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A Darwinian Ricker Equation

Jim M. Cushing

Abstract The classic Ricker equation xt+1 = bxt exp (−cxt ) has positive equilibria
for b > 1 that destabilize when b > e2 after which its asymptotic dynamics are
oscillatory and complex. We study an evolutionary version of the Ricker equation
in which coefficients depend on a phenotypic trait subject to Darwinian evolution.
We are interested in the question of whether evolution will select against or will
promote complex dynamics. Toward this end, we study the existence and stability
of its positive equilibria and focus on equilibrium destabilization as an indicator of
the onset of complex dynamics. We find that the answer relies crucially on the speed
of evolution and on how the intra-specific competition coefficient c depends on the
evolving trait. In the case of a hierarchical dependence, equilibrium destabilization
generally occurs after e2 when the speed of evolution is sufficiently slow (in which
case we say evolution selects against complex dynamics). When evolution proceeds
at a faster pace, destabilization can occur before e2 (in which case we say evolution
promotes complex dynamics) provided the competition coefficient is highly sensitive
to changes in the trait v. We also show that destabilization does not always result in
a period doubling bifurcation, as in the non-evolutionary Ricker equation, but under
certain circumstances can result in a Neimark-Sacker bifurcation.

Keywords Ricker equation · Darwinian Ricker equation · Chaos · Evolutionary
game theory

1 Introduction

It is well known that difference equations can predict complex asymptotic dynamics
in the form of non-equilibrium attractors. The exponential or Ricker equation
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x(t+1) = bx(t) exp(−cx(t)) (1)

is the iconic example of a period doubling route to chaos which, as b > 1 increases,
initiates afterb = e2 where thepositive equilibrium x = c−1 ln b destabilizes.Despite
the ubiquity of this phenomenon in difference equations used as population dynamic
models, unequivocal evidence of its occurrence in biological populations is sparse
and is, for the most part, limited to populations manipulated in laboratory settings
[10]. Several explanations for this can be found in the literature. One is that popula-
tion time series data tends to be too short to be able to identify complex dynamics
and data is usually “noisy” and, as a result, it is difficult to tell the difference between
stochastic fluctuations and deterministic fluctuations (such as chaos) [5, 8]. Another
explanation is that most populations in the natural world are subject to interactions
with other species that can serve to dampen complex dynamics [7]. Yet another
explanation is that biological populations are subject to evolutionary change by Dar-
winian principles and that evolution might select to reduce dynamic complexity, i.e.
non-equilibrium dynamics such as periodic oscillations or chaos [4]. In this paper
we briefly consider the latter possibility by subjecting the parameters in the Ricker
equation (1) to evolutionary changes according to a methodology called evolution-
ary game theory (or Darwinian dynamics) [9]. This derivation results in a system
of difference equations that we refer to as a Darwinian Ricker model. In this short
note, we do not strive to carry out a study of the non-equilibrium dynamics that are
possible in Darwinian Ricker equations, but instead focus simply on whether or not
positive equilibria destabilize for b greater than some critical value and, if they do,
whether the critical value is greater or less than e2. If it is greater than e2, then we say
that evolution selects against non-equilibrium and complex dynamics in the sense
that the de-stabilization of the equilibrium occurs for larger values of b than it does
when evolution is absent. If the critical value of b occurs before e2, then we say that
evolution promotes non-equilibrium and complex dynamics.

Darwinian Ricker model equations are derived by evolutionary game theoretic
methods in Sect. 2. The existence and stability (by linearization) of equilibria of
this system of two nonlinear difference equations are studied in Sect. 3. Conclusions
obtained from this analysis with regard to the effect of evolution on non-equilibrium
dynamics are discussed in Sect. 4.

2 A Darwinian Ricker Equation

In the Ricker equation (1) x represents the total size or density of a population
consisting of individual biological organisms. We interpret b as the inherent (i.e.
density free) per capita fertility rate. The coefficient c is a measure of the effect that
increased population density has on the per capita fertility rate, as might be due to
competition with con-specifics for resources (food, space, mates, etc.). We refer to c
as the competition coefficient. We assume that both b and c, as coefficients relating
to an individual’s inherent fertility and susceptibility to intra-specific competition
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respectively, are functions of a phenotypic trait of the individual, denoted by v, that
is subject to evolutionary change over time. Under the axioms ofDarwinian evolution
(trait variability, heritability, and differential trait dependent fitness), the method of
evolutionary game theory [9] provides a dynamic model for the population density
and the population’s mean phenotypic trait, under the assumption that the trait has
a Gaussian distribution with fixed variance throughout the population at all times.
Thus, the distribution of the trait v in the population at any point in time is determined
by the population mean trait, which we denote by u.

