l’) — JI.[n| e—inse—anz lals = ],23

2rdrd@

Cn(&') = el'nﬂ doc — .

r
Therefore

w2t

{fuedl]) = fﬂ,(a)cn(a)|a|’ do = J f p2em DIl g=22r2 9 7 4
20

T oa-n+l ol
=2 [0 et = an aes r(s+ '2’]),
and
(o) = LAYy = ™S f(l ~s+ 151)
Explicit Expressions for p(c).
@nr-or (s+ ]
@y T ((1 _g 41 l)

ple|) = (=i

k p-adic
¢ = a p-adic variable.
A(S) = A(S().
d¢ is chosen so that o gets measure (Ad)~%.

o = gr', non-zero p-adic variable, 7 a fixed element of ordinal number 1,
v an integer.

le] = (Hp)7
./Vp dot
da= —~——-rpsoth iplicati ~*,
“= o1 o] so that u gets multiplicative measure (A'd)
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The Equivalence Classes of Quasi-Characters. ¢, (o), for n = 0 shali denote
any character of k* with conductor exactly p", such that ¢,{n) = 1. These
characters represent the different equivalence classes of quasi-characters.

The Corresponding Functions of 3. We put

ZaiA(c‘:), for & c b—-lp—-n

e
fn(f) = {0, fOI' 6 ¢ b—-lp—nl

Their Fourier Transforms. We contend
(A AP,  for & = 1(mod p7)
R o
0, for & % 1(mod p").
Proof.
Jle) = [fom ey = [ NGy,
p=lp=n
This is the integral, over the compact subgroup b lpT" < kt, of -th‘e
additive character i — e”2¥AW-DD_ If ¥ = 1 (mod p"), this character is
trivial on the subgroup, and the integral is simply the measure of t?le. sub-
group: (A d)¥(A"p)". Incase £ # 1 (mod p"), this character is not trivial on
the subgroup and the integral is 0.

The [-Functions. First we treat the unramified case: # = 0. The <-)n1.y
character of type ¢, is the identity character, and f; is the characteristic
function of the set b~'. We shall therefore compute

(o) = [ 1o de
p-1

Denote by 4, the “annulus” of elements of order v, and let b = p?. Then
p-! = % _,; A4,, a disjoint union, and

Wolp= ¥ [ e doc= Y ap7[da
v=—d A, v=-d A

o0 ./V‘pd’ a
= =¥ =T — 4%
(v-;—dmp )'/Vb I_JVP-S
oA
T 11—

J, is A'b* times the characteristic function of o, so we have, similarly,

(Forll) = (ol = A% o]t~ do

= 3 ApP ) = ——
vzo p l_ﬂps 1
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In the ramified case, n > 0,

(S Cn”’) = J' >¥A@ ¢ (o)|ef* dex

b-lp-”

— E ‘/VP_"SJ. eanA(u) C,.,(CC) di.

ve=—d=nh A,
We assert that all terms in this sum after the first are 0. In other words that
jez“‘A(“) c(yda=0 forv>—d—n.
Ay

Proof. Case 1. v=—d. Then 4, = b7, so e*™®@ =1 on 4,, and
the integral is

f ¢ (o) dor = f e (om?) doe =J c(e)da =10
Ay ] [

since ¢,(a) is ramified and therefore non-trivial on the subgroup .

Case2. —d > v > —d—n. (Occurs only if there is “higher ramification”;
i.e. if » > 1.) To handle this case we break up A4, into disjoint sets of the
type tp+Dd7! = o +p ™% = ao(I1+p?"7). On such a set, A is constant =
A{op) and

e2"M) o () dgg = ?*iMa0) f ¢, () det.
agt+o—1 eo+b-1

‘This is 0 because

¢ (o) do = J' c (o) da = I ¢, (o) dee

ag+p~1 «o(l+p~d=v) 14p-d-v
= n(“O) f cn(a) dO.’,
1+p—d—-v

and this last integral is the integral over a multiplicative subgroup 14+p 4"
of a character ¢, (¢) which is not frivial on the subgroup. Namely,
—d > v=plp~* "= 14+p~? " is a subgroup of k*, and v > —d—n = the
conductor p"Yp~9"" = ¢,(2) not trivial on it.

‘We have now shown

(o all) = 9™ [ 20@ ¢ (o) da
A-d-n

To write this in a better form, let {e} be a set of representatives of the
elements of the factor group uf(1+p"), so that u = | },e(1+p"), a disjoint
union. Then

A_g-n= un~0" = Ussn-d_n(]-"'Pn) = e (en™?7"+d Y.
On each of these sets into which we have dissected A_;,_,,, ¢, is constant
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= ¢,(en™?™") = ¢,(2), and A is constant = A(en™¥""). We therefore have

((fm cn“s) = ./Vp[dhn] (Z ¢ (8) eZﬂ'lA(glgd-Hl)) J' dO!,
14pn
a form which will be convenient enough.

The pay-off comes in computing

P _s
o el = e 17
For f, is A b¥4'p" times the characteristic function of the set 14+p”, a set
on which ¢, (e)|x|** = 1. Therefore

((fm?,.ﬁ;) = A DENP" f de, a constant!

14pn
Explicit Expressions for p(c)
1—Ap*!
Sy — s—4
pllly = 4V

p(el[¥) = A (TF ¥po(c), if ¢ is a ramified character with conductor f,
such that ¢(r) = 1.
po(e) = N T clg) A

is a so-called root number and has absolute value 1. {e} is a set of repre-
sentatives of the cosets of 1+ in «.

Taking the quotients of the {-functions we have worked out yields these
expressions directly if we remember that b = p? and, in the ramified case,
that the conductor of ¢, was f= p”. The fact that constant pe(c) has
absolute value 1 follows from Corollary 2.4.1. Namely, since ¢ is a character,
c||* has exponent 4, so we must have |p(c{|*)| = |po(c)| = 1.

3. Abstract Restricted Direct Product

3.1. Introduction. Let {p} be a set of indices. Suppose we are given for
each p a locally compact abelian group G,, and for almost all p (meanmg
for all but a finite number of p), a fixed subgroup H, = G, which is open
and compact.

We may then form a new abstract group G whose elements a =
(..., 0q,...) are “vectors” having one component a, € G, for each p, with
a, € H, for almost all p. Multiplication is defined component-w;se

Let S be a finite set of indices p, including at least all those p for which
H, is not defined. The elements a € G such that a, € H, for p ¢ S comprise
a subgroup of G which we denote by Gs. Gy is naturally isomorphic to a

direct product ]G, x [] H, of locally compact groups, almost all of
el » §Ss
which are comp;ct and is therefore a locally compact group in the product
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topology. We define a topology in G by taking as a fundamental system
of neighborhoods of 1 in G, the set of neighborhoods of 1 in G5. The
resulting topology in G does not depend on the set of indices, S, which we
selected. This can be seen from

Lemma 3.1.1. The totality of all “parallelotopes™ of the form N = [ N,,

P
where N, is a neighborhood of 1 in G, for all p, and N, = H, for almost
all p—remember the H, are open by hypothesis—is a fundamental system of
neighborhoods of 1 in G.

Proof. By the definition of product topology a neighborhood of 1 in Gy
contains a parallelotope of the type described. On the other hand, since
N, = H, for almost all p, the intersection

HNP nGS:HNPXH(NPnHP)
(p ) pe¢s

pPeES
is a neighborhood of 1 in Gj.

It is obvious that G is open in & and that the topology induced in Gg
as a subspace of G is the same as the product topology we imposed on Gy
to begin with. Therefore a compact neighborhood of 1 in G is a compact
neighborhood of I in G. It follows that G is locally compact.

DEerFNITION 3.1.1. We call G (as locally compact abelian group) the restricted
direct product of the groups G, relative to the subgroups H,.

It will, of course, be convenient to identify the basic group G, with the
subgroup of G consisting of the elements a, = (1, 1,..., a,,...) havmg all
components but the p-th equal to 1. For that subgroup of G is naturally
isomorphic, both topologically and algebraically to G,.

Since the components, a,, of any element a of G lie in H;, for almost all p,
G is the union of the subgroups of the type 5. This fact will allow us to
reduce our investigations of G to a study of the subgroups Gs.

These Gy in turn may be effectively analyzed by introducing the subgroup
G° = Gj consisting of all elements a € G such that e, = 1 for pe S; a, € H,,
p¢S. G° is compact since it is naturally isomorphic to a direct product
ﬂ H, of compact groups. Gs can be considered as the direct product
Gs = (HG)XGS of a finite number of our basic groups G, and the

pPeES
compact group G°.
We close our introduction of the restricted direct product with
LemMa 3.1.2. A subset C = G is relatively compact (has a compact closure)
if, and only if, it is contained in a parallelotope of the type [| B,, where B,

L4
is a compact subset of G, for all p, and B, = H, for almost all p.

Proof. Any compact subset of G is contained in some G, because the
G are open sets covering G, and the union of a finite number of subgroups
G5 is again a Gs. Any compact subset of a G is contained in a parallelotope
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of the type described, for it is contained in the cartesian product of its
“pro;ectlons” onto the component groups G,. These projections are com-
pact since they are continuous images, and are contained in H, for p ¢S,

On the other hand, any parallelotope H B, is obviously a compact subset

of some Gy; therefore of G.

3.2. Characiers
Let ¢(a) be a quasi-character of G, i.e. a continuous multiplicative mapping
of G into the complex numbers. We denote by ¢, the restriction of ¢ to
G, (c,{a,) = cfa,) = ¢(1, 1,.. ., ap,...) for e,€G,). ¢, is obviously a
quasi-character of G,,.

Lemma 3.2.1. ¢, is trivial on H,, for almost all p, and we have for any
aeq

cfa) = ]._[ cp(ap)

almost all factors of the product being 1. .
Proof. Let U be a neighbourhood of 1 in the complex numbers containing
no multiplicative subgroup except {I1}. Let N = [ N, be a neighborhood

P
of 1 in G such that ¢(N) = U. Select an S containing all p for which N, s H,.
Ther GF e N=> () U=c(GF)=1=c(H)=1 for p¢S. If ais
a fixed element of G we impose on S the further condition that a € G and
write a = [] a,.0® with a¥ € G°. Then

pesS
c(a) = HSC(%)-C(GS) =,Hscp(up) = l;[ cyla),

since for p ¢ S, ¢,(a,) = L.
Lemma 3.2.2. Let ¢, be a given quasi-character of G, for each p, with c,
trivial on H, for almost all p. Then if we define c(a) = H cpa,) we obtam

a quasi-character of G.

Proof. c(a) is obviously multiplicative. To see that it is continuous select
an S containing all p for which ¢,(H,) # 1. Let s be the number of p in S.
Given a neighborhood, U, of 1 in the complex numbers, choose a neigh-
borhood ¥ such that ¥* < U. Let N, be a neighbourhood of 1 in G, such
that ¢,(N,) = Vfor pe S, and let N, = H, for p¢.S. Then

L'(H N,) eVl
P
Restricting our consideration to characters, we notice first of ail that

c(a) = H c,(a,) is a character if, and only if, all ¢, are characters. Denote

by G, the character group of G, for all p; for the p where H, is defined let
H} = G be the subgroup of all ¢, eG which are trivial on H,. Then
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H, compact/ia-\Hp ~ G,/H} discrete = Hy open, and H, open = G,/H,
discrete = G,/H, = H, compact.

THEOREM 3.2.1. The restricted direct product of the groups G relative ro

the subgroups HY is naturally isomorphic, both topologically and algebratcally,
10 the character group G of G.

