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We give a definition of a net reproductive number R0 for periodic matrix models of the type used to
describe the dynamics of a structured population with periodic parameters. The definition is based on the
familiar method of studying a periodic map by means of its (period-length) composite. This composite
has an additive decomposition that permits a generalization of the Cushing–Zhou definition of R0 in the
autonomous case. The value of R0 determines whether the population goes extinct (R0 < 1) or persists
(R0 > 1). We discuss the biological interpretation of this definition and derive formulas for R0 for two
cases: scalar periodic maps of arbitrary period and periodic Leslie models of period 2. We illustrate the use
of the definition by means of several examples and by applications to case studies found in the literature.
We also make some comparisons of this definition of R0 with another definition given recently by Bacaër.

1. Introduction

Matrix models of the form x(t + 1) = Px(t) have been widely used to describe the (discrete)
time dynamics of structured populations since the seminal papers of Lewis [19], Leslie [17,
18] and Lefkovitch [16]. To this day, they continue to be used to address both theoretical and
applied questions concerning biological populations structured by means of an ever increasing
spectrum of classification schemes (chronological age, body size or weight, life cycle stage,
disease stages, gender, genetic characteristics, epidemiological categories, spatial locals, etc.)
[6,10,11]. Matrix models usually have a plethora of class-specific parameters that appear in
the entries of the projection matrix P (survivorships, fertility, growth rates, etc.). There are,
however, two fundamental composite parameters that determine the long-term fate of a population:
the population growth rate r and the net reproductive number R0. (In the case of nonlinear
matrix models with P = P(x), key parameters are the inherent population growth rate and net
reproductive numbers, which are calculated from P(0) [10,11].) The growth rate r is the dominant
eigenvalue of the n × n matrix P . Under the common assumption that P is primitive, r is strictly
dominant. The net reproductive number R0 has a mathematically more complicated definition.
The projection matrix P is additively decomposed into fertility and transition matrices

P = F + T (1)
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and, under suitable assumptions on F and T , the net reproductive number is the dominant eigen-
value of F(I − T )−1 [12] (also see [6,10,11,20]). These two quantities have different biological
interpretations and each has its importance in relation to the study of population dynamics: r

measures the growth or decay rate of (each classification category of) the population, and R0 is
a measure of individual expected lifetime reproduction. Although not obvious at first glance, it
turns out that r and R0 are on the same side of 1 (or are both equal to 1) and, as a result, either
quantity can be used to determine the asymptotic fate of x(t). This fact was proved in [12] and,
under slightly weaker assumptions, in [20].

An interesting fact is that R0 is frequently more analytically tractable than r and often an
explicit formula for R0 in terms of the model parameters appearing in P exists, even for large
matrix models, when there is no such formula for r . See [10,12] for examples. This is due
basically to the fact that in most population models F has low rank, which is in turn due to
the fact that newborns generally lie in only a few categories (indeed, often only one category)
in the classification scheme on which the matrix model is based. Thus, by using R0 one can
often analytically relate the asymptotic dynamics of the matrix model to the model parame-
ters in P in an explicit way. Such formulas permit, e.g., an assessment of population viability
on specific class of parameters and a sensitivity analysis of population viability as measured
by R0.

The definition of R0 given above is for autonomous matrix equations, i.e., when F and T are
constant matrices. This assumes that all population vital rates and parameters are unchanged in
time. In this paper, we give a definition of R0 for the case when F = F(t) and/or T = T (t) (and
hence P = P(t)) are periodic matrices of a common period p, a case that arises when popula-
tion parameters oscillate periodically. Such periodic forcing can arise, e.g., when a population
inhabits a periodically fluctuating (e.g., seasonal) environment. Our approach is mathematically
straightforward in that it uses the standard approach for studying the asymptotic dynamics of
periodic difference equations, which is to study the period composite map. This map is defined
by an autonomous projection matrix the eigenvalues of which determine the population’s asymp-
totic dynamics. This approach is the discrete time analog of Floquet theory for continuous flows.
We are motivated by the ecological studies reported in [1,7,8,14,15] which use periodic matrix
models to account for seasonal periodicities and in which the authors utilize the definition of R0

we give here.
Following Caswell [7] for the period p = 2 case, we show in Section 2 that the coefficient matrix

of the composite map can be additively decomposed in a fashion analogous to Equation (1) in
which reproductive and class transition processes during one period are separated. That is to say,
the composite projection matrix for maps of period p has the form F (p−1) + T (p−1) in which the
terms F (p−1) and T (p−1) account, respectively, for accumulated offspring and all possible class
transitions that occur during a full periodic cycle. Again following Caswell [7], we define R0 as
in [12], namely, as the dominant eigenvalue of F (p−1)(I − T (p−1))−1. We give some illustrative
examples and applications in Sections 4 and 5.

2. A definition of R0 for periodic matrix equations

Let Rn denote n-dimensional Euclidean space and x = col(xi) ∈ Rn be a column vector. Let R̄n+
denote the closure of the positive cone and let Z+ = {0, 1, 2, . . .}. We consider the periodically
forced matrix equation

x(t + 1) = P(t)x(t), t ∈ Z+, (2)



168 J.M. Cushing and A.S. Ackleh

where the n × n projection matrix P(t) satisfies the following conditions:

P(t) = F(t) + T (t), F (t) = (ϕij (t)), T (t) = (τij (t)),

ϕij : Z+ → R̄1
+, τij : Z+ → [0, 1]

ϕij (t + p) = ϕij (t), τij (t + p) = τij (t), t ∈ Z+. (3)

Since the transition matrix T (t) accounts only for survivorship and movement among classes, the
column sums of its entries satisfy [10,12,20]

n∑
ι=1

τij (t) ≤ 1 for t ∈ Z+. (4)

The entries in these matrices have the following interpretations:

ϕij (t) = number of newborns in the i-class at time t + 1 produced by a j -class individual

alive at time t

τij (t) = probability a j -class individual alive at time t is alive and in the i-class at time t + 1.

In this paper, we use the product notation for the multiplication of a sequence of matrices Mt ,
t = 0, . . . , m, defined as follows (note the order of subscripts):

m∏
t=0

Mt = MmMm−1 · · · M1M0.

Using the matrices satisfying the conditions in (3), we define

F (m) �
m∏

t=0

[F(t) + T (t)] −
m∏

t=0

T (t),

T (m) �
m−1∏
t=0

T (t).