In the Ricker equation we assume the fertility rate b is a function of v alone, since
it is the density free fertility rate of an individual with trait v (i.e. not subject to the
presence of other individuals and hence to the population mean u). The competition
coefficient c, on the other hand, we assume is dependent on the individual’s trait v

and that of other individuals with whom it competes, as represented by the mean trait
u. Thus we assume

b = b (v) , c = c (v, u) .

The density dependent fertility rate is then

r (x, v, u) = b (v) exp (−c (v, u) x) . (2)

The Darwinian equations governing both population and mean trait dynamics are

xt+1 = r (xt , v, ut )|v=ut
xt (3)

ut+1 = ut + σ 2 ∂ ln r (xt , v, ut )

∂v

∣
∣
∣
∣
v=ut

(4)

where σ 2 ≥ 0 is called the speed of evolution (it is proportional to the constant
variance of v) [2, 9]. The trait equation (4) says that the change in mean trait is
proportional to the fitness gradient, with fitness taken to be ln r (the equation is often
called Lande’s or Fisher’s equation or the canonical equation of evolution).

To further specify the model, we will place assumptions on b (v) and c (v, u). In
this paper we assume that there is a trait at which inherent fertility has a maximum,
denoted by b0, and we choose that trait to be the reference point for v. We also
assume that fertility b (v) is distributed in a Gaussian fashion around its maximum
b0 v = 0 and, without loss in generality, we scale the trait v so that the variance of
b (v) equals 1:

b (v) = b0 exp

(

−v2

2

)

. (5)

With (2) and this choice for b (v) , the Darwinian equations (3)–(4) become
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xt+1 = b0
(

exp
(

−v

2

)

exp (−c (v, ut ) xt )
)∣
∣
∣
v=ut

xt (6)

ut+1 = ut + σ 2

(

−ut − ∂c (v, ut )

∂v

∣
∣
∣
∣
v=ut

xt

)

. (7)

A common assumption that is made concerning trait dependency of competition
coefficients in Darwinian models is that they are functions of the difference v − u. In
other words, the competition that an individual experiences depends on how different
its trait v is from the typical individual in the population, as represented by the mean
traitu.Wemake this assumptionhere andwrite c = c (v − u)where the function c (z)
is continuously differentiable for all values of its argument z. Under this assumption
equations (6)–(7) become

xt+1 = b0

(

exp

(

−u2
t

2

)

exp (−c (0) xt )

)

xt

ut+1 = ut + σ 2

(

−ut − dc (z)

dz

∣
∣
∣
∣
z=0

xt

)

.

As a final scaling, we assume population units for x are chosen so that c (0) = 1
and obtain the model equations

xt+1 = b0 exp

(

−u2
t

2

)

exp (−xt ) xt (8)

ut+1 = −c1σ
2xt + (

1 − σ 2
)

ut (9)

where

c1 := dc (z)

dz

∣
∣
∣
∣
z=0

.

There are three coefficients in the Eqs. (8)–(9). The coefficient b0 is the maximal
possible fertility rate, as a function of the trait v, and the coefficient σ 2 is the speed
of evolution. The coefficient c1 is the sensitivity of the competition competition c (z)
to changes in the difference z = v − u at when v = u. If c1 �= 0 then c1 measures the
difference between the competition intensities experienced by individuals that have
the population mean trait and those whose traits are slightly different from the mean.
For example, if c1 > 0 then an individual that inherits a trait slightly larger (smaller)
than the mean u will experience increased (decreased) intraspecific competition.
These interpretations can also hold, of course, if c1 = 0 unless c (z) has an extrema
at z = 0. In fact, a common modeling assumption is that maximum competition is
experience by individuals with the population mean trait, in which case c (z) has a
maximum at z = 0 and c1 = 0. A commonly used model for c (z) assumes it has a
Gaussian type distribution
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c (z) = exp

(

− z2

2ω2

)

(10)

(with variance ω2). In contrast, if for example

c (z) = exp (c1z) (11)

then competition intensity either decreases as v decreases or increases from themean
u, depending on the sign of c1. We refer to this type of competition coefficient c (z),
i.e. one for which c1 �= 0 as heirarchical.