Proof. Of course we mean to identify ¢ = (..., ¢,,...) with the character
eln) = H cp(a,). The two preceding lemmas, applied to characters, show

v
that this is an algebraic isomorphism between the two groups, We have
only to check that the topology is the same. To this effect we reason as
follows: ¢ = (..., ¢,,...) is close to 1 as a character <> ¢(B) close to 1 for
a Jarge compact B G HB close to 1 for B, = G,, compact,

B, = H, for almost all p< c,(B) close to 1 wherever B, # H, and
p( ) = ¢,(H) = 1 at the remaining p (since H, is a subgroup, c,(H, ) can
becloseto 1 onIy ifc(H,) = 1) <> ¢, close to 1 in G for a finite number of p

and ¢, € Hy at the other p<¢ close to 1 in the restncted direct product
of the G

3.3. Measure

Assume now that we have chosen a Haar measure da, on each G, such
that _[ da, = 1 for almost all p. We wish to define a Haar measure da on G

for whlch in some sense, da = H da,. To do this, we select an §; then
consider G as the finite direct product Gs = ( [1G,)xG> in order to
define on G5 a measure dag = (H da,).da5, where da is that measure on

the compact group G° for which _[da =11 (jda ) Since Gy is an open
PESH
subgroup of G, a Haar measure da on G is now determined by the require-

ment that da = dag on Gs. To see that the da we have just chosen is really
independent of the set S, let T > § be a larger set of indices. Then Gg = Gy,
and we have only to check that the day constructed with 7 coincides on Gy
w1th the dag constructed with S. Now one sees from the decomposition

( I1H, )xGT that do® = ( Hda) da”; for the measure on the

psT—5 vel—-5
right-hand side gives to the compact group G° the required measure.
Therefore

dag =[] da,.de®* =T da,. [] da,.da” = da;.
pas pES reT—-§
We have therefore determined a unique Haar measure da on G which we
may denote symbolically by da = [ da,,.
P
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If @(S) is any function of the finite sets of indices S, with values in a
topological space, we shall mean by the expression lim ¢(S) = ¢, the
3

statement: “given any neighborhood ¥ of ¢, there exists a set S(V) such
that § o S(V) = @(S)e V. Intuitively, lim ¢(S) means the limit of ¢(S)
Y

as S becomes larger and larger.
Lemma 3.3.1. If f(a) is a function on G,

J' fla)yda = li;nafs fla)da,

if either (1) f(a) measurable, f(a) = 0, in which case + o is allowed as value
of the integrals; or (2) f(a) € Li(G), in which case the values of the integrals
are complex numbers.

Proof. In either case (1) or (2) [ f(a) da is the limit of { f(a) da for larger
B

and larger compacts B = G. Since any compact, B, is contained in some Gy,
the statement follows.

LeMMA 3.3.2. Assume we are given for each p a continuous function
£, € Ly(G,) such that f,(a,) = 1 on H, for almost all p. We define on G the
Sunction f(a) = []f,(a,), (this is really a finite product), and contend.:

L4

(1) f(a) is continuous on G.
(2) For any set S containing at least those p for which either f,(H,) # 1,
or [da, # 1, we have

H’
(J}'Sf(a) da szIs [ é[ folay) dap].

Proof. (1) f(a) is obviously continuous on any Gs; therefore on G.
(2) For ae Gs, f(a) =] f,(a,). Hence
peS

‘J; fayda = él; fla) dag =GJ‘S (P]—[ fp(a,)) (p]_[ da, .das)

€S €5

QL[] 46 =L [frere)

TaeorReM 3.3.1. If f,(a,) and f(a) are the functions of the preceding lemma
and if furthermore

[{jlsoten] (i [[lsetin]) <o
then f(a) € L,(G) and,
f flayde = 1;[ [ J‘ JACN] dap].
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Proof. Combine the two preceding lemmas; first for the function
[f(e)] = [T |f(0,)] to see that f(a) e L,(G), then for f(a) itself to evaluate
P

f(a) da.
! We close this chapter with some remarks about Fourier analysis in a
restricted direct product. As we have seen G the character group of G is
the direct product of the character groups Gp of G, relative to the sub-
groups HY orthogonal to H, Denote by ¢=(...,c,...) the general
element of G. (In this paragraph, ¢, and ¢, are characters, not quasi-charac-
ters). Let dc, be the measure in G, dual to the measure da, in G,. Notice
that if f,(a,) is the characteristic function of H, its Fourier transform

Foley) = | filay)e,(a,) day, is 1! da,, times the characteristic function of Hy'.

A consequence of this fact and the inversion formula is that
() ) - .
Hp iy
Therefore { dc, = 1 for almost all p, and we may put dc = ][ dc,.
HY P

LemMa 3.3.3. If f,(a,) € B(G,) for all p and f,(a,) is the characteristic
function of H, for almost all p, then the function f(a) = [1/.(a,) has the
P

Fourier transform J(c) = []1.(c,), and f(a) € B,(G).
Proof. Apply Theorem 3.3.1 to the [unction f(a)c—(_a_) =[] £(a,) c(ay)

to see that the Fourier transform of the product is the product c:f the Fourier
transforms. Since f,(a,) € B,(G,), we have f,(c,) € L,(G,) for all p. For
almost all p, f,(c,) is the characteristic function of H} according to the
remark above. From this we see that f(c) € L;(G), hence f(a) € B (G).

COROLLARY 3.3.1. The measure dc = [] de, is dual to da = [] da,,.

P P
Proof. Applying the preceding lemma to the group G with the measure dc,
we obtain for our “product” functions the inversion formula

f@) = [ Fe)eta) de

from the component-wise inversion formulas.

4. The Theory in the Large
4.1. Additive Theory

In this chapter, k denotes a finite algebraic number field, p is the generic
prime divisor of k. The completion of & at the prime divisor p shall from
now on be denoted by k,, and all the symbols o, A, o, ||, ¢, etc., defined in
Chapter 2 for this local field k, shall also receive the, subscript p: oy, Ay,
Oy, [lps €psv v o5 EHC
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DermatioN 4.1.1. The additive group V of valuation vectors of k is the
estricted direct sum, over all prime divisors p, of the groups k relative 1o
he subgroups o,.

We shall denote the generic element of V' (= valuation vector} by
t=(...,%,...). From Theorems 3.2.1. and 2.2.1 and Lemma 2.2.3 we
iee that the character group of V is naturally the restricted direct sum of
he groups k; relative to the subgronps b, %, Since b, = o, for almost all
3 this sum is simply ¥ again! Looking more closely at the identifications
set up in these theorems we see that the element y = (..., v,,...)e Vis
‘0 be identified with the character

r=(...,%,...)—> 1;[ exp (2miA (v,%,) = exp [Zni %:Ap(gprp)]
of V. This suggests that we define the additive function
A =YA, ()
on ¥, and introduce component-wise :nultiplication

D=y ) g, =0, 05, 0)
of elements of ¥ in order to be able to assert neatly:

THEOREM 4.1.1. V is naturally its own character group if we identify the
zlement 1) € V with the character x — ¢*™A09) of V.,

On ¥V we shall, of course, take the measure dx = de,, described in

. 3 ) p
Section 3.3, dx, being the local additive measure defined in Section 2.2, Since
these local measures dx, were chosen to be self-dual, the same is true of dx,
according to Corollary 3.3.1. We state this fact formally in

TueoreM 4.1.2. If for a function f(x) € L,(V) we define the Fourier transform
J) = [ fe e g,
then for f(x) € B,(V) the inversion formula

fie) = [ flo) it iy
holds.

What is the analogue in the large of the local Lemma 2.2.4 and 2.2.5,
that is, of the statement d(ef) = |«| d¢ for « e k*? In that local considera-
tion, « played the role of an automorphism of k; , namely the automorphism
& — @f. This leads us to investigate the question: for what ae ¥ is x — ax
an automorphism of ¥'? We first observe that for any ae ¥V, ¥ — ax is a
continuous homomorphism of ¥ into V. A necessary condition for it to be
an automorphism is the existence of a be Vsuch thatab =1 = (1, 1,...).
But this is also sufficient, for with this b we obtain an inverse map x —» bx
of the same form. Now for such a b to exist at all as an “unrestricted”
vector, we need a, # O for all p, and then b, = a7 ! The further condition
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be ¥ means a,* ¢ o, for almost all p, therefore |a,}, = 1 for almost all x.
These two conditions mean simply that a is an id¢le in the sense of Chevalley.
We have proved

LeMMA 4.1.1. The map x — ax is an automorphism of V if and only if
a is an idéle.

At present we shall consider id2les only in this role. Later we shall study
the multiplicative group of id&les as a group in its own right, with its own
topology, as the restricted direct product of the groups k¥ relative to the
subgroups u,.

To answer the original question concerning the transformation of the
measure under these automorphisms we state

LemMA 4.1.2, For an idéle, a,
d(az) = |a| dx,

1a|==21|“vh

where

(really a finite product).
Proof. If N =[N, is 2 compact neighborhood of 0 in ¥, then by

P
Theorem 3.3.1 and Lemma 2.2.5

J‘dx=HJ‘daep, and J'dx=n J‘ dx,,=ﬂ|a,],"'d:p.
N s Np ol ? apNp ? Np

The last, and most important thing we must do in our preliminary dis-
cussion of V¥ is to see how the field & is imbedded in V. We identify the
element ¢ ek with the valuation vector & = (£, ¢,...,¢,...) having all
components equal to &, and view k as subgroup of ¥. What kind of sub-
group is it?

LemMa 4.1.3. If S, denotes the set of archimedean primes of k, then
(1) k 0 Vs_ = o, the ring of algebraic integers in k, and 2} k+Vs, = V.

Proof. (1) This is simply the statement that an element £ € & is an algebraic
integer if and only if it is an integer at all finite primes.

(2) k+Vs_ = V means: given any x € V, there exists a { ek approxi-
mating it in the sense that £ —x, € o, for all finite p. Such a { can be found
by solving simultaneous congruences in o. The existence of a solution is
guaranteed by the Chinese Remainder theorem.

Let now ¥V denote the “infinite part” of ¥V, i.e. the cartesian product

[1 %, of the archimedean completions of k. If a generating equation for k
peSe

over the rational field has r, real roots and r, pairs of conjugate complex

roots, then ¥ is the product of r, real lines and r, comp]éx planes. As such
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it is naturally a vector space over the real numbers of dimension # = r, +2r,
= absolute degree of k. For any re ¥V denote by t the projection

2=( .., %, . . Jus, ofxon V.
LEMMA 4.1.4. If {w,, w,, ..., w,} is a minimal basis for the ring of integers o

o oy

of k over the rational integers, then {wn Wy o vy ;:),,} is a basis for the vector
space ; over the real numbers The parallelotope .S spanned by this basis
(D = set of all %= E x, w with 0 < x, < 1) has the volume .[|d| (where

= (det (@{")? = absolute discriminant of k) if measured in the measure

de = 1 dx, which is natural in our set-up.
vESe
o0 o
Proof. The projection ¢ — £ of k into V is just the classical imbedding
of a number field into n-space. The reader will remember the classical
argument which runs:

k separable = d = (det (@) # 0 = {Z)l, (;2,. ey (;,,}

o0
linearly independent, and (with a simple determinant computation) D has
volume 27"2,/|d|. For us the volume is 22 times as much because we have
chosen for complex p a measure which is twice the ordinary measure in
the complex plane.

DEerINITION 4.1.2. The additive fundamental domain D < V is the set of

all & such that xe Vs and te D,

TaeoreM 4.1.3. (1) D deserves its name because any vector xc V is con-
gruent to one and only one vector of D modulo the field elements E. In other
words, V = U (&+ D), a disjoint union.

Q) D ha; measure 1.

Proof. (1) Starting with an arbitrary x € ¥ we can bring it into F_ by
the addition of a field element which is unique mod o (Lemma 4.1.3). Once
in Vs we can find a unique element of o, by the addition of which we can

«©

stay in Vg and adjust the infinite components so that they lie in D
{Lemma 4.1.4).

(2) To compute the measure of D, notice that D = V;_and D = 5 x V5=,
Therefore

fa’x—fa'rs = f daea'xs“’—J‘dx fdxsw—Jldl H(Jf”b,,) i

VS
_D XS
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Now since the discriminant d (as ideal) is the norm of the absolute different
b of k, and since b is the product of the local differents b, we have

|d| = J] (&,b,). Therefore the measure which we have computed is 1.
peESy

COROLLARY 4.1.1. k is a discrete subgroup of V. The factor group V mod k
is compact.