In what follows, among the individuals present at time t ≥ 1, we distinguish between original
individuals who were present at time t = 0 and those individuals who were not (and hence were
born at some later time). The latter individuals we call offspring. At t = 1, the offspring of an
original individual consist solely of newborns. At t > 1 the offspring of an original individual
include all of its descendents. Note that F (0) = F(0) and T (0) = T (0) and hence the entries of

F (0) = (ϕ
(0)
ij ) = (ϕij (0)),

T (0) = (τ
(0)
ij ) = (τij (0))

have the interpretations

ϕ
(0)
ij = number of offspring in the i-class at time t = 1 produced by a j -class original individual,

τ
(0)
ij = probability a j -class original individual is alive and in the i-class at time t = 1.
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Lemma 1 Assume P(t) satisfies Equation (3). The entries in F (m) = (ϕ
(m)
ij ) and T (m) = (τ

(m)
ij )

have the following interpretations for m ≥ 0 :
ϕ

(m)
ij = number of offspring in the i-class at time m + 1 descended from a

j -class original individual , (5)

τ
(m)
ij = probability a j -class original individual is alive and in the i-class at time m + 1. (6)

Proof As noted above the interpretations (5)–(6) are correct for m = 0. For purposes of induc-
tion we assume these interpretations are correct for m = q ≥ 1 and prove they are correct for
m = q + 1. Under this induction hypothesis we can write

q∏
t=0

[F(t) + T (t)] = F (q) + T (q),

where the entries of F (q) and T (q) have interpretations (5)–(6). Then for m = q + 1 we have

q+1∏
t=0

[F(t) + T (t)] = [F(q + 1) + T (q + 1)][F (q) + T (q)]

= F(q + 1)F (q) + F(q + 1)T (q) + T (q + 1)F (q) + T (q + 1)T (q)

and hence

F (q+1) = F(q + 1)F (q) + F(q + 1)T (q) + T (q + 1)F (q), (7)

T (q+1) = T (q + 1)T (q). (8)

We account for the offspring (of original individuals) who are alive at time q + 2 in three ways:

(i) newborns produced by offspring alive at time q + 1,
(ii) newborns produced by original individuals alive at time q + 1,

(iii) offspring alive at q + 1 who survive to time q + 2.

This bookkeeping procedure produces the three additive terms in the formula (7) for the matrix
F (q+1) = (ϕ

(q+1)

ij ) the entries of which are

ϕ
(q+1)

ij =
n∑

k=1

ϕik(q + 1)ϕ
(q)

kj +
n∑

k=1

ϕik(q + 1)τ
(q)

kj +
n∑

k=1

τik(q + 1)ϕ
(q)

kj . (9)

To see this we look at each sum in detail.

(i) If we sum the quantities

ϕik(q + 1)ϕ
(q)

kj = number of newborns in the i-class at time q + 2 produced by a k-class

individual alive at time q + 1 multiplied by the number of offspring in

the k-class at time q + 1 descended from a j -class original individual

= number of newborns in the i-class at time q + 2 produced by those

descendents of a j -class original individual in the k-class at time q + 1
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over all classes k, we obtain

n∑
k=1

ϕik(q + 1)ϕ
(q)

kj = number of newborns in the i-class at time q + 2 produced by

descendents of a j -class original individual and alive at time q + 1.

(10)

(ii) If we sum the quantities

ϕik(q + 1)τ
(q)

kj = number of newborns in the i-class at time q + 2 produced by a k-class

individual alive at time q + 1 multiplied by the probability that a

j -class original individual is alive and in the k-class at time q + 1

= number of newborns in the i-class at time q + 2 produced by a

j -class original individual who is in the k-class at time q + 1

over all classes k, we obtain

n∑
k=1

ϕik(q + 1)τ
(q)

kj = number of newborns in the i-class at time q + 2 produced by a

j -class original individual who is alive at time q + 1. (11)

(iii) Finally, if we sum the quantities

τik(q + 1)ϕ
(q)

kj = probability a k-class individual alive at time q + 1 is alive and in the

i-class at time q + 2 multiplied by the number of offspring in the

k-class at time q + 1 descended from a j -class original individual

= number of descendents of a j -class original individual who are in the

k-class at time q + 1 and who are in the i-class at time q + 2

over all classes k, we obtain

n∑
k=1

τik(q + 1)ϕ
(q)

kj = number of descendents of a j -class original individual who are

in the i-class at time q + 2. (12)

The sum of the three quantities (10)–(12) gives the total number of i-class offspring alive at
time q + 2 descended from a j -class original individual. Thus, we find from formula (9) that the
interpretation (5) holds at m = q + 1. This completes the induction step for interpretation (5).
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To validate the induction step for interpretation (6), see from formula (8) that the entries in the
matrix T (q+1) = (τ

(q+1)

ij ) are

τ
(q+1)

ij =
(

n∑
k=1

τik(q + 1)τ
(q)

kj

)
.

If we sum the quantities

τik(q + 1)τ
(q)

kj = probability a k-class individual alive at time q + 1 is alive and in the i-class

at time q + 2 multiplied by the probability that a j -class original individual

is alive and in the k-class at time t = q + 1

= probability a j -class original individual, who is in the k-class at time q + 1,

is alive and in the i-class at time q + 2

over all classes k, we obtain
n∑

k=1

τik(q + 1)τ
(q)

kj = probability a j -class original individual is alive and in the

i-class at time q + 2,

that is to say, interpretation (6) holds for m = q + 1. This completes the induction step. �

The analysis summarized in Lemma 1 was carried out from time t = 0 to m + 1. If we apply
this result with m = p − 1 to the periodic matrix model (2)–(3), the entries in F (p−1) and T (p−1)

have the interpretations

ϕ
(p−1)

ij = number of offspring in the i-class at time p descended from a

j -class original individual,

τ
(p−1)

ij = probability a j -class original individual is alive and in the i-class at time p.

Since the entries in the projection matrix of Equation (2) are p-periodic, we can carry out an
equivalent analysis with similar results and interpretations from time t = p to t = 2p or indeed
over any interval of time with length p.

Corollary 1 For the periodic matrix model (2)–(3), the entries of the matrices F (p−1) =
(ϕ

(p−1)

ij ) and T (p) = (τ
(p−1)

ij ) have the following interpretations:
ϕ

(p−1)

ij = for a j -class individual, this is the number of its descendants who are in the

i-class after one period of time has elapsed

τ
(p−1)

ij = probability an individual in the j -class is alive and in the i-class after one period

of time has elapsed.

Another way in which the quantity ϕ
(p−1)

ij could be described in more succinct language is

ϕ
(p−1)

ij = number of i-class descendants produced by a j -class individual per period.

As is well known, the asymptotic dynamics of periodic matrix equations (2) can be determined
from the asymptotic dynamics of the autonomous equation obtained from the (p − 1)-composite
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of the equation. This autonomous equation has a coefficient matrix
∏p−1

t=0 P(t), which by
Corollary 1, has the additive decomposition

p−1∏
t=0

P(t) = F (p−1) + T (p−1) (13)

into a fertility matrix F (p−1) and a transition matrix T (p−1) (just as does the projection matrix
P(t) at each point in time t). We will use this decomposition to define R0 for the periodic matrix
equation (2).

For an n × n matrix M , let the spectral radius ρ[M] denote the maximum of the absolute values
of its eigenvalues. We make the following assumptions:

p−1∏
t=0

P(t) =
p−1∏
t=0

(F (t) + T (t)) is irreducible, (14a)

ρ

[
p−1∏
t=0

T (t)

]
< 1. (14b)

The inequalities (4) on T (t) imply that the entries in
∏p−1

t=0 T (t) also satisfies those same inequal-

ities. Those inequalities in turn imply ρ
[∏p−1

t=0 T (t)
]

≤ 1 but they are not sufficient for the strict

inequality (14b). The assumption (14b) is needed for Theorem 1 below. Biologically it means that
an individual has a finite expected life span.