3 Equilibria of the Darwinian Ricker

Our goal is the study the existence and stability properties of equilibria of the Dar-
winianRicker equations (8)–(9) using b0 as a bifurcation parameter.We are interested
in equilibria (x, u) with a positive x-component, which we define to be a positive
equilibrium pair. The equations for a positive equilibrium pair are

1 = b0 exp

(

−u2

2

)

exp (−x)

0 = −c1x − u.

If b0 < 1, then one sees from the first equation that there is no positive equilibrium
(x, u) . However, if b0 > 1 then there exists a unique positive equilibrium obtained
from the equations

1 = b0 exp

(

−c21x2

2

)

exp (−x) , u = −c1x (12)

The positive root of
c21x2

2
+ x = ln b0 (13)

yields the formulas for positive equilibria:

(x (b0) , u (b0)) =
⎧

⎨

⎩

(ln b0, 0) if c1 = 0
(

−1+
√

1+2c21 ln b0
c21

,
1−

√
1+2c21 ln b0

c1

)

if c1 �= 0
. (14)

The Jacobian of Eqs. (8)–(9)

J (x, u) =
(

b0e− 1
2 u2

e−x (1 − x) −uxb0e− 1
2 u2

e−x

−c1σ 2 1 − σ 2

)
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evaluated at the positive equilibrium becomes, when Eq. (12) are utilized, is

J (x (b0) , u (b0)) =
(

1 − x (b0) c1x2 (b0)
−c1σ 2 1 − σ 2

)

which by (13), further simplifies to

J (x (b0) , u (b0)) =
(
1 − x (b0)

2
c1

(ln b0 − x (b0))
−c1σ 2 1 − σ 2

)

(15)

Motivated by the question posed in Sect. 1 we are interested in the case when the
positive equilibria are stable for b0 >1, but near 1 and destabilize at some value of
b0 >1. For b0 near 1 the eigenvalues of the Jacobian J (x (b0) , u (b0)) are

λ1 (b0) = 1 − (b0 − 1) + O
(

(b0 − 1)2
)

λ2 (b0) = σ 2 − 1 + O
(

(b0 − 1)2
)

.

It follows by the Linearization Principle that for b0 greater than, but near 1, the
equilibria (x (b0) , u (b0)) are stable if σ 2 < 2 and unstable if σ 2 > 2. Therefore, we
will assume that σ 2 < 2.

For the case c1 = 0 the eigenvalues of this Jacobian are

λ1 = 1 − ln b0 and λ2 = 1 − σ 2

and the destabilization of the positive equilibrium occurs at the same critical value
as does the classic Ricker equation (1).

Theorem 1 Assume c1 = 0 and σ 2 < 2 in the Darwinian Ricker equations (8)–(9).
There exists positive equilibrium for and only for b0 > 1. They are locally asymp-
totically stable if 1 < b0 < e2 and unstable if b0 > e2 . When b0 = e2 the Jacobian
has eigenvalue value −1.

In general when c1 = 0, the trait equation (9) decouples from the population equation
(8) and limt→+∞ ut = 0 under the assumption σ 2 < 2. In this case, the population
equation (8) is asymptotically autonomous and the classic Ricker (1) is its limiting
equation. This fact allows for further analysis of the dynamics of the Darwinian
Rickermodel [1, 6], butwewill not pursue further analysis here .Note that Theorem1
applies when the competition coefficient has the Gaussian form (10).

Consider now the case c1 �= 0. To study the eigenvalues of the Jacobianwe employ
the trace and determinant criteria which imply both eigenvalues have magnitude <1
if and only if the three inequalities

tr J (x, u) < 1 + det J (x, u) (16)

− 1 − det J (x, u) < tr J (x, u) (17)
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det J (x, u) < 1 (18)

all hold [3]. If inequality (16) or (17) become equalities, then the Jacobian has an
eigenvalue equal to +1 or −1 respectively. If inequality (18) becomes an equality,
then the Jacobian has a complex eigenvalue whose absolute value equals 1.

For (15) we have

tr J (x (b0) , u (b0)) = 2 − x (b0) − σ 2 (19)

det J (x (b0) , u (b0)) = (1 − x (b0))
(

1 − σ 2
) + 2σ 2 (ln b0 − x (b0)) . (20)

Lemma 1 Assume c1 �= 0 in the Darwinian Ricker equations (8)–(9). Inequality
(16) holds for all σ 2 and b0 > 1.