Proof. k is discrete, since D has an interior. ¥ mod k is compact, since
D is relatively compact.

LemMA 4.1.5. A(§) =0 forall (k.

Proof.

AG) = %Ap(é) = Zp: 288N = Zp‘, Ap (%:,, S,,(é)) = ; A(SE)

because “the trace is the sum of the local traces”. Since S(£) is a rational
number, the problem is reduced to proving that Y 1,(x) = 0 (mod 1) for

P
rational x. This we do by observing that the rational number } 1(x) is
P

integral with respect to each fixed rational prime g. Namely
LA ={ 2 4 (x)) +A0+2,,(x) = ( > 4,09 + ) =)
P P#4 P PEG P

expresses A{x) as sum of g-adic integers.

THEOREMT 4.1.4. k* =k, that is AGE) = O forall E < xek.

Progof. Since k* is the character group of the compact factor group ¥
mod k, k* is discrete. k* contains k according to the preceding lemma,
and therefore we may consider the factor group k* mod k. As discrete sub-
group of the compact group ¥V mod k, k* mod k is a finite group. But since
it is @ priori clear that k* is a vector space over k, and since k is not a finite
field, the index (k* : k) cannot be finite unless it is 1.

4,2, Riemann—Roch Theorem

We shall call a function ¢(z) periodic if @(x+¢&) = ¢(x) for all {ek. The
periodic functions represent in a natural way all functions on the compact
factor group ¥ mod k. ¢(x) represents a continuous function on ¥ mod k&
if and only if it is itself continuous on V.

LeMMa 4.2.1. If @(x) is continuous and periodic, then § ¢(z) dx is equal to:
D
the integral over the factor group V mod k of the function on that group

which ¢(x) represents with respect to that Haar measure on V mod k
which gives the whole group V mod k the measure 1.

Proof. Define I(p) = { ¢(x) dx and consider it as functional on L(¥ mod k).
D

Observe that it has the properties characterizing the Haar integral. (To
+ Here k* is the duat of &, not the multiplicative group of k (!).
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check invariance under translation merely requires breaking D up into a
disjoint sum of its intersections with a translation of itself.) The functional
is normed to 1 because fdx = 1.

D

k is naturally the character group of ¥ mod k in view of Theorem 4.1.4.
The Fourier transform, $(£), of the continuous function on ¥ mod &k which
is represented by ¢@(x) is

90 = [ @) e,

D
Lemma 4.2.2. If o(x) is continuous and periodic and Y 1¢(O} < oo, then
gek

o) = T (&) A,
gek
Proof. The hypothesis . |¢(£)] < co means that the Fourier transform
Sek

(&) is summable on k, guaranteeing that the inversion formula holds. The
asserted equality is simply the inversion formula explicitly written out.
LemMa 4.2.3. If f(z) is continwous, € L\(V), and Y. f(x+1n) is uniformly
qek

convergent for ¥ € D (convergence means absolute convergence because k is not
ordered in any way), then for the resulting continuous periodic function

o(x) = ;cf(ﬁn) we have §(&) = F(&).
Proa;".

() = f @(x) e 2mAE) gy
= } ( Y fGa+n) e A )dx

ek
=Y ff(¥+q)e—2nlA(z§) dx
nekD

(The interchange is justified because we assumed the convergence to be
uniform on D, and D has finite measure.)

- Z J‘ 1) o= 2miAE =12} fx

nek, ip

- z J‘ (%) o~ 2RIAGD) gy

(since A(y¢)=0) e
- J‘ 1) e=2WAGE) Jo
= (¢).

Combining the last two Lemmas 4.2.2. and 4.2.3, and putting x = 0 in
the assertion of Lemma 4.2.2 we obtain
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Lemma 4.2.4, (Poisson Formula.) If f(x) satisfies the conditions:
(1) f(z) continuous, € L,(V);
(2) Y. f(x+&) uniformly convergent for x€ D;
(3) gikl F(®)] convergent;
then e

> & =¥ A
ek sak

If we replace f(x) by f(az) (a an idéle) we obtain a theorem which may be
looked upon as the number theoretic analogue of the Riemann-Roch
theorem.

THEOREM 4.2.1. (Riemann-Roch Theorem.) Iff(x) satisfies the conditions:
(1) f(z) continuous, € Ly(V);
(2) ¥ fla(z+&) convergent for all ideéles a and valuation vectors %,
sek

uniformly for € D;
(3) Y| f(ad)] convergent for all idéles a
¢ek

then
1
chkf (¢fa) =€§kf(a¢)-
Proof. The function g() = f(ax) satisfies the conditions of the preceding
Iemma because

40 = jf(au) &2 gy

= ]%iv[ f(y) e 2minmvl) gy,
(Under the transformation y — yfa, dy — (1/]al) dy.)

1
= r&‘lf(ilﬂl

We may therefore conclude
2 4 =2 9(5);
sek ek
that is,

1 2
7 2 f@lay = 3. fad).
Ial Eek tek
It is amusing to remark that, had we never bothered to compute the exact
measure of D, we would now know it is 1. For we could have carried out
all the arguments of this section with an unknown measure, say u(D), of D.
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The only change would be that in order to have the inversion formula of
Lemma 4.2.2 we would have to have given each element of k the weight
1/u(D). The Poisson Formula would then have read,

5 2= T,

Iteration of this would yield (u(D))* = l, therefore wD) = 1!

4.3, Multiplicative Theory

In this section we shall discuss the basic features of the multiplicative group
of idéles.

DermiTioN 4.3.1. The multiplicative group, I, of idéles is the restricted
direct product of the groups k; relative to the subgroups u,.

We shall denote the generic idéle by a = (..., a,,...). The name idéle
is explained (at least partly explained!) by the fact that the idéle group may
be considered as a refinement of the ideal group of k. For if we associate
with an idéle a the ideal @(a) = H p°™+*, then the map a — ¢(a) is

obviously a continuous homomorp]n;m of the ide¢le group onto the discrete
group of ideals of k. Since the kernel of this homomorphism is I5_, we may
say that an idéle is a refinement of an ideal in two ways. First, the archi-
medean primes figure in its make-up, and second, it takes into account the
units at the discrete primes.

Concerning quasi-characters of 7, we can only state, according to Section 3.2,
that the general quasi-character ¢(a) is of the form c{a) = [] ¢,(a,), where

P
¢(a,)isalocal quasi-character (described in Section 2.3) and ¢, (a,) isunramified
at almost all p.

For a measure, da, on I we shall of course choose da = [] da,, the da,
P

being the local multiplicative measure defined in Section 2.3.

We can do nothing really significant with the idéle group until we imbed
the multiplicative group k* of k in it, by identifying the element « & k* with
the idéle o« = (o, @, ..., a,...). Throughout the remainder of this section
our discussion will center about the structure of I relative to the subgroup k*.
The first fact to notice is that the ideal ¢(x) associated with an idéle « € k*
is the principal ideal «o generated by «, as it should be. Next we have the
“product formula” for elements « € k*. Though this is well known, we
state it formally in a theorem in order to present an amusing proof.

THEOREM 4.3.1. |ol(=T] [a],) =1 for a e k*.
14
Proof. According to Lemma 4.1.2 the (additive) measure of aD is |a| times

the measure of D. Since ak™ = k¥, aD would serve as additive fundamental
domain just as well as D. From this it is intuitively clear that D has the
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same measure as D and therefore |o] = To make a formal proof one
has simply to chop up D and aD into congruent pieces of the form
D n (¢+aD) and (~ €+ D) n oD respectively, € running through %.

This theorem reminds us fo mention explicitly the continuous homo-
morphism a — |a| = [] |a|, of I onto the multiplicative group of positive

real numbers. The k;rnel is a closed subgroup of I which will play an
important role. We denote this subgroup by J, and its generic element
(idéle of absolute value 1) by b.

It will be convenient (although it is aesthetically disturbing and not
really necessary) to select arbitrarily a subgroup T of I with which we can
write I = TxJ (direct product). To this effect we choose at random one
of the archimedean primes of k—call it p—and let T be the subgroup of
allideles a such that a, > Oand a, = 1 forp # p,. Such an idéle is obviously
uniquely determined by its absolute value; indeed the map a — |al, restricted
to 7, is an isomorphism between T and the multiplicative group of positive
real numbers, and it will cause no confusion if we denote an idele of T
simply by the real number which is its absolute value. Thus a real number
t > Oalso stands either for theidéle (#, 1, 1,...) orfor theidéle (\/4, 1, 1,...),
according to whether p, is real or complex, if we write the p,-component
first. Since we can write any idéle a uniquely in the form a = |a|.b with
|a] € T and b = ala]™! e J, it is clear that T = T'xJ (direct product).

In order to select a fixed measure db on J we take on T the measure
dt = dtft and require da = df.db. Then for computational purposes we
have (in the sense of Fubini) the formulas

!f(a)da=![!f(tb)db](?=j Lff(:b)%’] db

for a summable idéle function f(a).

The product formula means that k* = J, and we wish now to describe a
“fundamental domain” for J mod k*. The mapping of ideles onto ideals
allows us to descend to the subgroup Js_ = J n Is,. To study Js_ we map
the idéles beJs_  onto vectors /(b)) = (...,log [B,,...),es, having one
component, log [b], for each archimedean prime except p,. (This set of
r = r;+r;~1 primes is denoted by S§.,.) It is obvious that the map b — /(b)
is a continuous homomorphism of J;_ onto the additive group of the
Euclidean r-space. The onto-ness results from the fact that although the
infinite components of an idéle beJg_ are constrained by the condition
Flibl, = H B, = 1, they are completely free in the set S, since we can
P

PESe

adjust the p, component,
k* nJs_ is the group of all elements ¢ € k* which are units at all finite
AN,T, 12
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primes; that is, which are units of the ring o. The units § fqr which /() = 0
are the roots of unity in k and form a finite cyclic group. Itis prov?d clas.sxc-
ally that the group of units s, modulo the group of roots of unity {,isa
free abelian group on r generators. This proof is_ eﬁ‘ec'ted Py showing that
the images /(g) of units form a lattice of highest dunensu;n in the r-space,
If, therefore, {e;};<:<, is 2 basis for the group of units modulo roots of
unity, the vectors /(z;) are a basis for the r-space over the real numbers

and we may write for any beJg_,
r
I(b) = lev Ka,),
V=
with unique real numbers x,. Call P the parallelotope in the R-space spanned
by the vectors /(z,); that is, the set of all vectors z'ix,,l(e,,) with0 < x, < L.
vE
Call Q the “unit cube” in the r-space; that is the set of all vectors
ooy Xy o dpess, With0 < x, < 1.
Lemma 4.3.1.
ry F2
PG
-Yp) V4]
where [ ~1(P) is the set of all b € Jg_, such that I(b) € P, and
R = +det(log |si|p)ls;s,.
pesS,

is the regulator of k.

Proof. Because ] is a homomorphism,
measure of I"'(P) _ volume of P
measure of I~ 1(Q) volume of @

and we have only to show

= +det(log|el,) =R,

Fy 2 r2
b = 2120
171(Q) is the set of all beJs, with 1 < |b], < e for pe S,. Let 0% be
the set of all a € Js_ with 1 < la|, < e for p € S,,. Then

e]bl;’ol

-] [ #]e= [ | T %]eo= [
! t

o J LiegQe ={Q Ibi;i Ll (7))

because the Q¥ <> bel (@) and 1 < ]tbl,o < ¢, We have therefore only
to show that '
212y
J. da =

2 Vi -
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Write O* as the cartesian product G* =,g Oy X I°=, where QF is the

set of all a, € k;; such that 1 < |a |, < e, for pe S,. Then

da=TI [ d,. [ das= =2"CaY"
Q[ veSmQ.£ ’ I'!"w \/ldl i

because for p real,

-1 & e
d.
x| *

Q* -e 1 1

for p complex,
T ¥ 2drde
dap = f i = 2“:
r
Qo 01

and

[aemT] [ = [ orn™t= 1
5w PESw P#5xo NiT]

DErFINITION 4.3.2. Let h be the class number of k, and select idéles
D, b® e such that the corresponding ideals p(bY), ..., @(6™) repre-
sent the different ideal classes. Let w be the number of roots of unity in k.
Let E, be the subset of all bel™'(P) (see preceding lemma) such that

2
0<argh, < —5 . We define the multiplicative fundamental domain, E, for

Jmod k* to be
E = Eob(l) U Eob(z) U - U Eob(h).
THEOREM 4.3.2. (1) J = |, «E, a disjoint union.