As a generalization of the definitions of r and R0 for the autonomous case p = 1, we make the
following definitions for the general periodic case.

Definition 1 Assume that the matrix P(t) = F(t) + T (t) satisfies the properties in (3) and
(14a,b). We define the net reproductive number R0 and the population growth rate r as

R0 � ρ[F (p−1)(I − T (p−1))−1], r � ρ

[
p−1∏
t=0

P(t)

]
,

where

F (p−1) =
p−1∏
t=0

P(t) −
p−1∏
t=0

T (t), T (p−1) =
p−1∏
t=0

T (t).

Alternatively, we can write

R0 = ρ

⎡
⎣(

p−1∏
t=0

(F (t) + T (t)) −
p−1∏
t=0

T (t)

) (
I −

p−1∏
t=0

T (t)

)−1
⎤
⎦. (15)

The asymptotic dynamics of the periodic matrix model (2) and (3) are determined by r. The
extinction equilibrium x = 0 is (globally asymptotically) stable if r < 1 and is unstable if r > 1
(in fact, the equation is uniformly persistent with respect to x = 0). Alternatively, the dynamics
can also be determined by R0 under appropriate assumptions. Specifically, under the assumptions
(14) we have all the conditions necessary for an application of Cushing–Zhou Theorem to the
matrix

∏p−1
t=0 P(t) = F (p−1) + T (p−1) [10,12] (see in particular Theorem 3.3 in [20]).
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Theorem 1 Assume the periodic projection matrix P(t) satisfies Equations (3) and (14). Let r

and R0 be given as in Definition 1. Then

r < 1 ⇐⇒ R0 < 1, r > 1 ⇐⇒ R0 > 1, r = 1 ⇐⇒ R0 = 1.

Remark 1 The assumptions on the composite matrix
∏p−1

t=0 P(t) in (14a,b) are satisfied if those
assumptions are satisfied at each time t , i.e., if

P(t) is irreducible and ρ[T (t)] < 1 for each t = 0, 1, . . . , p − 1.

3. Biological interpretation of R0

From Corollary 1, it follows that the entries in the matrix (I − T (p−1))−1 = (e
(p−1)

ij ) are

e
(p−1)

ij = life time expected number of periods a j -class original individual will begin

a period in the i-class

and the entries in the matrix defining R0

F (p−1)(I − T (p−1))−1 = (R
(p−1)

ij )

are

R
(p−1)

ij =
n∑

k=1

ϕ
(p−1)

ik e
(p−1)

kj .

If we sum the quantities

ϕ
(p−1)

ik e
(p−1)

kj = number of i-class offspring produced per k-class individual per period

multiplied by the life time expected number of periods a j -class original

individual will begin a period in the k-class

= life time expected number of i-class offspring, per period, of a j -class

original individual, calculated over those periods when the j -class individual

is in the k-class at the start of the period

over all k classes, we obtain

R
(p−1)

ij = life time expected number of i-class offspring, per period, of a

j -class original individual.

In what follows, we use the vector norm

‖x‖ =
m∑

i=1

|xi |.

For the autonomous (period p = 1) case, R0 in Definition 1 is the dominant eigenvalue of
F(I − T )−1 where F = F(0), T = T (0). A newborn class is represented in F by those rows
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that do not consist entirely of zeroes. If there are � ≤ n newborn classes and if we index these
classes first (i.e., the newborn classes are classes i = 1, 2, . . . , �), then

F(I − T )−1 =
(

R(0) S

0 0

)
,

where R(0) = (R
(0)
ij ) is an � × � non-negative matrix and S is an � × (n − �) non-negative matrix.

(The zero matrices appearing in this block matrix have appropriate dimensions.) The dominant
eigenvalue R0 of F(I − T )−1 is the dominant eigenvalue of R(0). If v(0) ∈ R�+ is a distribution
of newborns, then ‖R(0)v(0)‖ is the total expected number of newborns from all classes, and
‖R(0)v(0)‖/‖v(0)‖ is the per capita expected number of newborns, produced by the distribution
v(0). If we choose v(0) to be an eigenvector of R(0), then ‖R(0)v(0)‖/‖v(0)‖ = R0. Note that
v = col(v(0), 0), 0 ∈ Rn−�, is an eigenvector of F(I − T )−1 associated with R0 which consists
solely of individuals from the newborn classes. It follows, when p = 1, that R0 is the per capita
expected number of newborns produced by a distribution of newborns equal to an eigenvector of
F(I − T )−1.

Analogous reasoning with F and T replaced by F (p−1) and T (p−1) shows that for arbitrary
period R0 is the per capita expected number of offspring produced (per period) by a distribution
of offspring equal to an eigenvector of F (p−1)(I − T (p−1))−1.

Remark 2 Another interpretation of R0 is obtained from the formula

ρ[M] = max
x∈Rn+‖x‖=1

min
xi>0

(Mx)i

xi

for the spectral radius ρ[M] of a nonnegative, irreducible matrix M [5]. Applying this to M =
F (p−1)(I − T (p−1))−1, we have

R0 = max
x∈R̄n+,‖x‖=1

min
xi>0

�n
j=1R

(p−1)

ij xj

xi

and we obtain the following:

R0 = max
x∈R̄n+,‖x‖=1

min
xi>0

(expected number of i-class offspring, per period,

from the distribution x = col(xi) relative to the number of

i-class individuals in the distribution). (16)

If, after one period of time, no distribution x of individuals can produce offspring in class k, then
the kth row in F (p−1), and hence in F (p−1)(I − T (p−1))−1, will consists entirely of zeros. If a
distribution x is chosen with xk > 0 in formula (16), then since �n

j=1R
(p−1)

kj xj = 0 the minimum
will be zero for such a distribution. This means in the formula (16) for R0 one need consider only
distributions x which consist of classes that can produce offspring alive at the end of the period.

Remark 3 If those classes that can contain offspring after one period are indexed by
i = 1, 2, . . . , � then

F (p−1)(I − T (p−1))−1 =
(

R(p−1) S

0 0

)
,

where R(p−1) = (R
(p−1)

ij ) is an � × � non-negative matrix and S is an � × (n − �) non-negative
matrix. R0 is the dominant eigenvalue of R(p−1). If � is significantly smaller than n, then the
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calculation of R0 becomes more tractable because of the smaller dimension of R(p−1). This is the
source of the well-known tractability of R0 in the autonomous case (p = 1) when the number of
newborn classes is small. A classic example is the autonomous Leslie age-structured model for
which � = 1 and R0 is simply the upper left corner entry in F(I − T )−1. In a periodic matrix
model, if the number of classes in which offspring produced after one period can belong is less
than the total number n of classes, then there is some simplification in calculating R0 due to the
reduced dimension of R(p−1). This might not be the case, however, even for periodic models in
which newborns always lie in one class. See Section 4.2 for examples involving periodic Leslie
models. If the period is long compared with n then the likelihood of a drop in dimension in R(p−1),
and an accompanying gain in analytic simplification in the calculation of R0, is reduced.