Proof Using (19) and (20), it is easy to show that inequality (16) reduces to x (b0) <

2 ln b0. From the Formula (14) and c1 �= 0, this inequality is

−1 +
√

1 + 2c21 ln b0

c21
< 2 ln b0

or
√

1 + 2c21 ln b0 < 1 + 2c21 ln b0, which is clearly true and completes the proof.

Next we turn attention to inequality (17).

Lemma 2 Assume c1 �= 0 and σ 2 < 2 in the Darwinian Ricker equations (8)–(9).

(a) If

σ 2 <
2

1 + 8c21
(21)

then there exist a real b2 > e2 such that inequality (17) holds for b0 satisfying
1 < b0 < b2. Inequality (17) is reversed if b0 is greater than but near b2. The
Jacobian J (x (bn) , u (bn)) has eigenvalue −1.

(b) If

σ 2 >
2

1 + 8c21
(22)

then inequality (17) holds for all b0 > 1.

Proof Using (19) and (20) together with the equilibrium formulas (14), one can
re-arrange inequality (17) to the inequality

(

2 + σ 2)
√

2c21z + 1 < 2 + σ 2 + 2c21
(

2 − σ 2) + 2σ 2c21z

where we have defined
z = ln b0 > 0.
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Since both sides are positive, we can retain the inequality by squaring both sides,
after which we re-arrange the result into an equivalent inequality 0 < q1 (z) where
q1 (z) is the quadratic polynomial

q1 (z) := 2c21
(

2 − σ 2) (

σ 2 + 2 + (

2 − σ 2) c21
)

− c21
(

2 − σ 2
) (

2 + (

1 − 4c21
)

σ 2
)

z + 2σ 4c41z2.

The quadratic q1 (z) has a global minimum

q1 (zc) = 1

8σ 4

(

2 − σ 2
) (

σ 2 + 2
)2 (

1 + 8c21
)
(

σ 2 − 2

1 + 8c21

)

attained at the critical point

zc = 2 − σ 2

4σ 4c21

(

2 + σ 2
(

1 − 4c21
))

.

(a) Inequality (21) implies q1 (zc) < 0 and hence the existence of two real roots of
q1 (z) . Since q1 (0) = 2c21

(

2 − σ 2
) (

2 + σ 2 + (

2 − σ 2
)

c21
)

> 0, it follows that
the two roots are both negative or both positive, depending on whether zc < 0
or zc > 0 respectively. Clearly zc > 0 if 1 − 4c21 ≥ 0. Suppose, on the other

hand, that 1 − 4c21 < 0. Then zc > 0 if and only if σ 2 < 2
(

4c21 − 1
)−1

which

holds by (21) since
(

4c21 − 1
)−1

>
(

1 + 8c21
)−1

. Thus, in this case, q1 (z) has
two positive roots. If we denote the smaller by z2 then 0 < q1 (z) for 0 < z < z2
and q1 (z) changes sign as z increases through z2. Since q1 (z2) = 0 inequality
(17) becomes an equality which means the Jacobian has an eigenvalue of −1.
Finally we need to show that z2 > 2. One way to do this is to show q1 (2) > 0
and q ′

1 (2) < 0.Calculations in fact show q1 (2) = 2c41
(

σ 2 + 2
)2

> 0 and, using
(21),

q ′
1 (2) = c21

(

σ 2 + 2
) (

σ 2 + 4σ 2c21 − 2
)

< −1

2
c21

(

σ 2 + 2
) (

2 − σ 2
)

< 0.

(b) Inequality (22) implies q1 (zc) > 0 and hence q1 (z) > 0 for all z. This completes
the proof.

Finally we consider inequality (18).

Lemma 3 Assume c1 �= 0 and σ 2 < 2 in the Darwinian Ricker equations (8)–(9).
There exists a real bn > exp (1/2) such that inequality (18) holds for 1 < b0 < bn.

The Jacobian J (x (bn) , u (bn)) has a complex eigenvalue of absolute value 1. The
inequality (18) is reversed for b0 > bn.