(2m) kR
2 db = ——————,
® [#==m5

Proof. (1) Starting with any idéle b eJ we can change it into an iddle
which represents a principal ideal by dividing it by a uniquely determined
5. If this principal ideal is a0 (# uniquely determined modulo units),
multiplication by ¢~* brings us to an idéle of J representing the ideal o—
therefore into Js_. Once in Jg_ we can find a unique power product of the
fundamental units s; which lands us in /=(P), with only a root of unity, {,
at our disposal, This { is exactly what we need to adjust the argument of

the p, component to be in the interval (0, 25) Lo and behold we are in E,!

For our original id¢le b we have found a unique §ek* and a unique b
such that b e fbVE,.
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2"(2n)*hR

W

h _
(2) (measure E) = h . (measure Eo) = e (measure [~ *(P)) =

according to the two disjoint decompositions
E = y=(b"E,, 7Py = L;JCEO

and the preceding lemma.

COROLLARY 4.3.1. k* is a discrete subgroup of J (therefore of I). J mod k*
is compact.

Proof. One sees easily that E has an interior in J. On the other hand, E
is contained in a compact.

We shall really be interested not in all quasi-characters of I, but only in
those which are trivial on k*. From now on when we use the word quasi-
character we mean one of this type. Let us close our introduction to the
idele group with a few remarks about these quasi-characters.

The first thing to notice is that on the subgroup J, a quasi-character is a
character; i.e. !c(b)[ = 1 for all b & J, because J mod k* is compact.

Next we mention that the quasi-characters which are trivial on J are
exactly those of the form c{a) = |a|*, where 5 is a complex number uniquely
determined by c(a). For if () is trivial on J, then c(a) depends only on lal,
and in this dependence is a continuous multiplicative map of the positive
real numbers into the complex numbers. Such a map is of the form r — #* as
is well known.

To each quasi-character c(a) there exists a unique real number ¢ such
that |e(a)] = la]°. Namely, |c(a)| is a quasi-character which is trivial on J.
Therefore |c(a)] = [af, for some complex 5. Since |c(a)] > 0, s is real. We
call ¢ the exponent of ¢, A quasi-character is a character if and only if its
exponent is 0.

4.4. The U-Functions; Functional Equation

In this section f(x) will denote a complex-valued function of valuation
vectors; f(a) its restriction to idles. We let 3 denote the class of all functions
(%) satisfying the three conditions:

(G,) f(®), and f(z) are continuous, € L;(V); i.e. f(z) € By (¥).
32 ¥ Aax+8) and Y f(a(z+&)) are both convergent for each idéle a
Sek dek

and vector x, the convergence being uniform in the pair (a, x) for =
ranging over D and a ranging over any fixed compact subset of 1.

(33) f(0).la)° and f(e)|a}” € Ly(I) for & > 1.

(Notice that if f(x) is continuous on ¥, then, a fortiori, fla) is contim_.lous
on I, since the topology we have adopted in I is stronger than that which [
would get as subspace of V)
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In view of (3,) and (3,), the Riemann-Roch theorem is valid for functions
of 3. The purpose of (3,) is to enable us to define {-functions with them:

DermirioN 4.4.1. We associate with each fe 3 a function {(f, ¢) of quasi-
characters, defined for all quasi-characters ¢ of exponent greater than 1 by

o) = j f(a)e(a) da.

We call such a function a {-fimction of k.

Remember that we are now considering only those quasi-characters which
are trivizl on k*, These were discussed at the end of the preceding section,
where the notion “exponent” is explained. If we call two quasi-characters
which coincide on J equivalent, then an equivalence class of quasi-characters
consists of all quasi-characters of the form c(a) = cy(a)]al’, where cy(a) is
a fixed representative of the class and s is a complex number uniquely
determined by ¢. Such a parametrization by the complex variable s allows
us to view an equivalence class of quasi-characters as a Riemann surface,
just as we did in the local theory (cf. Section 2.4). It is obvious from their
definition as an integral that the {-functions are regular in the domain of
all guasi-characters of exponent greater than 1 (see the corresponding local
lemma). What about analytic continuation???

Main THEOREM 4.4.1. (Analytic Continvation and Functional Equation
of the {-Functions.) By analytic continuation we may extend the definition
of any {-function {(f, ) to the domain of all quasi-characters. The extended
Junction is single valued and regular, except at c(a) = 1 and c(a) = |a| where
it has simple poles with residues —xf(0) and +xf(0), respectively

(x = 2"(2n)’2hR/(J idw) = volume of the multiplicative fundamental domain).
{(S, ©) satisfies the functional equation

(o =0,
where &(a) = |alc™ () as in the local theory.

Progf. For c of exponent greater than 1 we have

(£ = [ St da = | [ f f(rb)c(rb)db]‘-i-‘= [arof. sy
0 J 1]
Here

L0 = [ feB)eltb) db

is absolutely convergent for ¢ of any exponent, at least for almost all #,
because it is convergent for some ¢, and |¢{¢th)| = ¢ exponent ¢ is constant
for b € J. The essential step in our proof consists in using the Riemann-Roch
theorem to establish a functional equation for { (£, ¢):
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LemMA A. For all guasi-characters ¢ we have
1
L HO) [ )86 = 6, R0 [ o(75)
E E
Proof.

€ k*aE

L{f, ) +f(0) j e(tb)db = ¥ j f(tH)c(th) db +£(0) j o(t6) db
E E

‘Because J = v, «E, a disjoint union)

=% ff(atb)c(tb) db+(0) j ¢(16) db

xek*E
d(b) = db; c(ath) = c(:b))
= [ 5/ b)] ceb)y db + [ f0)c(s8) v,
E Lue [ E

‘By hypothesis (3,) for £, the sum is uniformly convergent for b in the rela-
lively compact subset E)

= J [;E;kf(zzn)] ¢(16) db

_ £ ] 1
= = }H 7= c(tb)db
J‘ _gze:kf(tb) |t151 <(t6)
E
Riemann-Roch theorem 4.2.1)
=f Zf(élb)] é(}h)db
fek \' 1 !
E
&b — 1/6; db — db).
Reversing the steps completes the proof.
LemMa B.
KP, if efa) = ]a|‘
Jl ¢(tb) db = 0, if ¢(a) is non trivial on J.
E
Proof.

{ e(5)db = (9 [ e®)db.
E E

Here f ¢(b) db is the integral over the factor group J mod k* of the character

E - - -
of this group which ¢(b) represents. Therefore it is either ¥ (= measure of
E), or 0, according to whether c(a) is trivial on J or not. In the former case
we must notice that c(f} = [1]* = 1%
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To prove the theorem write, for ¢ of exponent greater than 1,
@ 1 @
dt dt dt
(o= [t =[wnof +[unof.
(1] 0 1

The j"is no problem. For it is equal to the integral of f(a) c(a) da over
3

that half of I where Ja] > 1. Therefore it converges the better, the less the
exponent of ¢ is; and since it converges for ¢ of exponent greater than 1,
it must converge for all ¢, Now, the point is that we can use Lemma A

1 ©

(and the auxiliary Lemma B) to transform the { into an §, thereby obtaining
0 1

an analytic expression for {(f; ¢) which will be good for all ¢, Namely:

f (50T = f Cilhof + {{ f do() - f xf(owd{}},
o Q 0 o

where the expression {{...}} is to be included only if ¢ is trivial on J, in
which case we assume c(a) = |aJ’, We are still looking only at ¢ of exponent
greater than 1. If c(a) = |a|* this means Re (s) > 1, which is just what is
needed for the auxiliary integrals under the double bracket to make sense,
Evaluating them and making the substitution 7 — 1/t in the main part of
the expression we obtain

jc,(f,c)‘—i-’ =fc,cf, 9%+ {220,

S s

and therefore

) =fc.(f, 9% +fc,(f, o4 {{’f{(i? - ’f{ﬂ)}}
1 1

$

The two integrals are analytic for all ¢. This expression gives therefore
the analytic continuation of {(f, ) to the domain of all quasi-characters.
From it we can read off the poles and residues directly. Noticing that for
c(a) = laf, (@) = |a]'~% we see that even the form of the expression is
unchanged by the substitution (f; ¢) — (f, ¢). Therefore the functional

equation
ey ={ho
holds. The Main Theorem is proved!

4.5. Comparison with the Classical Theory

We will now show that our theory is not without cbntent, inasmuch as
there do exist non-trivial {-functions. In fact we shall exhibit for each
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nivalence class C of quasi-characters an explicit function fe3 such that
s corresponding {-function {(f,¢) is non-trivial on C. These special
Fanctions will turn out to be, essentially, the classical {-functions and
series. The analytic continuation and the functional equation for our

functions will yield the same for the classical functions.
We can pattern our discussion after the computation of the special local
functions in Section 2.5. There we treated the cases k real, k complex, and

p-adic. Now we treat the case

k in the large!

The Equivalence Classes of Quasi-Characters. According to a remark at
e end of Section 4.3, each class of quasi-characters can be represented by a
jaracter. To describe the characters in detail, we will take an arbitrary,
ut fixed, finite set of primes, S (containing at least all archimedean primes)
1d discuss the characters which are unramified outside S. A character
f this type is nothing more nor less than a product

o(a) = l;I ¢y(a,)

f local characters, c,, satisfying the two conditions

(1) ¢, unramified outside 5.
2 TI @) = 1, for a e k*.
L4

To construct such characters and express them in more concrete terms,
ve write for pe S:
cy(a,) = Ep(ﬁp)lava’
, being a character of u,, #, a real pumber (cf. Theorem 2.3.1). For p ¢S,
ve throw all the local characters together into a single character, say

c*(a) = [ e (ay),

PSS
ind interpret ¢* as coming from an ideal character. Namely: The map

o ps(a) =[] p”**
pesS
s a homomorphism of the idéle group onto the multiplicative group of
deals prime to S. Its kernel is I5. c*(a}is identity on I;. We have therefore
*(0) = x(ps(@)),
where y is some character of the group of ideals prime to S. Our character
~(a) is now written in the form

c(a) =pl:[s5p(ﬁp) -pl:lslali.f" -x(@s(a))-

To construct such characters we must select our &, #, and y such that
e(a) = 1, for a € k*. For this purpose we first look at the S-units, &, of k,
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i.e: the elements of k* n I, for which @g(e) = 0. Assume S containg m-1

primes; let &, be a primitive root of unity in k, and let {g;, ¢,,..., ¢,} be

a basis for the free abelian group of S-units modulo roots of ’unit;r " For

c(a) to be ftrivial on the S-units it is then necessary and suﬂ‘iciet;t that

:lgs,,)~= 1, 0 < v < m. The requirement ¢(z,) = 1 is simply a condition on
e &yt

(4) 14,60 =1.

pes

We therefore first select a set of &,, for p € S, which satisfies 4. The require-
ments c(g,) = 1, 1 < v < m, give conditions on the 7,:

H[BV::":HE;I(E”): ISVSm
peS pES

which will be satisfied if and only if the numbers ¢ i
e ctions rs f, solve the real linear
(B) Y t,logls,|, = ilog ( I1 ?:",(5,,)), l<v<m
pas P

€5

for some value of the logarithms on the ri i
ght-hand side. We now select a
set of 'values for‘those logarithms and a set of numbers #, solving the resulting
equations B. S.mce, as_is well known, the rank of the matrix (log Je,),) is m
there always exist solutions #,. And since Z log |¢,|, = O forall v, ;I:e mosz
5