4. Examples

We give two examples to illustrate the calculation of R0 for periodic models using the formula
(15). In both cases, the general n = 1 dimensional case and the general Leslie age-structured
model, we provide an analytic formula for R0 in terms of the demographic parameters in the
projection matrix P(t).

4.1. Periodic scalar equations

For the scalar (n = 1) periodic equation

x(t + 1) = (ϕ(t) + τ(t))x(t), (17)

Definition 1 gives

R0 =
(

p−1∏
t=0

(ϕt + τt ) −
p−1∏
t=0

τt

) (
1 −

p−1∏
t=0

τt

)−1

. (18)

Here, for notational convenience, we have defined

ϕt � ϕ(t), τt � τ(t).

The first factor in this formula for R0 counts the number of offspring acquired during a period
(see formula (7)). The second factor is the expected number of periods in the life of an individual
(i.e., newborns, since there is only one newborn class in this case). The interpretation of R0 is

R0 = life time expected number of offspring per period per individual. (19)

To illustrate a use of the formula for R0, we give a toy application.

Example 1 We can use the period p = 2 case for equation (17) to investigate the dynamics of
a population exposed periodically to good and bad seasons. We term the second season as “bad”
in the sense that fertility ϕ1 during that season is equal to or near 0 (relative to the good season
fertility ϕ0 > 0). We suppose the population has a capability, by re-allocating available resources,
to increase fertility ϕ1 during the bad season, but only at the expense of decreasing survivorship
τ1 during the bad season. The question we ask is: what strategy should the population take so as
to increase R0? Should it increase or decrease fertility during the bad season?

We model the bad season fertility/survivorship trade-off by setting τ1 = τ1(ϕ1) where τ1(·) is a
continuously differentiable, positive valued, and decreasing function defined on an open interval



176 J.M. Cushing and A.S. Ackleh

containing 0 with τ1(0) < 1. Holding all other parameter values fixed, we treat R0 = R0(ϕ1) as a
function of bad season fertility ϕ1. We are interested in the sign of the derivative R′

0(ϕ1) (i.e., the
sensitivity of R0 with respect to ϕ1) for small values of ϕ1 � 0. If this sensitivity is positive, then
the population should increase its fertility ϕ1 during the bad season (at the expense of a lower
survivorship). If the sensitivity is negative, then it should not.

Since p = 2, from the formula (18) we have

R0(ϕ1) = ϕ1ϕ0 + ϕ1τ0 + τ1(ϕ1)ϕ0

1 − τ1(ϕ1)τ0
, R0(0) = ϕ0τ1(0)

1 − τ0τ1(0)
,

R′
0(0) = (1 − τ1(0)τ0)(τ0 + ϕ0) + ϕ0τ

′
1(0)

(1 − τ1(0)τ0)2
.

Thus, the sensitivity of R0 to ϕ1 at ϕ1 = 0 is dependent on τ1. Specifically,

R′
0(0) > 0 if τ ′

1(0) > −τ ∗,

R′
0(0) < 0 if τ ′

1(0) < −τ ∗,

where the threshold −τ ∗ is defined by

τ ∗ � 1 − τ1(0)τ0

ϕ0
(τ0 + ϕ0) > 0.

The conclusion is that, in order to increase R0, the population should increase (low values
of) bad season fertility ϕ1, at the expense of decreased bad season survivorship τ1, provided the
sensitivity of τ1 to ϕ1 is not too large (i.e., |τ ′

1(0)| < τ ∗). Otherwise, it should decrease fertility
in favour of survivorship during the bad season.

As a final observation from formula (18) we note for the scalar equation (17) the net reproductive
number R0 and the population growth rate r bear a linear relationship:

R0 =
(

r −
p−1∏
t=0

τt

) (
1 −

p−1∏
t=0

τt

)−1

.

4.2. Periodic Leslie models

The standard Leslie matrix model for the dynamics of an age structured population has a projection
matrix P = F + T of the form

F =

⎛
⎜⎜⎜⎜⎜⎝

ϕ11 ϕ12 · · · ϕ1,n−1 ϕ1n

0 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...

0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎠ , T =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0
τ21 0 · · · 0 0
0 τ32 · · · 0 0
...

...
...

...

0 0 · · · τn,n−1 0

⎞
⎟⎟⎟⎟⎟⎠.

We consider a p = 2 periodic Leslie matrix for a population that experiences two “seasons” of
length 1 during a “year” of length 2. The age-specific fertilities and survivorships in the Leslie
projection matrix are allowed to vary from season to season. For notation convenience, we denote
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the two seasonal fertility and transition matrices by

F(0) =

⎛
⎜⎜⎜⎜⎜⎝

f1 f2 · · · fn−1 fn

0 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...

0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎠, F (1) =

⎛
⎜⎜⎜⎜⎜⎝

φ1 φ2 · · · φn−1 φn

0 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...

0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎠,

T (0) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0
s1 0 · · · 0 0
0 s2 · · · 0 0
...

...
...

...

0 0 · · · sn−1 0

⎞
⎟⎟⎟⎟⎟⎠, T (1) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0
σ1 0 · · · 0 0
0 σ2 · · · 0 0
...

...
...

...

0 0 · · · σn−1 0

⎞
⎟⎟⎟⎟⎟⎠

in which the seasons are distinguished by Latin and Greek letters, respectively. For this p = 2
periodic case, R0 is the dominant eigenvalue of the upper left 2 × 2 sub-matrix Q of the n × n

matrix

((F (1) + T (1))(F (0) + T (0)) − T (1)T (0))(I − T (1)T (0))−1.

For example, in the n = 3 dimensional case this matrix is

((F (1) + T (1))(F (0) + T (0)) − T (1)T (0))(I − T (1)T (0))−1

=
⎛
⎝φ2s1 + φ1(f1 + s1σ2f3) s2φ3 + φ1f2 φ1f3

σ1(f1 + s1σ2f3) σ1f2 σ1f3

0 0 0

⎞
⎠

and R0 is the dominant eigenvalue of the sub-matrix

Q =
(

φ2s1 + φ1(f1 + s1σ2f3) s2φ3 + φ1f2

σ1(f1 + s1σ2f3) σ1f2

)
. (20)