Proof Inequality (18) can be re-arranged as

σ 2 (2 ln b0 − 1) < x (b0)
(

σ 2 + 1
)
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which is true for 1 < b0 < exp (1/2) . For b0 > exp (1/2) we use the Formula (14)
for x (b0) and re-arrange the inequality as

1 + (2z − 1)
σ 2

(

σ 2 + 1
)c21 <

√

1 + 2c21z

where z = ln b0 > 1/2. Since both sides are positive, we can square them and re-
arrange the inequality to obtain an equivalent inequality

0 < q2 (z) := σ 2
(

2σ 2 − σ 2c21 + 2
) + 2

(−σ 4 + 2σ 4c21 + 1
)

z − 4σ 4c21z2

Since q2 (1/2) = (

σ 2 + 1
)2

> 0, this quadratic polynomial has a unique positive
root zn > 1/2 and q2 (z) > 0 for 1/2 < z < zn. Since q2 (zn) = 0, inequality (18)
becomes an equality,which implies the Jacobianhas a complex eigenvalueof absolute
value 1. This completes the proof.

In Lemma 2(a), the real b2 is equal to exp (z2) where z2 is the smaller of the
positive roots of q1 (z) . When (21) holds.a formula for z2 > 2 is

z2 =
(

2 − σ 2
) (

2 + σ 2 − 4σ 2c21
) − (

σ 2 + 2
)
√

(

2 − σ 2
) (

2 − σ 2 − 8σ 2c21
)

4σ 4c21
(23)

When (21) holds define
b2 := exp (z2) > e2. (24)

In Lemma 2, the real bn is equal to exp (zn) where zn is the unique positive root
>1/2 of q2 (z) . A formula for zn is

zn = 1 − σ 4 + 2σ 4c21 + (

σ 2 + 1
)
√

(

σ 2 − 1
)2 + 4σ 4c21

4σ 4c21
>

1

2
. (25)

Define
bn := exp (zn) > e1/2. (26)

The three Trace-Determinant stability inequalities (16)–(18) for local stability,
together with the three Lemmas 1, 2, and 3, yield the following theorem.

Theorem 2 Assume c1 �= 0 and σ 2 < 2 in the Darwinian Ricker equations (8)–(9)
and let b2 and bn be defined by (24) and (26).

(a) Assume

σ 2 <
2

1 + 8c21
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and define bm = min {b2, bn}. The positive equilibrium (14) is locally asymptot-
ically stable for 1 < b0 < bm and is unstable for b0 greater than but near bm.
If bm = b2 then the Jacobian has an eigenvalue −1 when b0 = bm . If bm = bn

then the Jacobian has a complex eigenvalue of absolute value 1 when b0 = bm.
(b) If

σ 2 >
2

1 + 8c21

then the positive equilibrium (14) is locally asymptotically stable for 1 < b0 <

bn. and unstable for b0 greater than, but near bn. The Jacobian has a complex
eigenvalue of absolute value 1 when b0 = bn.

Note that the denominators in the Formulas (23) and (25) for z2 and zn are identical
and the numerator of z2 vanishes while that of zn equals 2 when σ 2 = 0. Thus, for
σ 2 small it follows that b2 < bn . Theorem 2(a) implies the following corollary.

Corollary 1 Assume c1 �= 0 in the Darwinian Ricker equations (8)–(9). For σ 2

sufficiently small, the destabilization of the positive equilibria occurs at b2 > e2.

For a fixed value of c1 �= 0, sufficiently large values of σ 2 (but less than 2) can
result in destabilization at bn , which can be either greater than or less than e2. Exam-
ples are provided in the next section.

4 Concluding Remarks

It is not our purpose in this paper to rigorously study the nature of the bifurcations in
the Darwinian Ricker equations that occur when the positive equilibrium destabilizes
(i.e. to formally prove that they do result in new invariant sets, what the direction of
bifurcation is, their stability properties, etc.). We focus only on the occurrence of the
destabilization an indicator of the onset of non-equilibrium and complex dynamics.
At the point of bifurcation, the equilibrium is nonhyperbolic and, as a result, the
linearization principle does not hold. This is irrelevant for our purposes here because
it is no concern to us what the stability properties of the equilibrium are at the point
of bifurcation; we are interested only in the fact that there is a change from equilib-
rium stability to instability before and after the bifurcation occurs. With regard to
the type of bifurcation that occurs, i.e. what kind of stable invariant sets replace the
destabilized equilibrium, we do point out in Theorems 1 and 2 what the Jacobian
eigenvalues are at the bifurcation point, specifically where on the complex unit circle
an eigenvalue lies. The reason for this is that this information tells us what kind of
bifurcation we expect to occur. If at destabilization −1 is an eigenvalue of the Jaco-
bian, then one expects a period doubling bifurcation. If the Jacobian has a complex
eigenvalue of absolute value 1, then one expects a Neimark-Sacker bifurcation to an
invariant loop [3].