- . vs

gener_al solution is t!len t, = t,+1, for any . While we are on the subject
?f existence and uniqueness of the 7, we may remind the reader that if p
}; arf:hgpedean, tIclhﬁ'crcnt 1, give different local characters ¢, = &,)|*; but
if p is discrete, those 7, which are congruent mod 2x/lo i
ol A flog #"p give the same

Having selected the &, and #,, how much freedom is left for the ideal
character y? Not much. The requirement c¢{x) = 1 for all « € k* means
that y must satisfy the condition

© Hos@) =TT '@l

for all .ideals of the form @g(a), the ideals obtained from principal ideals b
cancelling the powers of primes in § from their factorization, These ideal}s(
form a §ubg_roup of finite index A (less than or equal to the class number A:
hg = 1 .lf S is large enough) in the group of all ideals prime to S. Since thé
multiplicative function of « on the right-hand side of condition (é) has been
fixed up to be trivial on the S-units, it amounts to a character of this sub-
group of ideals of the form @g(a). We must select y to be one of the finite
number /5 of extensions of this character to the group of all ideals prime to S
The Corresponding Functions of 3. Having selected a character '

o(a) = 1:[ cx(a,) =.,Uf’(‘~"')|“|3' x(ps(a)),
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unramified outside S, we wish to find a simple function f(x) €3 whose
{-function is non-trivial on the surface on which c(a) lies. To this effect we
choose for each p e § some function f£,(x,) € 3, whose (local) {-function is
non-trivial on the surface on which c, lies (for instance select f to be the
function used to compute p,(c,|f3) in Section 2.5). For p ¢S, we let f,(x,)
be the characteristic function of the set o,. We then put

f&) = ];pr(ip)-

(We will show in the course of our computations that the f{x) is in the class 3.)
Their Fourier Transforms. According to Lemma 3.3.3,

f®= l;[fp(ip),

and moreover, fe B,(F), i.c. f satisfies axiom (3,). Notice that f@@) is the
same type of function as f(x), except for the fact that at those x ¢ S where
b, # 1, f,(x,) equals Nb;* times the characteristic function of b 1, rather
than the characteristic function of o,
The U-Functions. Since |f(@)|lal” = []1/:(ap)llal; is a product of tocal
¥

functions, almost all of which are 1 on u,, we may use Theorem 3.3.1 to
check the summability of {f(a)l[al® for ¢ > 1. A simple computation
shows, for p ¢ S,

. At

k_‘[ {fp(ap)”“plp da, = '1"'_7;'—_0'

The summability follows therefore from the well-known fact that the product

"1

PEQ 1 _‘A/‘ p-d

is convergent for ¢ > 1. Well known as this fact is, it should be stressed
that it is a keystone of the whole theory. The existence of our {-functions
just as that of the classical functions, depends on it. Itis proved by descend-
ing directly to the basic field of rational numbers (see, for example, E. Landau,
“Algebraische Zahlen”, 2nd edition, pages 55 and 56). Because () is the
same type of function as f(x), we see that | f(a)l|al® is also summable for

o > 1. Therefore f(x) satisfies axiom (3,).
Having established the summability, we can also use Theorem 3.3.1 to

express the {-function as a product of local {-functions. Namely

{0 =110 e
P
for any quasi-character ¢ = ]| ¢, of exponent greater than 1. If ¢ now denotes
)

our special character,

c(a) = ];[ cy(a,) =Pl:[Scp(ap)-x(tPs(ﬁ)),

FOURIER ANALYSIS IN NUMBER FIELDS AND HECKE'S ZETA-FUNCTIONS 345
we can compute explicitly the local factors of {(f; ¢[[) for pé¢S. Indeed

Cp(f;’ Cv“;) = f c,(a,)[a,]f, da,

ol
= Y (PN A
v=0
A
-y,

because, for p ¢ S, ¢,(a,) = y(p* .
¥ > 6la,) = x(p°**). If therefore we introduce the classi
{-function {(s, 7), defined for Re (s) > 1 by the Euler product —

_ 1
C(s: X) —pI;‘I.:S‘ 1 —'_—__-X(p)m;s’

we can write
e =P]:[Sé',(,ﬂ,, c|l5)- ];[S,,Vh;i s, ).

We see that our {(f, ¢|l") is, essentiall i i

J Y, the classical function {(s, y). It
may be remarked here that we could have obtai i -
expression for {(s, 1), e obtained directly the additive

{0 = A
’ aimgg?;l ideal A7 0%
prime to 3

had we computed {(f, ¢||*) by breaking up [ into the cosets of I, integrating

over each coset, andl summing the results, rather than by using Th’eorem 331

to express the {-function integral as a product of local integrals -
Treating the {-function of / in the same way we find -

-~ ——
C(f’ c”s) =p].:.LC(fP’ CP”;) ‘Pll‘x(hv)m D" {15, 1):

for Re (s) < 0,
Before discussing the resulting analytic continuation and functional

equation for {(s, ), we should set our minds compl
i etely at rest i
that our f(x) satisfies axiom (3,); that is, that the sum ¥ at rest by checking

Z S+

is umformly convergent for a in a compact subset of f and xe D. We ¢
do this ea_s:ly under the assumption that, for p e S, the local fu.nctionsa,lr[’1
we cl}ose in ‘constructing S do not differ too much from the standard loca‘i
functions which we wrote down in Section 2.5. Namely, we assume for discrete
p €S, that f, V:anishes outside a compact; and for archimedean p, that £,(x,)
goes exponentially to zero as %, tends to infinity. Under these a;sum t';orts
one sees first that there is an ideal, a, of % such that Saz+8) =0 ifpf #a
'y
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for all a in the compact and % in D. The sum may then be viewed as a sum
over a lattice in the n-dimensional space which is the infinite part of V, of
the values of a function which goes exponentially to zero with the distance
from the origin. The lattice depends on a and %, to be sure, but the restriction
of a to a compact means that a certain fixed small cube will always fit into
the fundamental parallelotope of the lattice. The uniform convergence of
the sum is then obvious,

Analytic Continuation and Functional Equation for {(5, x). The analytic
continuation which we have established for our {-functions, both in the
large and locally, now gives directly the analytic continuation of {(s, x} into
the whole plane. Qur functional equations

(L =0(f0) and §(fiep) = pple)e(Frs &)
yield for (s, ¥) the functional equation

(=527 = [LAGl ). [T A% 0)-Ls .

The explicit expressions for the local functions p, are tabulated in Section 2.5.
The meaning of the &, and ¢, and their relationship to the ideal character ,
is discussed in the first paragraph of this section.

These ideal characters, x, which we have constructed out of idéle charac-
ters, are exactly the characters which Hecke introduced in order to define his
“new type of {-function™. {(s,y) is that {-function; and the functional
equation we have just written down is the functional equation Hecke proved
for it.

A Few Comments on Recent Related Literature

[Added January 1967]

In Lang’s book Algebraic Numbers (Addison-Wesley, 1964) there is a review
of the theory above, in which the global results are renormalized in a way
which corresponds more closely to the classical theory and which is more
suitable for applications. The applications to prime densities, the Brauer-
Siegel theorem, and the “explicit formulas™ are also treated there. Lang has
urged me to point out that in the main theorem on equidistribution of
primes (Theorem 6, p. 130 loc. cit.) one must assume that 6(J}) = G, not
only that o(J)) = G; thus the first application following that theorem,
concerning the equidistribution of log p, is not valid.

For a reinterpretation of the proof of the functional equation given above,
see Weil, Fonction zéta et distributions, Séminaire Bourbaki, No. 312, June
1966.

Siegel’s work on quadratic forms has inspired much adelic (adtle is the
modern term for valuation-vector) anmalysis in recent years, For some
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crucial results and bibliography in that direction, see Weil’s papers in
Acta Mathematica, 1964 and 1965.
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arcise 1: The Power Residue Symbol (Legencire, Gauss, et al.)

s exercise is based on Chapter VII, § 3, plus Kummer theory (Chapter III,
), Let m be a fixed natural number and K a fixed global field containing
group jt,, of mth roots of unity. Let S denote the set of primes of X con-
ing of the archimedean ones and those dividing m. If a,,...,4, are
ments of K*, we let S(a,, ..., q,) denote the set of primes in S, together
h the primes » such that |a,], # 1 for some i. For ae K* and be I

symbol (%) is defined by the equation

e = (8) 0
ere L is the field K(%/a).

Exercise 1.1. Show (g) is an mth root of 1, independent of the choice

n/a.
ExErCIsE 1.2. Working in the field L' = K(%/a, "/a’} and using Chapter
I, § 3.2 with K’ = K and L = K(%/a), show

aa’\ _ (a\ (@ : S(a,a")
(b) (b)(b) b e 7

ExerciseE 1.3. Show

D6 oo

t These “exercises” refer primarily to Chapter VII, “Global class field theory™, and were
spared after the Conference by Tate with the connivance of Serre. They adumbrate
ne of the important results and interesting applications for which unfortunately there
s not enough time in the Conference itself.
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(6)-J,6) o=z

EXERCISE 1.4, (Generalized Euler criterion.) If v ¢ S(a) then m|(Nv—1),

where Nv = [k(v)], and (S) is the unigue mth root of 1 such that

Nv—1
(‘—I) =g ™ (modp,).

v,

Hence,

EXERCISE 1.5, (Explanation of the name “power residue symbol”.) For
v ¢ S(a) the following statements are equivalent:

()~

(ii) The congruence x™ = a (mod p,) is solvable with x & o,.
(iii) The equation x™ = a is solvable with x € K,,.

(Use the fact that k(»)* is cyclic of order (Nv—1), and Hensel's lemma,
Chapter II, App. C.)

Exercisi 1.6, If b is an integral ideal prime to m, then
No-1
(f) = = forfep,

(Do this first, using Exercise 1.4, in case b = v is prime. Then for general
b =} n,v, note that, putting No = 1+mr,, we have

Nb =[] (L +mr)yv =14+m Y n,r, (mod m?).)
Exercise 1,7, If a and 5eI®® are integral, and if &' = a(mod b),

o (9)- ()

Exercise 1.8. Show that Artin's reciprocity law (Chapter VII, § 3.3) fora
simple Kummer extension L = K(%/a) implies the following statement: If
b and b’ € I5®, and W b= = (c¢) is the principal ideal of an element ¢ e K*
such that ¢ e (K™ for all ve S(a), then ([a?) = (g) Note that for v ¢ S,
the condition ¢ e (K)™ will certainly be satisfied if ¢ = 1 (mod p,).

Exercise 1.9. Specialize now to the case K= Q, m=2. Leta,b,...
denote arbitrary non-zero rational integers, and let P, Q, ... denote positive,

odd rational integers. For (@, P) = I, the symbol (%) = ((—;—)) =+11is
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lefined, is multiplicative in each argument separately, and satisfies

(g) = (ﬁ) if @ = b (mod P).

\rtin’s reciprocity law for Q(,/a)/Q implies

* (g) = (Ez) if P = Q (mod8ay),

vhere a, denotes the “odd part of a”, i.e. a = 2'a,, with ag odd. (Use the
act that numbers = 1 (mod 8) are 2-adic squares.)

ExereisE 1.10. From Fxercise 1.9 it is easy to derive the classical law of
juadratic reciprocity, namely

(:;) == I)P—;l’ (1%) = (—I)Pz‘;l, and (g) (%) = (__1)5';‘1 -9-;-5

‘ndeed the formula (¥) above allows one to calculate (%) as function of P

‘or any fixed a in a finite number of steps, and taking @ = —1 and 2 one
sroves the first two assertions easily. For the last, define

{P,Q>= (g) (%), for (P,0)=1.