By an induction argument, one can show that in general the entries in the matrix Q = (qij ) are,
for even n,

q11 =
n/2∑
i=1

⎛
⎝ i∏

j=1

s2j−1

i∏
k=1

σ2k−2

⎞
⎠ φ2i + φ1

⎛
⎝f1 +

n/2∑
i=2

⎛
⎝i−1∏

j=1

s2j−1

i∏
k=1

σ2k−2

⎞
⎠ f2i−1

⎞
⎠ ,

q12 = σ−1
1

⎛
⎝ n/2∑

i=2

⎛
⎝i−1∏

j=1

s2j

i−2∏
k=1

σ2k−1

⎞
⎠ φ2i−1 + φ1

n/2∑
i=1

⎛
⎝ i∏

j=1

s2j−2

i∏
k=1

σ2k−1

⎞
⎠ f2i

⎞
⎠ ,

q21 = σ1

⎛
⎝f1 +

n/2∑
i=2

⎛
⎝i−1∏

j=1

s2j−1

i∏
k=1

σ2k−2

⎞
⎠ f2i−1

⎞
⎠ ,

q22 =
n/2∑
i=1

⎛
⎝ i∏

j=1

s2j−2

i∏
k=1

σ2k−1

⎞
⎠ f2i
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and for odd n are

q11 =
n−1∑
i=1

⎛
⎝ i∏

j=1

s2j−1

i∏
k=1

σ2k−2

⎞
⎠ φ2i + φ1

⎛
⎝f1 +

(n+1)/2∑
i=2

⎛
⎝i−2∏

j=1

s2j−1

i∏
k=1

σ2k−2

⎞
⎠ f2i−1

⎞
⎠ ,

q12 = σ−1
1

⎛
⎝(n+1)/2∑

i=2

⎛
⎝i−1∏

j=1

s2j

i−2∏
k=1

σ2k−1

⎞
⎠ φ2i−1 + φ1

(n−1)/2∑
i=1

⎛
⎝ i∏

j=1

s2j−2

i∏
k=1

σ2k−1

⎞
⎠ f2i

⎞
⎠ ,

q21 = σ1

⎛
⎝f1 +

(n+1)/2∑
i=2

⎛
⎝i−2∏

j=1

s2j−1

i∏
k=1

σ2k−2

⎞
⎠ f2i−1

⎞
⎠ ,

q22 =
(n−1)/2∑

i=1

⎛
⎝ i∏

j=1

s2j−2

i∏
k=1

σ2k−1

⎞
⎠ f2i ,

where for convenience σ0 = τ0 = 1. While complicated, these formulas defining Q provide
a formula

R0 = 1
2 (q11 + q22 +

√
(q11 − q22)2 + 4q21q12) (21)

that explicitly relates R0 to the age-specific fertilities and survivorships during each season.
It thus provides a way to study the effect that changes in any specific demographic parameter in
the projection matrices for either season have on R0. For example, one can calculate derivatives
(sensitivities) of R0 with respect to any of the entries in the fertility and/or transition matrices at
either season. We give an example that utilizes such a use of these formulas for a size n = 3 Leslie
matrix. This example investigates the same question as that in Example 1, but for a population
with a juvenile and adult structure.

Example 2 We use the matrix Q given by formula (20) to calculate R0 for a 3 × 3 Leslie
matrix of period p = 2 in the following environmental and biological context. We view the
periodicity in the model as accounting for two seasons (lasting one unit of time each), a
“good” season and a “bad” season. The population has a juvenile stage the length of which
is one season (thus f1 = φ1 = 0) and an adult stage that lasts two seasons (a “year”), so that
f2 = f3 = f > 0 and φ2 = φ3 = φ > 0. We assume that normally in the bad season survivor-
ships and adult fertility are reduced by a factor w0, 0 < w0 < 1, so φ = w0f and σi = w0si where
0 < w0 < 1.

The question we consider is the following. Suppose adults have an option to re-allocate the
resources that are available during the bad season to increase fertility at the cost of decreased
survivorship (or vice versa). What strategy should the adults adopt in order to increase R0? We
model this trade-off by setting

φ2 = wf, φ3 = wf,

σ1 = w0s1, σ2 = w0

1 − w0
(1 − w)s2,

where the strategy w to be adopted satisfies 0 < w < 1. The periodic matrix model setup is then

F(0) =
⎛
⎝0 f f

0 0 0
0 0 0

⎞
⎠, F (1) =

⎛
⎝0 wf wf

0 0 0
0 0 0

⎞
⎠,
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T (0) =
⎛
⎝0 0 0

s1 0 0
0 s2 0

⎞
⎠, T (1) =

⎛
⎜⎝

0 0 0
w0s1 0 0

0
w0

1 − w0
(1 − w)s2 0

⎞
⎟⎠.

If w = w0, then we have the baseline situation described above. If, on the other hand, w > w0

then in bad seasons adult fertility increases while survivorship decreases. The opposite holds if
w < w0. We consider strategies near w = w0 and use the formula derivable from the matrix (20)
for R0 = R0(w) to calculate R′

0(w) at w = w0.
The derivative of the dominant eigenvalue

R0(w) = 1

2
s1f

⎛
⎝w + w0 +

√
(w − w0)2 + 4w2

0

1 − w0
s2

2w(1 − w)

⎞
⎠

of

Q =
⎛
⎝ ws1f ws2f

w2
0

1 − w0
(1 − w)s2

1s2f w0s1f

⎞
⎠

with respect to w equals, when evaluated at w = w0, is

R′
0(w0) = f s1

1 − w0
(s2

√
w0(1 − 2w0) + 1 − w0).

The sign of this derivative is that of the second factor. An investigation of the second factor shows

R′
0(w0) < 0 if w0 >

1

2
and s2 > s∗

2 � 1 − w0

(2w0 − 1)
√

w0

R′
0(w0) > 0 if w0 < 1

2 or s2 < s∗
2 .

In other words, if the decreases in baseline adult fertility and survivorship in bad seasons are
not high (w0 > 1

2 ) and adult survivorship in good seasons is sufficiently high (s2 > s∗
2 ), then

the adult population should adopt a strategy that decreases fertility and increases survivorship
during bad seasons (i.e. decrease w). On the other hand, in the opposite case – when decreases
in baseline vital adult rates in bad seasons are high (w0 < 1

2 ) or adult survivorship in good
seasons is low (s2 < s∗

2 ) – then the adult population should adopt the opposite strategy in bad
seasons, namely, adults should increase fertility at the expense of decreased survivorship. Note that
these conclusions are not dependent on the good season fertility rate f nor juvenile survivorship
rate s1.

As a final observation concerning periodic Leslie matrices, we point out that for periods p ≥ n + 1
it follows that R0 = r. This is because

∏p−1
t=0 T (t) = 0 for T (t) in a Leslie matrix and hence

(
p−1∏
t=0

(F (t) + T (t)) −
p−1∏
t=0

T (t)

) (
I −

p−1∏
t=0

T (t)

)−1

=
p−1∏
t=0

(F (t) + T (t)).

By Definition 1, R0 is the dominant eigenvalue of the matrix on the left-hand side and r is the
dominant eigenvalue of the matrix on the right-hand side of this equation. In fact, this observation
holds for any matrix model in which T (t) has zeros on and above (or below) the diagonal.
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5. Applications

We illustrate the calculation of R0 for two case study applications that involved periodic
projection matrices.