Theorem 1 implies that when c1 = 0 in the Darwinian Ricker equations (8)–(9)
the positive equilibria destabilize at b0 = e2, which is no different from the non-
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Fig. 1 a The familiar bifurcation diagram for the Ricker equation (1) with c = 1. b The bifurcation
diagram showing the x component of the Darwinian Ricker equations (8)–(9) with c1 = 0 and
σ 2 = 1

evolutionary Ricker equation (1). The destabilization occurs because an eigenvalue
of the Jacobian increases through −1 as b0 increases through e2, which is indicative
of a period doubling bifurcation. This is also no different from the non-evolutionary
Ricker equation. A sample bifurcation diagram appears in Fig. 1b that illustrates this
bifurcation and what is apparently a period doubling route to chaos for the Darwinian
Ricker equations that is identical with the non-evolutionary Ricker equation (Fig. 1a).

On the other hand, if c1 �= 0 then Theorem2 shows that while destabilization
does indeed occur at a critical value of b0 in Darwinian Ricker equations, it does not
necessarily indicate a period doubling bifurcation nor that it occurs at e2, as in the non-
evolutionary Ricker equation. The critical bifurcation point is either b2 > e2 (which
is indicative of a period doubling bifurcation) or bn > e1/2 (which is indicative of a
Neimark-Sacker bifurcation [3]). As stated in Corollary 1 equilibrium destabilization
occurs at b2 when the speed of evolution is not too fast. In fact, b2 can be significantly
larger than e2 and the onset of complexity significantly delayed. Example bifurcation
diagrams appear in Fig. 2.

Another difference between the evolutionary and non-evolutionary Rickermodels
is that destabilization does not necessarily result in period doubling. This occurs (for
larger values of σ 2 and c21) when bm = bn , which is indicative of a Neimark-Sacker
bifurcation. Sample bifurcation diagrams appear in Fig. 3. One example (Fig. 3a) is
when non-equilibrium dynamics are delayed, i.e. bn > e2 and the other (Fig. 3(b)) is
when they are advanced, i.e. bn < e2. In the latter case, one could say evolution has
promoted non-equilibrium and complexity dynamics.

For the Darwinian versions of the Ricker equation considered here, we arrive
at several general conclusions. If c1 = 0 in the trait dependent density coefficient
c(v − u), then there is no change in the destabilization point for the fertility rate b0.
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Fig. 2 The bifurcation diagram showing the x component of the Darwinian Ricker equations (8)–
(9) with a c1 = 0.5 and σ 2 = 0.5 and b c1 = 0.6 and σ 2 = 0.5. The Formulas (24) and (26) for b2
and bn in these two cases yield a b2 ≈ 28.121 < bn ≈ 2304.5 and b b2 ≈ 207.13 < bn ≈ 342.96

Fig. 3 The bifurcation diagram showing the x component of the Darwinian Ricker equations (8)–
(9) with a c1 = 0.8 and σ 2 = 0.8 and b c1 = 2 and σ 2 = 0.8. For these cases, b2 does not exist
and a bn ≈ 8.5253 > e2 ≈ 7.3891 and b bn ≈ 3.0004 < e2



A Darwinian Ricker Equation 243

Both models destabilize in period doubling bifurcations at the same critical value
e2. In this sense, we conclude that evolution has no effect on the onset of non-
equilibrium and complex dynamics. The opposite is true in the case of hierarchical
trait dependent competition coefficients, i.e. when c1 �= 0. In this case the onset of
non-equilibrium and complex dynamics is delayed to a larger critical value of b0
when evolution procedes slowly (i.e. σ 2 is small). In this case, we say that slow
evolution selects against non-equilibrium and complex dynamics. If, on the other
hand, evolution procedes at a faster speed, then there are two differences with the
non-evolutionary Ricker equation, depending the magitude of the density effects, i.e.
the size of c1. First, the onset of non-equilibrium and complex dynamics can lead
not to a period doubling bifurcation, but to a Neimark-Sacker bifurcation. Secondly,
in the latter case, the bifurcation point can be either later or earlier than e2. In the
latter case (and only in this case), which occurs for larger σ 2 and c1 values, we can
conclude that evolution promotes non-equilibrium and complex dynamics.

These conclusions are drawn, of course, on the basis of the specific Darwinian
Ricker equation considered here. To what extent they remain valid for other Dar-
winian equations with complex dynamics awaits further study.
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