Then check first that if P = Q (mod 8) we have

eo-(3)

and the given formula is correct. (Writing O = P+8a one finds using
Exercise 1.9 that, indeed,

O\ _(8a\ _[8a\ _ (-F
®-G)-@)-3))
Now, given arbitrary relatively prime P and @, one can find R such that
RP = Q (mod 8) and (R, Q) = 1 (even R = 1 (mod Q)), and then, by what
we have seen,

(P,0)<R, Q) = (PR,Q) = (‘El)

Fixing R and varying P, keeping (P, Q) = 1, we see that (P, Q) depends
only on P (mod 8). By symmetry (and the fact that the odd residue classes
(mod 8) can be represented by numbers prime to any given number), we
see that (P, Q) depends only on Q (mod 8). We are therefore reduced to
a small finite number of cases, which we leave to the reader to check. The
next exercise gives a general procedure by which these last manoeuvres can
be replaced.
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Exercise 2: The Norm Residue Symbol (Hilbert, Hasse)

We assume the reciprocity law for Kummer extensions, and use Chapter
VIL, § 6. The symbols m, K, S, and S(a, . . ., ,) have the same significance
as in Exercise 1. For a and b € K* and an arbitrary prime v of K we define
(a, b), by the equation

(/)" ® = (a,b),Ya,

where ,: K¥ - G° is the local Artin map associated with the Kummer
extension K(%/a)/K.

Exercise 2.1. Show that (g, b), is an mth root of 1 which is independent
of the choice of Y/a.

ExercisE 2.2. Show (g, b),(a, &), =(a, bb"), and {(a, b),(a’, b), = (ad’, b),.
Thus, for each prime » of K, we have a bilinear map of K* x K* into the
group u,, of mth roots of unity.

Exercise 2.3. Show that (g, b), = 1 if either a4 or b e (K})™, and hence
that there is 2 unique bilinear extension of (q, &), to K x K.

This extension is continuous in the v-adic topology, and can be described
by a finite table of values, because Kj/(K;)™ is a finite group (of order
m?{im|,, where |m|, is the normed absolute value of m at v). Moreover, the
extended function on K¥ x K can be described purely locally, i.e. is inde-
pendent of the field K of which K, is the completion (because the same is
true of y,), and induces a non-degenerate pairing of K {(K;)™ with itself
into p,; however we will not use these local class field theoretic facts in
most of this exercise. For a general discussion of (a, b),, and also for some
explicit formulas for it in special cases, see Hasse’s “Bericht”, Part II,
pp. 53-123, Serre’s “Corps Locaux”, pp. 212-221, and the Artin-Tate notes,
Ch. 12. The symbol (g, b), defined here coincides with that of Hasse and
Serre, but is the opposite of that defined in Artin—Tate. While we are on
the subject, our local Artin maps V¥, coincide with those in Serre and in
Artin-Tate, but are the opposite of Hasse’s.

Exercise 2.4. Show that (a,5), = 1 if b is a norm for the extension
K,%/a)/K,. (See Chapter VII, § 6.2; the converse is true also, by Iocal class
field theory, but this does not follow directly from the global reciprocity
law.)

ExercisE 2.5, We have (a,b), =1 if a+be(K})*; in particular,
(a, ~a), = 1 = (a, 1—a),. (This follows from the purely algebraic lemma:
Let F be a field containing the group p,, of mth roots of unity, and let a e F*.
Then for every x & F the element X"—a is a norm from F(3/a). Indeed, let
o™ = g. The map o> o’fa is an isomorphism of the Galois group onto a
subgroup u, of y,, and is independent of the choice of «. Hence if ({;) is a
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istem of representatives of the cosets of g, in p,,, we have for eachxe F

mfd
x"—a= ] (x—{0) = NF(«)/F(H("—C!“))’

{&um i=1

.E.D)
Exercis 2.6. Show that (a, b),(b, a), = 1. (Just use bilinearity on
= (ab, "'ab)v')

Exercise 2.7. If v is archimedean, we have (a, b), = 1 unless K, is real,
oth g <0 and b < 0in K,, and m = 2. (In the latter case we do in fact
ave (a, b), = —1; see the remark in Exercise 2.4. Note that m > 2 implies
1at K, is complex for every archimedean v.)

EXeRCISE 2.8. (Relation between norm-residue and power-residue symbols.)
w(h)
* v ¢ S(a), then (g, ), = (‘;) : in particular, (a, b), = 1 for v ¢ S(a, b).

{See the first lines of Exercise 1 for the definition of § and S(a), etc. The
ssult follows from the description of the local Artin map in terms of the
‘robenius antomorphism in the unramified case. More generally,

v¢S=(a,b),= (-E), where ¢ = (1)@ ®)g?®)p ~0(@

s a unit in X, which depends bilineacly on a and b. To prove this, just
irite @ = n°@a, and b = n"®b, where v(zn) = 1, and work out (a, b), by
he previous rules; for the geometric analog discussed in remark 3.6 of
“hapter VII, see Serre, loc. cit., Ch. III, Section 4.)

EXERCISE 2.9. (Product Formula) For a,be K* we have [](a,8), = 1,
he product being taken over all primes v of K.

Exercise 2.10. (The general power-reciprocity law.) For arbitrary a and b

n K* we define
a a\*® a
(3) oSt (5) B ((b)s("’)’

vhere (b)* is defined in Chapter VII, § 3.2.
Warning: With (:) defined in this generality the rule (a__) = (‘-1) (?—)

b b/ \b
joes not always hold, but it does hold if S(b) n S(g, @) = S, and especially
f b is relatively prime to @ and a4’. The other rule, (bib’) = (—:) (;—’,) holds
h general,

Using Exercises 2.6, 2.8 and 2.9, prove that

GIGRE: IS
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In particular
* a\ (b\~* _ . _
™ (B) (;) -”l:[s(b, a),, if S(@)nS(b) =S,
and
**) 0 (g) =TL&b) 50 =5.

Exercise 2.11. If K= Q and m = 2, then S = {2, c0}, and for P > 0
as in Bxercise 1.10, we have (x, P),, = 1. Hence the results of Exercise 1.10
are equivalent with

P—1 p2-1 P-1 0-1

(=1L,Pp=(-1)Z%, ,P),=(-1) 8, and (P,Q)=(-1)2"2
for odd P and Q. On the other hand, these formulas are easily established
working locally in Q,. In particular, the fact that (1+4c, b), = (—=1)"®%,
from which the value of (g, b), is easily derived for all 4, b using Exercises
2.2, 2.5 and 2.6, is a special case of the next exercise.

Exercisg 2.12. An element a e K is called v-primary (for m) if K@/a)/K
is unramified at . For v ¢ S, there is no problem: an element g is v-primary
if and only if v(@) = 0 (mod m). Suppose now v divides mand m=pisa
prime number. Let { be a generator of y,, and put 4 = 1—{. Check that
AP~1/p is & unit at v, and more precisely, that A#~! = —p (mod pA), so that
AP~ip=—1(modp,). Let a be such that ¢ = 1 (mod plo,), so that we
have @ = 1+ AP, with ¢ep,. Prove that a is v-primary, and that for all b,

(a,b), = {~5E¥®,
where S denotes the trace from k() to the prime field and ¢ is the v-residue
of ¢. Also, if @ = 1 (mod pAp,), then a is v-hyperprimary, i.e. a e (K3)™

(Let of = @, and write & = 14Ax. Check that x is a root of a polynomial
f(X)eo[X] such that f(X) = X?—X—c(modp,). Thus f'(x) =—1%£0
(mod p,), so K,(x) = K,(%/a) is indeed unramified. And if ¢ = 0 (mod p,)
then f(X) splits by Hensel’s lemma, so K,(%/a) = K,. Now x* = x+¢
(mod p,), so if No = p', then

xF=x"=xteteP+ ... +¢7 " = x45() (mod p,).

On the other hand, if «" = {a = 1+Ax’, then x" = x—1 (mod p,). Com-
bining these facts gives the formula for (g, b),.)

Exercise 2.13. Let p be an odd prime, { a primitive pth root of unity,
K=Q(, and m = p. Then p is totally ramified in K, and 4 = 1—-{
generates the prime ideal corresponding to the unique prime v of K lying
over p. Let U, denote the group of units = 1 (mod 1) in K}, fori=1,2,....
Then the image of n, = 1—A" generates U,/U,, ;, which is cyclic of order p,
and the image of 1 generates K*/(K*)’U,. By the preceding exercise,
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+1 € (KHP. Hence the elements 4,{ = 7, 1-2* = f,..., 1= =y,
aerate (K*)/(K*)P. But that group is of order p?/|p|, = p'*¥, so these
aerators are independent mod pth powers. Show that

(@) (100 = (Mis M4 Dol 35 162 55 N;i, foralli,jz 1.
(b) Ifi+j = p+1, then (a,b), = 1 forallae U,and be ¥,
1, forlsisp—1
(C) (nl" l)u - {C, fol' i= P
(d) (a, b), is the unique skew-symmetric pairing K x Ky — p, satisfying
{a) and (c}).
or (a), note q,-[-}{f ; = %4, divide through by #,,,, and use Exexcise 2.5
d bilinearity; the oddness of p, which implies (a, b)) = (g, —b) in general
d (a, @) = 1 in particular, is used here. The rest all follows easily, except
r (c) which is a consequence of the preceding exercise; but note that the
st {p—1) cases of (c) are trivialities, because
(N i= -2, =1=@y4), =1 forl <i<p-1)

Exercise 2.14. (Cubic reciprocity law.) Specialize to p = 3 in the pre-
ding exercise. The ring of integers R = Z +Z{ is a principal ideal domain,
108 non-zero elements can be written in the form A"{"a, with a =+1
10d 3R). Prove

) (g) = (g), for relatively prime a and b, each = 41 (mod 3R),
d also

(-

i , for a = +(1+3(m+n)

il P
@
s an application, prove: If ¢ is a rational prime = 1 (mod 3), then 2 is a
bic residue (mod ¢) if and only if ¢ is of the form x%+27y* with x, y € Z.
Vrite ¢ = a% with © =41 (mod 3R). Then Z/gZ ~ R/nR, so 2 is a cubic
. . o f2
sidue (mod g) if and only if ( ) = 1. Now use (*), and translate (g) =]

T

")

to a statement about g.)

ExercisE 2.15. Let L be the splitting field over Q of the polynomial
3_2. The Galois group of L/Q is the symmetric group on three letters.
sing the preceding exercise, show that for p # 2, 3 the Frobenius auto-
orphism is given by the rules:

Frolp) = (1), if p = 1 (mod 3) and p of the form x*+27y?,

Fy15(p) = 3-cycle, if p = 1 (mod 3) and p not of the form x* 4272,
Fyio(p) = 2-cycle, if p =—1 (mod 3).
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Hence, by Tchebotarov’s theorem, the densities of these sets of primes are
1/6, 1/3 and 1/2, respectively.

ExercisE 2.16. Consider again an arbitrary K and m. Leta,,...,a, be
a finite family of elements of K*, and let L be the Kummer extension generated
by the mth roots of those elements. Let T be a finite set of primes of K
containing S(ay, ..., a), and big enough so that both Jx = K*Jg 1, and
Jy = L*J 1, where T” is the set of primes of L lying over T. Suppose we
are given elements {,; € pt,, for veT and 1 < i < r, such that

(i) For each i, we have [] {,; =1, and
veT

(ii) For each veT, there exists an x,e€ K} such that (x,a), = {,
for all i.