5.1. Green treefrog dynamics

In [2], a discrete time model was developed to describe the seasonal population dynamics of the
urban green treefrog Hyla cinerea. In this model, the population is divided into three life-cycle
stages: tadpoles, nonbreeders (sexually immature frogs) and adult breeders (sexually mature
frogs). The time unit is equal to one week, which is appropriate for comparison with the field
data given in [2,22]. Accordingly, the tadpole stage is further split into five age classes each of
which is one week long (it takes approximately five weeks for a tadpole to metamorphose). The
nonbreeder stage is divided into 52 age classes ni (it takes approximately one year for a frog to
become sexually mature). The demographic state vector x(t) for the matrix model lies in R̄58+ .
The 58 × 58 projection matrix P(t) = F(t) + T has period p = 52 (one year). In this model, the
transition matrix is constant and its only nonzero entries are τi+1,i and τ58,58. The only nonzero
entry in the fertility matrix F(t) = (ϕij (t)) is the adult birth rate ϕ1,58(t) which was estimated
from field calling data (see blue line in Figure 4 in [2]).

By Definition 1 the net reproductive number for this model (an extended Leslie matrix
model) is

R0 = ρ

[(
51∏
t=0

(F (t) + T ) − T 52

)
(I − T 52)−1

]
.

Because of the large size of the matrices and the long period, an analytic formula for R0 is not
readily available. For parameter estimates given in [2], namely for survival rates

τi+1,i = 0.6111 for i = 1 to 5 (tadpoles),

τi+1,i = 0.9999 for i = 6 to 57 (nonbreeders),

τ58,58 = 0.9203 (adults),

we numerically calculate R0 ≈ 3.8279.
The matrix model derived and studied in [2] is nonlinear. This is because survival rates in that

model are assumed to be density-dependent. The value of R0 we calculated here is the inherent
net reproductive number, i.e., is calculated under the assumption of low (technically 0) population
densities. This relates to the nonlinear model in the following way. A fundamental theorem for
autonomous nonlinear matrix models states that the extinction equilibrium loses stability as R0

increases through 1 and that the population is uniformly persistent for R0 > 1 [10,11]. (Moreover,
non-extinction equilibria bifurcate from the extinction equilibrium at R0 = 1.) This fundamental
theorem is also valid for nonlinear, periodically forced matrix models [9,13]. Therefore, R0 > 1
in the nonlinear model of [2] implies that the green treefrog population in that field study [2]
is persistent.

5.2. A size-structured model for a soft coral

McFadden [21] used a periodic matrix model to study the dynamics of an intertidal soft coral
(Alcyonium sp.). There are four colony size classes and a larval class in this 5 × 5 periodic matrix
model which has period p = 2 to account for seasonal variations. McFadden estimated parameter
values from field data and studied several variants of the model in order to investigate differing
scenarios relating to the presence or absence of either sexual or clonal reproduction. In this same
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spirit, we will illustrate the calculation of R0 for this periodic model in the case when clonal
reproduction is absent. Using the data from Table 2 and Figure 6 (Tatoosh Island, site T2) in [21]
we obtain the following matrices

F(0) =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠, F (1) =

⎛
⎜⎜⎜⎜⎝

0 0.06 0.16 0.17 2.99
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠,

T (0) =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0.0070 0.39 0.30 0.01 0

0 0.15 0.30 0.17 0.03
0 0.01 0.16 0.36 0.26
0 0 0.12 0.19 0.14

⎞
⎟⎟⎟⎟⎠, T (1) =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0.68 0.02 0 0
0 0.23 0.67 0.04 0
0 0.02 0.31 0.39 0.09
0 0.04 0 0.25 0.43

⎞
⎟⎟⎟⎟⎠.

From formula (15) with p = 2 we calculate that R0 = 4.9414 × 10−3 < 1. This indicates the
lack of persistence of the coral population in the absence of clonal reproduction (all other factors
remaining unchanged).

6. Some concluding remarks

In Sections 2 and 3 we considered a definition of R0 for a periodically forced matrix equation (2)
based on its composite map (Floquet theory for periodic maps). This definition was utilized
in several applications of matrix models to structured populations in a seasonally fluctuating
environment [1,7,8,14,15] and our main goal in this paper was to develop the general theory and
investigate the properties of this particular definition of R0.

We show that the projection matrix of the composite map has an additive decomposition (13) into
a fertility matrix plus a transition matrix. The composite of a periodic map defines an autonomous
map, which leads to a definition of R0 based on this decomposition as given in [12] for autonomous
matrix equations. It follows from results in [12] (also see [10,11,20]) that this R0 determines the
asymptotic properties of solutions of the periodic matrix equation, i.e., R0 and r are on the same
side of 1 (where r is the dominant eigenvalue of the composite projection matrix). This fact implies
that R0 is also useful in the study of nonlinear periodic matrix equations with P = P(t, x). The
linearization principle applied at the extinction equilibriumx = 0 yields a periodic matrix equation
with projection matrix P(t, 0) the stability properties of which are determined by R0. Moreover,
R0 as defined in Definition 1 arises as a natural parameter to use in a bifurcation analysis of
non-extinction (positive) periodic solutions that occurs at R0 = 1 where the extinction state loses
stability [9,13].

As a measure of reproductive output we saw that the number R0 defined by Definition 1 can be
interpreted as the per capita expected number of offspring (per period) of individuals from a certain
(eigenvector) distribution of newborns. Other measures of reproductive output for populations
modelled by periodic matrix equations are possible. Bacaër [3] defines R0 for a periodic matrix
model (2) to be the dominant eigenvalue ρ[B] of the np × np matrix B = 
N−1 where


 =

⎛
⎜⎜⎜⎝
F(0) 0 · · · 0

0 F(1) · · · 0
...

...
...

0 0 · · · F(p − 1)

⎞
⎟⎟⎟⎠, N =

⎛
⎜⎜⎜⎜⎜⎝

−T (0) I 0 · · · 0
0 −T (1) I · · · 0
...

...
...

...

0 0 0 · · · I

I 0 0 · · · −T (p − 1)

⎞
⎟⎟⎟⎟⎟⎠.

(22)
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Several properties and interpretations of this R0 are given in [3,4]: it is the spectral radius of a next
generation matrix, a measure of the control effort, and the asymptotic per generation growth rate.
Furthermore, it is shown in [3] that R0 lies on the same side of 1 as r and therefore determines
the stability of the matrix equation (2). This definition of R0 and that given in Definition 1 are
sometimes, but not always, equal. This can be seen from examples in Section 4. For the scalar
case n = 1 with period p = 2, Definition 1 gives

R0 = (ϕ1ϕ0 + ϕ1τ0 + τ1ϕ0)
1

1 − τ1τ0

and the dominant eigenvalue of B is

R0 = 1

2
[τ0ϕ1 + τ1ϕ0 + ((τ0ϕ1 + τ1ϕ0)

2 + 4ϕ1ϕ0(1 − τ1τ0))
1/2] 1

1 − τ1τ0
.

It is not difficult to see that these are identical if and only if ϕ1ϕ0 = 0, i.e., if and only if at one
point in time during a period the population is infertile (otherwise the latter is closer to 1 than is
the former). For the period p = 3 case Definition 1 gives

R0 = 1

1 − τ2τ1τ0
(ϕ2ϕ1ϕ0 + ϕ2τ1τ0 + τ2ϕ1τ0 + τ2τ1ϕ0 + ϕ2ϕ1τ0 + ϕ2τ1ϕ0 + τ2ϕ1ϕ0).