Show then that there exists a T-unit x € Ky such that (x, a;), = {,; for all
veTandalll gi<r

The additional condition on T, involving 7”, is necessary, as is shown
by theexample K = Q,m = 2, T = {0,2,7},r = l,a; =—14, {1 =—1,
{20=—1, {33 =1 To prove the statement, consider the group
X = [Loer{EHIKEY", the subgroup A generated by the image of Ky, and
the smaller subgroup 4, generated by the images of the elementsa,, 1 <i<r.
The form <x, »> = [Jver (X, ¥.)» gives a non-degenerate pairing of X with
itself to u,,, under which A is self orthogonal, and indeed exactly so, because
[X] = m* and [4] = n, where t = [T]. (See step 4 in the proof of the
second inequality in Chapter VII, § 9, the notations S, #, and s there being
replaced by T, m, and ¢ here.) Thus X/4 ~ Hom (4, p,) (note by the way
that both groups are isomorphic to Gal (K(/ Kp)/K), by class field theory and
Kummer theory, respectively), and, vice versa, A4 ~ Hom (X/4, p,). So far,
we have not used the condition that J, = L*J, y.. Use it to show that if
ae A and na) e m,(4,) for all v, where =, is the projection of X onto
K*J(K*)™, then a € A, i.e. Yae L. Now show that, in view of the dualities
and orthogonalities discussed above, this last fact is equivalent to the
statement to be proved,

Exercise 3: The Hilbert Class Field

Let L/K be a global abelian extension, v a prime of X, and i,: K; = Ji the
canonical injection. Show that v splits completely in L if and only if
i(K*) © K*NygJy, and, for non-archimedean », that v is unramified in L
if and only if i(U,) = K*NyxJy, where U, is the group of units in K.
(See Chapter VII, § 5.1, § 6.3.) Hence, the maximal abelian extension
of K which is unramified at all non-archimedean primes and is split com-
pletely at all archimedean ones is the class field to the group K*Jg s, where
S now denotes the set of archimedean primes. (Use the Main Theorem
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(Chapter VII, § 5.1) and the fact that K*N, ;. J, is closed.) This extension
is called the Hilbert class field of K; we will denote it by X’. Show that the
Frobenius homomorphism Fg.;z induces an isomorphism of the ideal class
group Hp = I/Py of K onto the Galois group G(X'/K). (Use the Main
Theorem and the isomorphism Jg/Jg s 5 Ir.) Thus the degree [K': K] is
equal to the class number 4y = [H] of K. The prime ideals in K decompose
in K’ according to their ideal class, and, in particular, the ones which split
completely are exactly the principal prime ideals. An arbitrary ideal a of
K is principal if and only if Fy.g(a) = 1.

The “class field tower”, K < K’ =« K” = (K'Y < ... can be infinite {(see
Chapter IX). Using the first two steps of it, and the commutative diagram
(see (11.3), diagram (13))

Ig =iz | G(K'[K)
con v
IK' Fr'ix’ G(K”/K r),

Artin realized that Hilbert’s conjecture, to the effect that every ideal in K
becomes principal in K’, was equivalent to the statement that the Ver-
lagerungi ¥ was the zero map in this situation. Now G(K"/K’) is the com-
mutator subgroup of G(K”/K) (Why?), and so Artin conjectured the
“Principal ideal theorem™ of group theory: If G is a finite group and G° its
commutator subgroup, then the map V:(G/G°) = G°NGY is the zero map.
This theorem, and therewith Hilbert’s conjecture, was then proved by
Furtwingler. For a simple proof, see Witt, Proc. Intern. Conf. Math.,
Amsterdam, 1954, Vol. 2, pp. 71-73.

The first five imaginary quadratic fields with class number s 1 are those
with discriminants —~15, —20, —23, —24, and —31, which have class
numbers 2, 2, 3, 2, 3, respectively. Show that their Hilbert class fields are
obtained by adjoining the roots of the equations X2 +3, X241, X3— X1,
X*+43, and X*+X~1, respectively. In general, if K is an imaginary
quadratic field, its Hilbert class field X’ is generated over X by the j-invariants
of the elliptic curves which have the ring of integers of X as ring of endo-
morphisms; see Chapter XIII.

Let 7§ denote the group of idéles which are positive at the real primes of X
and are units at the non-archimedean primes. The class field over K with
norm group K*J¢ s is the maximal abelian extension which is unramified
at all non-archimedean primes, but with no condition at the archimedean
primes; let us denote it by K. Let P} denote the group of principal ideals of
the form (a), where a is a totally positive element of X, Show that Frux
gives an isomorphism: I/Pg ~ G(K,/K). Thus, G(K,/K') is an elementary

t Called the transfer in Chapter IV, § 6, Note after Prop, 7.
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abelian 2-group, isomorphic to Px/P%. "Show that (Py: P})(Ks: K$) = 27,
where K& = K* nJ} is the group of totally positive units in K, and r
is the number of real primes of K. .

We have Q, = Q, clearly, but this is a poor result in view of Minkowski’s
theorem, to the effect that Q has no non-trivial extension, abelian or no.r,
which is unramified at all non-archimedean primes (Minkowski, “Geome.trle
der Zahlen”, p. 130, or “Diophantische Approximationen® p. 127). Consider
now the case in which K is real quadratic, [K: Q] = 2,and r, = 2. Show t.hat
[K;:K'}=1 or 2, according to whether Ne = —1 or Ne = 1, where e 15 a
fundamental unit in X, and N = Ngjq. For example, in case K = Q(,/2) or
Q(,/5) we have K’ = K, because the class number is 1, and consequently also
K, = K, because the units ¢ = l-i-,]2 and g = (1 +J5) havenorm —1. On
the other hand, if K = Q(,/3), then again K’ = K, but K, # K, because
¢ = 24./3 has norm 1; show that X, = XK(,/—1). In general, when —1
is not a local norm everywhere (as in the case K = Q(,/3) just considered),
then Ne = 1, and K, # K’. However, when —1 is a local norm everywhere,
and is therefore the norm of a number in KX, there is still no general rule for
predicting whether or not it is the norm of a unit,

Exercise 4. Numbers Represented by Quadratic Forms
Let X be a field of characteristic different from 2, and

AX)= Z ayX; X,
a non-degenerate quadratic form in » variables with coefficients in X. We
say that f represents an element ¢ in K if the equation f(X) = ¢ has a solution
X = x e K" such that not all x, are zero. Iffrepresents 0 in K, then f represents
all elements in K. Indeed, we have

(tX+Y) = Pf(X)+1B(X, V) +AY).
If f(x) =0 but x# (0,0,...,0), then by the non-degeneracy there i? a
y € K™ such that B(x, y) # 0, so that f(tx+y) is a non-constant linear function
of ¢ and takes all values in X as ¢ runs through K.

A linear change of coordinates does not affect questions of representability,
and by such a change we can always bring f to diagonal form: f = Y. a; X7
with all @, # 0. If f= cX? — ¢(X,,..., X,) then f represents 0 if and
only if g represents ¢, because if g represents 0 then it represents c. ‘Hencc':,
the question of representability of non-zero ¢’s by forms g in n—1 variables is
equivalent to that of the representability of 0 by forms fin n variables. The
latter question is not affected by multiplication of f by a non-zero E:onstant;
hence we can suppose f in diagonal form with ¢, = 1 in treating it:

Exercist 4.1, The form f = X? does not represent.0.
EXERCISE 4.2, The form f = X?*—bY? represents 0 if and only if b e (K*).
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Exercist 4.3. The form f= X2—b¥?*—~¢Z? represents 0 if and only if
¢ is 2 norm from the extension field K(,/5).

Exercise 4.4, The following statements are equivalent:

(i) The form f = X*—~b¥?~cZ%4aeT? represents 0 in K.

(ii) ¢ is a product of a norm from K(,/4) and 2 norm from K(\/b).

(iii) ¢, as element of K(,/ab), is a norm from the field L = K(\/a, \/b).

(iv) The form g = X2—b¥?—cZ? represents 0 in the field K(,/ab).
(We may obviously assume neither @ nor b is a square in K. Then the
equivalence of (i) and (ii) is clear because the reciprocal of a norm is a norm,
and the equivalence of (iii) and (iv) follows from Exercise 4.3 with X replaced
therein by K(,/ab). It remains to prove (ii) <= (iii), and we can assume
ab ¢ (K*)?, for otherwise the equivalence is obvious. Then Gal (L/K) is a
four-group, consisting of elements 1, p, o, t such that P o, and t leave
fixed, respectively, \/ab, \/a, and /b, say. Now (i) < (ii'): 3x, y € L such
that x* = x, y* = y, and x!*p'*? = ¢; and (iii) < (iii’) Ize L such that
2'*? = ¢.  Hence (i) = (i) trivially. Therefore assume (iii’), put
u=1¢""2%", and check that u* = u, i.. ue K(,/a), and u*** = 1. Hence
by Hilbert’s theorem 90 (Chapter V, § 2.7) for the extension K(,/a)/K, there
exists x # 0 such that x° = x and x*"! =y, Now put ¥y = z’[x, and
check that (ii’) is satisfied.)

So far, we have done algebra, not arithmetic. From now on, we suppose
K is a global field of characteristic # 2,

EXERCISE 4.5, The form f of Exercise 4.3 represents 0 in a local field X,
if and only if the quadratic norm residue symbol (b, ¢), == 1. Hence f repre-
sents 0 in X, for all but a finite number of v, and the number of p’s for which
it does not is even. Moreover, these last two statements are invariant under
multiplication of f by a scalar and consequently hold for an arbitrary non-
degenerate form in three variables over K.

EXERCISE4.6. Let fbe as in Exercise 4.4. Show that if Jfdoes not represent 0
in a local field K, then a ¢ (K*)?, and b ¢ (K*)?, but ab e (K5, and ¢ is
not a norm from the quadratic extension K,(\Ja) = K(\/B). (Just use the
fact that the norm groups from the different quadratic extensions of K,
are subgroups of index 2 in K¥, no two of which coincide.) Now suppose
conversely that those conditions are satisfied. Show that the set of elements
in K, which are represented by fis N— ¢N, where N is the group of non-zero
norms from K,(,/a), and in particular, that S does not represent 0 in X,
Show, furthermore, that if N—c¢N # K*, then —1 ¢N, and N+Nec N.
Hence f represents every non-zero element of K, unless K, ~ R and f is
positive definite.

ExerCisE 4.7. A form fin n > 5 variables over a local field K, represents
0 unless X, is real and f definite.
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EXERCISE 4.8. Theorem: Let K be a global field and f a non-degenerate
guadratic form in n variables over K which represents 0 in K, for each prime
v of K. Then frepresents 0 in K, (For n = 1, trivial; n = 2, ¢f. Chapter VII,
§ 8.8; n = 3, cf. Chapter VII, § 9.6 and Exercise 4.3; n = 4, use Exercise
4.4 to reduce to the case n = 3; finally, for n = 5, proceed by induction: Let

f(X) = aX%'I'bX%'"g(XS!' (XY Xu)v
where g has n—2 = 3 variables. From Exercise 4.5 we know that g repre-
sents 0 and hence every number in K, for all v outside a finite set §. Now
(KM? is open in K¥. Hence, by the approximation theorem there exist
elements x; and x, in X, such that the element ¢ = ax?+bxZ # 0 is repre-
sented by ¢ in K, for all v in S, and hence for all ». By induction, the form
¢Y?—g(X,,...., X,) in n—1 variables represents 0 in K. Hence f does.)

Exercise 4.9. Corollary: If n > 5, then f represents 0 in K unless there is
a real prime v at which f'is definite.

EXERCISE 4.10. A ratiopal number ¢ is the sum of three rational squares
if and only if ¢ = 4°r where r is a rational number > 0 and # 7 (mod 8);
every rational number is the sum of four rational squares.

EXERCISE 4.11. The statements in the preceding exercise are true if we
replace “rational” by “rational integral” throughout. (The 4 squares one
is an immediate consequence of the 3 squares one, so we will discuss only
the latter, although there are more elementary proofs of the four square
statement not involving the “deeper” three square one, Let ¢ be a positive
integer as in 4.10, so that the sphere |X|* = X7+ X3+ X% == ¢ has a point
x = (x;, X5, x3) with rational coordinates, We must show it has a point
with integral coordinates. Assuming x itself not integral, let z be an integ}'al
point in 3-space which is as close as possible to x, so that x = z4 4, with
0 < |a]* < 3/4 < 1. The line / joining x to z is not tangent to the sphere;
if it were then we would have |a|* = [z|®2—[x[]* = |z]|*~¢, an integer, contra-
diction. Hence the line / meets the sphere in a rational point x* # x. Now
show that if the coordinate of x can be written with the common denominator
d > 0, then those of x’ can be written with the common denominator
d’ = la|*d < d, so that the sequence x, x’,{x"),... must lead eventually
to an integral point. Note that d’ is in fact an integer, because

d' = la|*d = [x—z|*d = (|x]* = 2x, 2) +|2|)d = ed—2(dx, 2) +|2|?d.)