A formula for the dominant eigenvalue R0 of

B = 1

1 − τ2τ1τ0

⎛
⎝τ2τ1ϕ0 τ2ϕ0 ϕ0

ϕ1 τ2ϕ1τ0 ϕ1τ0

ϕ2τ1 ϕ2 ϕ2τ1τ0

⎞
⎠

is not as conveniently tractable, although we can see, by examining some special cases, that under
some conditions the two definitions of R0 are identical and that under other conditions they are
not. For example, if the population is infertile during the last two steps of the period, i.e., if
ϕ1 = ϕ2 = 0, then both equal

R0 = τ2τ1ϕ0

1 − τ2τ1τ0
.

If, on the other hand, the population is infertile during only the last step of the period, i.e., if
ϕ2 = 0 and ϕ0ϕ1 > 0, then the two definitions (Definition 1 and Bacaër’s) give, respectively

R0 = 1

1 − τ2τ1τ0
(τ2ϕ1τ0 + τ2τ1ϕ0 + τ2ϕ1ϕ0),

R0 = 1

1 − τ2τ1τ0

1

2
[τ2ϕ1τ0 + τ2τ1ϕ0 + ((τ2ϕ1τ0 + τ2τ1ϕ0)

2 + 4τ2ϕ1ϕ0(1 − τ2τ1τ0))
1/2].

Straightforward algebraic manipulations show that these quantities are not identical (and the latter
is closer to 1 than is the former).

Similar comparative conclusions hold for structured models of dimension n > 1 as well. For
example, for the period p = 2 Leslie age-structured models considered in Section 4.2 we used
a computer algebra program to calculate the characteristic polynomial of B for n = 2 to 7 and
found it has the form λ2n−2p(λ) where p(λ) is a quadratic polynomial. We then calculated the
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Table 1. For a Leslie matrix of period p = 2, the difference between the character-
istic quadratic q(λ) of Q and p(λ), quadratic factor of the characteristic polynomial
λ2n−2p(λ) of B, is a multiple k of λ − 1. Note that the second factor in k is a sum
of non-negative terms and can vanish if and only if each of these terms equals 0.

Dimension n k

2 φ1f1
3 φ1(f1 + s1σ2f3)

4 φ1(f1 + s1σ2f3)

5 φ1(f1 + s1σ2f3 + s1s3σ2σ4f5)

6 φ1(f1 + s1σ2f3 + s1s3σ2σ4f5)

7 φ1(f1 + s1σ2f3 + s1s3σ2σ4f5 + s1s3s5σ2σ4σ6f7)

difference q(λ) − p(λ) where q(λ) is the characteristic quadratic of Q. The results show that the
difference between these two polynomials is a multiple of λ − 1, i.e., q(λ) − p(λ) = −k(λ − 1)

for a constant k > 0 given in Table 1.
If k 
= 0, then q(λ) and p(λ) have no root in common (other than 1) and hence the two definitions

of R0 differ. (Moreover, a little analytic geometry shows that R0 = ρ[B] is closer to 1 than is R0

defined by Definition 1.) On the other hand, if k = 0 then q(λ) and p(λ) are identical and the two
definitions give the same value for R0. One can see what the biological consequences of k = 0
are by referring to Table 1. We will not interpret here the various biological possibilities that give
rise to k = 0 except to point out that for the dimensions n = 2 to 7 (and we conjecture that for all
dimensions) φ1 = 0 implies the definitions are identical.

The following theorem gives a case when the two definitions of R0 are identical, namely when
reproduction occurs at only one point in time during a period. The proof appears in the appendix.

Theorem 2 Suppose F(t) is the p-periodic extension of

F(t) =
{

0 for t ∈ {0, 1, . . . , p − 1}\{k},
F for t = k.

Then ρ[F (p−1)(I − T (p−1))−1] = ρ[B].

Even when the two definitions of R0 are not identical they both determine the asymptotic
stability properties of the periodic matrix equation. They will not, however, necessarily give the
same results when put to other uses, such as a sensitivity analysis. For example, if one carries
out the analysis in Example 1 using the definition R0 = ρ[B], one finds a similar threshold phe-
nomenon but with a different threshold value for τ ′

1(0), namely, τ ∗∗ = (1 − τ1(0)τ0)/ϕ0τ1(0).
A numerical comparison of the sensitivities with respect to ϕ1 in this example appears in
Figure 1.

Finally, we point out that in the applications in Section 5 the two definitions of R0 are equal.
In the soft coral application this follows from Theorem 2. For the greentree frog application,
this is corroborated by a numerical calculation (the matrix B is of size 3016 × 3016), at least to
five significant digits. However, changes in the fertility of the frogs can cause the inequality. For
example, if f1,20(t) is changed from 0 to b(t) (allowing frogs of age 15 weeks to reproduce at the
same rate as frogs of age 52 weeks), then calculations show that Definition 1 gives R0 ≈ 3.9328
and R0 = ρ[B] ≈ 3.8547.

As a final remark we point out that R0 given in Definition 1 is for a specific periodic schedule
of vital rates which gives the composite map

∏p−1
t=0 P(t) = F (p−1) + T (p−1) where F (p−1) =∏p−1

t=0 P(t) − ∏p−1
t=0 T (t) and T (p−1) = ∏p−1

t=0 T (t). In general, the p periodic schedules give rise
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Figure 1. Plots of the sensitivities of R0 defined by Definition 1 (solid line) or ρ[B] (dashed line) as functions of ϕ1 in
Example 1 are shown for two illustrative cases. (a) For the exponential trade-off function τ1 = 0.45e−ϕ1 and parameter
values ϕ0 = 10 and τ0 = 0.9, we see that the sensitivities have opposite signs for small values of bad season fertility
ϕ1. This is because τ ′

1(0) = −0.45 lies between the two thresholds −τ ∗ = −0.64855 and −τ ∗∗ = −0.13222. Note that
the sensitivities do have the same sign for larger values of ϕ1. (b) For the trade-off function τ1 = 0.6(1 + 0.1ϕ3

1 )−1

and parameter values ϕ0 = 5 and τ0 = 0.8, we see that the sensitivities have the same signs for small values of bad
season fertility ϕ1. This is because τ ′

1(0) = 0 is greater than both thresholds −τ ∗ = −0.5336 and −τ ∗∗ = −0.1733.
Note, however, that the sensitivities do not always have the same signs for all values of ϕ1.

to composite maps of the form
∏p+j−1

t=j P (t), j = 0, . . . , p − 1, each of which can be additively
decomposed as

(F (p−1))j + (T (p−1))j ,

where

(F (p−1))j =
p+j−1∏

t=j

P (t) −
p+j−1∏

t=j

T (t), (T (p−1))j =
p+j−1∏

t=j

T (t).

These composite maps can be used to define schedule-dependent net reproductive num-
bers, namely

R0,j = ρ[(F (p−1))j (I − (T (p−1))j )
−1], j = 0, . . . , p − 1. (23)

Note that the schedule j = 0 results in Equation (15), i.e., R0,0 in Equation (23) is the R0 given in
Definition 1. In general, these net reproduction numbers may not have the same value. Individuals
in a population beginning at a favourable time (or “season”) and those in an identical population
beginning at an unfavourable time, for example, will not in general have the same long-term
reproductive output as measured by R0. (This fact about R0, as defined by Definition 1, has also
been pointed out to us by H. Caswell, who views it as a useful feature in applications (personal
communication).)