ExerCISE 4.12, Let f be a form in three variables over X. Show that if
J does not represent 0 locally in K,, then the other numbers in K, not
represented by f constitute one coset of (K¥)* in K¥. (Clearly one can
assume f = X2—b¥?—cZ?%; now use Exercise 4.6.) Using this, show that
if K= Q and f is positive definite, then f does dot represent all positive
integers. (Note the last sentence in Exercise 4.5.)



360 EXERCISES

For further developments and related work see O. T. O’Meara; “Intro-
duction to Quadratic Forms™ (Springer, 1963) or Z. L. Borevié and L. R,
Safarevid, “Teorfja Cisel” (“Nauka”, Moskva, 1964). [English translation,
Z. L. Borevich and I. R. Shafarevich, *“Number Theory”, Academic Press,
New York: German translation, S. I. Borevicz and I. R. Safarevit,
“Zahlentheorie”, Birkhduser Verlag, Basel.]

Exercise 5: Local Norms Not Global Norms, etc.

Let L/K be Galois with group G = (1, p, 0, ©) & (Z/2Z)?, and let K|, K,

and K; be the three quadratic intermediate fields left fixed by p, o, and =,

respectively. Let N, = Ng (K[) for i =1, 2, 3, and let N = Ny, (L*).
ExercisE 5.1, Show that N,N,N; = {xe K*|x*e N}. (This is pure

algebra, not arithmetic; one inclusion is trivial, and the other can be proved

by the methods used in Exercise 4.3.)

EXERCISE 5.2. Now assume K is a global field. Show that if the local
degree of L over K is 4 for some prime, then Ny N, N, = K* (cf. Chapter
VII, § 11.4). Suppose now that all local degrees are 1 or 2. For
simplicity, suppose K of characteristic # 2, and let X, = K(\fa) for
i=1,2,3. For each i, let S; be the (infinite) set of primes of K which split
in X, and for x e K* put

o(x) =,,1:£ (a2,%), =ﬂl:,!_ (a3,%), =,,1;[g (a3, x), =ule—'.[$‘ (as, %)y
= ]._.[ (al’x)v = ]._[ (ﬂ'z»x)u =41,

veSsy veSs
where (x,)), is the quadratic norm residue symbol. Show that
N,N,N, = Ker ¢ and is a subgroup of index 2 in K*. (The inclusion
N;N,N, < Ker ¢ is trivial. From Exercise 5.1 above and Chapter VIiI,
§ 11.4 one sees that the index of N, N; N; in K* is at most 2. But there
exists an x with @(x) = —1 by Exercise 2.16.)

Exercise 5.3. Let K = Q and L = Q(,/13, /17). Show that if x is a
product of primes p such that (%) =—1(eg.p=2 571711,...), then
o(x) = (%) Hence 52, 72, 10%, 112, 14%, . . . are some examples of numbers
which are local norms everywhere from Q(,/13, \/17) but are not global
norms. Of course, not every such number is a square; for example, —~14%
is the global norm of 3(7-+2,/13+44/17), and comparing with the above we
see that —1 is a local norm everywhere but not a global norm.

EXercisE 5.4. Suppose now that our global 4-group extension L{K has
the property that there is exactly one prime v of K where the local degree
is 4: Let w be the prime of L above v and prove that f ~*(G, L*) = 0, but
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A-YG, LY ~ Z/2Z. (Use the exact sequence near the beginning of
paragraph 11.4. The map g is surjective, as always when the l.c.m. of the
local degrees is the global degree. And the map g: H~(G,J)) — A@G, c)
is also injective, because of our assumption that the local degree is 4 for
only one prime.)

Let A, resp. A,, be the group of elements in L*, resp L?, whose norm
to K (resp. to K,) is 1, and Iet 4 be the closure of 4 in L¥. 1t follows from
the above that

A= (L#)p-l(L*)a— I(L*)r— 1’
and that
A=@y@yriayT!

is of index 2 in 4,,. Now, as is well known, there is an algebraic group T
defined over K (the twisted torus of dimension 3 defined by the equation
Nij(X) = 1) such that T(K) = 4 and T(K,) = A4,,. Hence we get examples
which show that the group of rational points on a torus T is not necessarily
dense in the group of v-adic points (see last paragraph below). However,
it is not hard to show that if T is a torus over X split by a Galois extension
L/K, then T(K) is dense in T(K,) for every prime v of K such that there
exists a prime »’ # v with the same decomposition group as v; in particular,
whenever the decomposition group of v is cyclic, and more particularly,
whenever v is archimedean.

As a concrete illustration, take K = Q and L = Q(/—1,/2) = Q(0),
where {* = —1. Then L is unramified except at 2, but totally ramified at 2,
and consequently there is just one prime, 2, with Jocal degree 4. Let M = Q)
where i = {* = J —1, and let L,, and M, denote the completions at the
primes above 2, It is easy to give an ad-hoc proof without cohomology that
the elements of L with norm 1 are not dense in those of L}, just check that
the element z = (2+1)/(2—i) € M, is a norm from L,, to L,, but that 2(M;)*
contains no element y € M such that y is a global norm from L to M and
such that Ny,o(3) = 1.

Exercise 6: On Decomposition of Primes

Let L/K be a finite global extension and let S be a finite set of primes of K.

We will denote by Splg (L/K) the set of primes v ¢ S such that v splits com-

pletely in L (i.e. such that L ® K, = K'“¥), and by Spls (L/K) the set of
K

primes v ¢ § which have a split factor in L (i.e. such that there exists a
K-isomorphism L — K,). Thus Splg(L/K) = Spls(L/K) always, and
equality holds if K is Galois, in which case Spls (L/K) has density [L: K17?
by the Tchebotarov density theorem. (Enunciated near end of Chapter
VII, § 3.)
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Exercise 6.1. Show that if L and M are Galois over K, then
L = M< Spls(M) < Spls(L),
{Indeed, we have
Spls(LM/K) = Spls(L{K) n Spls(M/K),
50
L < M= Spl;(M) < Spls(L)=>Spls (LM/K) = Spls(M/K)
=[LM:K]=[M:K]=LcM;
where was Galoisness used?) Hence
L = M< Spis(L) = Spls(M).
Application: If a separable polynomial f(X)e K{X] splits into linear
factors mod p for all but a finite number of prime ideals p of K, then f splits
into linear factors in K. (Take L = splitting field of f(X), and M = K,
and S large enough so that f has integral coefficients and unit discriminant
outside S.) Finally, note that everything in this exercise goes through if
we replace “all primes v ¢ $” and “all but a finite number of primes »” by
“all v in a set of density 1”.

EXERCISE 6.2. Let /K be Galois with group G, let H be a subgroup of G,
and let E be the fixed field of H. For each prime v of X, let G° denote a
decomposition group of v. Show that v splits completely in E if and only if
all of the conjugates of G” are contained in H, whereas v has a split factor in
E if and only if at least one conjugate of G* is contained in H. Hence, show
that the set of primes Splg (E/K) has density [(L pHp~t)/[Gl. Now

E

prove the lemma on finite groups which states that tphe union of the conju-
gates of a proper subgroup is not the whole group {because they overlap a
bit at the identity!) and conclude that if Spl; (E/K) has density 1, then
E = K. Application: If an irreducible polynomial f(X) e K[X] has a root
(mod p) for all but a finite number of primes p, or even for a set of primes p
of density 1, then it has a root in K. This statement is false for reducible
polynomials; consider for example f(X) = (X 2_g)(X*—b)(X?—ab),where
a, b, and ab are non-squares in K. Also, the set Spl’ (E/K) does not in
general determine E up to an isomorphism over K; of. Exercise 6.4 below.

EXERCISE 6.3. Let H and H’ be subgroups of a finite group G. Show that
the permutation representations of G corresponding to H and H' are iso-
morphic, as linear representations, if and only if each conjugacy class of ¢
meets H and H' in the same number of elements. Note that if His a normal
subgroup then this cannot happen unless H' = H. However, there are
examples of subgroups H and H' satisfying the above condition which are
not conjugate; check the following one, due to F. Gassmann {(Math. Zeit.,
28, 1926): Take for G the symmetric group on 6 letters {x) and put
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H={l, (X;X)X:X4), (X1 X) (X, Xy), (X3 X)(X2X3)}
H’={1: (Xle)(X3X4), (XIXZ)(X5X6)s (X3X4)(X5X6)}
(H leaves X5 and X fixed, where H' leaves nothing fixed; but all elements

# 1 of H and H’ are conjugate in G.) Note that thexe exist Galois extensions
of Q with the symmetric group on 6 letters as Galois group.

EXERCISE 6.4. Let L be a finite Galois extension of Q, let G = G(L{Q), and
let E and E’ be subfields of L corresponding to the subgroups H and H'
of G respectively. Show that the following conditions are equivalent:

(2) H and H' satisfy the equivalent conditions of Exercise 6.3,

(b) The same primes p are ramified in £ as in E’, and for the non-
ramified p the decomposition of p in E and E’ is the same, in the sense
that the collection of degrees of the factors of p in E is identical with the
collection of degrees of the factors of p in E’, or equivalently, in the sense
that A/pA = A'[pA’, where A and A’ denote the rings of integers in E
and E’ respectively.

(¢) The zeta-function of E and E’ are the same (including the factors
at the ramified primes and at ¢0.)

Moreover, if these conditions hold, then £ and E” have the same discriminant,
If H and H’ are not conjugate in G, then E and E’ are not isomorphic,
Hence, by Exercise 6.3, there exist non-isomorphic extensions of Q with the
same decomposition laws and same zeta functions. However, such examples
do not exist if one of the fields is Galois over Q.

Exercise 7: A Lemma on Admissible Maps

Let K be a global field, S a finite set of primes of K including the archimedean
ones, H a finite abelian group, and ¢: If -+ H a homomorphism which is
admissible in the sense of paragraph 3.7 of the Notes, We will consider
“pairs” (L, &) consisting of a finite abelian extension L of K and an injective
homomorphism o: G(L/K) — H.

Exercisk 7.1. Show that there exists a pair (L, o) such that L/K is unrami-
fied outside § and ¢(a) = a(Fyx(0)) forallae I%, where Fy is as in Section
3 of the Notes. (Use Proposition 4.1 and Theorem 5.1.)

EXErcCISE 7.2. Show that if ¢(#) = 1 for all primes v in a set of density 1
(e.g. for all but a finite number of the primes of degree 1 over Q), then ¢
is identically 1. (Use the Tschebotarov density theorem and Exercise 7.1.)
Consequently, if two admissible maps of ideal groups into the same finite
group coincide on a set of primes of density 1, they coincide wherever they
are both defined.

Exercise 7.3. Suppose we are given a, pair (L',a’) such that
o' (Fpp(®) = @) for all v in a set of density 1. Show that (L', «') has
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the same properties as the pair (L, a) constructed in Exercise 7.1; in fact,
show that if L' and L are contained in 4 common extension M, then L' = L
and o' = a. (Clearly we may suppose M/K finite abelian. Let 6, resp. &',
be the canonical projection of G(M{K) onto G(L/K), resp. G(L'[K). By
Exercise 7.2 and Chapter VII, § 3.2 we have a0 8o Fayg = o' 0 0’ o Fpqg.
Since « and o' are injective, and Fy ¢ surjective, we conclude Ker 8 = Ker 8",
hence L = L', and finally o = «'.)

Exercise 8: Norms from Non-abelian Extensions

Let E/K be a global extension, not necessarily Galois, and let M be the
maximal abelian subextension. Prove that NggCg = Ny;gCyy, and note
that this result simplifies a bit the proof of the existence theorem, as remarked
during the proof of the Lemma in Chapter VII, § 12. [Let L be a Galois
extension of K containing E, with group G, let H be the subgroup corre-
sponding to E, and consider the following commutative diagram (cf.
Chapter VII, § 11.3):

A~*H,Z) ~ H* 3 CgfNyCr = HH, Cp)
cor | 8] 1 ¥ae | cor
B %G,Z) = G™ S Cg/NxCr = HYG, Cy).
Since G*®/O(H*) =~ G(M/K) this gives the result.]
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