Here is an example to illustrate this fact. For a size n = 2 Leslie matrix of period p = 2 define
the projection matrix P(t) = F(t) + T (t) by

F(0) =
(

1 5
0 0

)
, T (0) =

(
0 0

0.7 0.9

)
,

F (1) =
(

5 3
0 0

)
, T (1) =

(
0 0

0.4 0.8

)
.

A calculation using formula (23) yields R0,0 ≈ 69.5 and R0,1 ≈ 24.9.
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Under special circumstances it can turn out that all the periodic schedules give the same net
reproductive number. See Corollary 2 for an example. Regardless of the schedule, however,
Theorem 1 holds, and for any j = 0, . . . , p − 1, R0,j and r always lie on the same side of 1.

The following Corollary shows, for the case considered in Theorem 2 where reproduction
occurs at only one point is time during the period, that the definition of R0 is independent of the
schedule. The proof appears in the Appendix.

Corollary 2 Under the assumptions of Theorem 2, the definition of R0 is independent of the
schedule, i.e. the numbers R0,j , j = 0, . . . , p − 1, given in formula (23) are equal.
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Appendix

For notational purposes, we let Tt = T (t), Ft = F(t) and

n∏
t=m

Tt =
{

TnTn−1 . . . Tm for n ≥ m,

I for n < m.

The following lemma can be verified by a direct calculation of NN−1 for N in formula (22).

Lemma A1 Define the n × n matrices Gij for 1 ≤ i, j ≤ p by

Gij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p+i−2∏
t=j

Tt

⎛
⎝I −

p+j−1∏
t=j

Tt

⎞
⎠

−1

for i ≤ j,

j−2∏
t=j

Tt

⎛
⎝I −

p+j−1∏
t=j

Tt

⎞
⎠

−1

for i > j.

Then N−1 = (Gij ).

As examples, for periods p = 2 and p = 3 we have, respectively,

N−1 =
(

T1(I − T0T1)
−1 (I − T1T0)

−1

(I − T0T1)
−1 T0(I − T1T0)

−1

)
,

N−1 =
⎛
⎜⎝

T2T1(I − T0T2T1)
−1 T2(I − T1T0T2)

−1 (I − T2T1T0)
−1

(I − T0T2T1)
−1 T0T2(I − T1T0T2)

−1 T0(I − T2T1T0)
−1

T1(I − T0T2T1)
−1 (I − T1T0T2)

−1 T1T0(I − T2T1T0)
−1

⎞
⎟⎠.

Lemma A2 The following identity holds:

⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠

⎛
⎝I −

p+k∏
t=k+1

Tt

⎞
⎠

−1

=
⎛
⎝I −

p−1∏
t=0

Tt

⎞
⎠

−1 ⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠ .

Proof We first note that

⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠

⎛
⎝I −

p+k∏
t=k+1

Tt

⎞
⎠

−1

=
⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠

⎛
⎜⎝I +

∞∑
i=1

⎛
⎝ p+k∏

t=k+1

Tt

⎞
⎠

i
⎞
⎟⎠

=
⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠

⎛
⎜⎝I +

∞∑
i=1

⎛
⎝ p+k∏

t=k+1

Tt

⎞
⎠

i−1 ⎛
⎝ p+k∏

t=k+1

Tt

⎞
⎠

⎞
⎟⎠

=
⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠

⎛
⎜⎝I +

∞∑
i=1

⎛
⎝ p+k∏

t=k+1

Tt

⎞
⎠

i−1 ⎛
⎝p+k∏

t=p

Tt

⎞
⎠

⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠

⎞
⎟⎠

=
⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠ +

⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠ ∞∑

i=1

⎛
⎝ p+k∏

t=k+1

Tt

⎞
⎠

i−1 ⎛
⎝p+k∏

t=p

Tt

⎞
⎠

⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠

=
⎛
⎜⎝I +

∞∑
i=1

⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠

⎛
⎝ p+k∏

t=k+1

Tt

⎞
⎠

i−1 ⎛
⎝p+k∏

t=p

Tt

⎞
⎠

⎞
⎟⎠

⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠ .
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Because of the periodicity we can write
∏p+k

t=p Tt = ∏k
t=0Tt . This allows us to re-associate factors in the product⎛

⎝ p−1∏
t=k+1

Tt

⎞
⎠

⎛
⎝ p+k∏

t=k+1

Tt

⎞
⎠

i−1 ⎛
⎝p+k∏

t=p

Tt

⎞
⎠ =

⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠

⎛
⎝p+k∏

t=p

Tt

p−1∏
t=k+1

Tt

⎞
⎠

i−1 ⎛
⎝p+k∏

t=p

Tt

⎞
⎠

=
⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠

⎛
⎝ k∏

t=0

Tt

p−1∏
t=k+1

Tt

⎞
⎠

i−1 (
k∏

t=0

Tt

)

=
⎛
⎝p−1∏

t=0

Tt

⎞
⎠

⎛
⎝p−1∏

t=0

Tt

⎞
⎠

i−1

=
⎛
⎝p−1∏

t=0

Tt

⎞
⎠

i

and thus ⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠

⎛
⎝I −

p+k∏
t=k+1

Tt

⎞
⎠

−1

=
⎛
⎜⎝I +

∞∑
i=1

⎛
⎝p−1∏

t=0

Tt

⎞
⎠

i
⎞
⎟⎠

⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠ .

�

Proof of Theorem 2 Since

p−1∏
t=0

(Ft + Tt ) −
p−1∏
t=0

Tt =
⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠ (F + Tk)

k−1∏
t=0

Tt −
p−1∏
t=0

Tt

=
⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠ F

k−1∏
t=0

Tt +
⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠ Tk

k−1∏
t=0

Tt −
p−1∏
t=0

Tt

=
⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠ F

k−1∏
t=0

Tt

it follows for R0 defined by Definition 1 that

R0 = ρ

⎡
⎢⎣

⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠ (

F

k−1∏
t=0

Tt

) ⎛
⎝I −

p−1∏
t=0

Tt

⎞
⎠

−1
⎤
⎥⎦ . (A1)

We now turn our attention to R0 defined as ρ[B]. From formula (22) we find that all (block) rows of B consist of p zero
(n × n) block matrices, except for the kth block row, i.e.,

B = 
N−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 · · · 0
.
.
.

.

.

.
.
.
.

FGk+1,1 · · · FGk+1,k+1 · · · FGk+1,p

.

.

.
.
.
.

.

.

.

0 · · · 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Consequently, by Lemma A1

ρ[B] = ρ[FGk+1,k+1] = ρ

⎡
⎢⎣F

p+k−1∏
t=k+1

Tt

⎛
⎝I −

p+k∏
t=k+1

Tt

⎞
⎠

−1
⎤
⎥⎦

= ρ

⎡
⎢⎣

⎛
⎝F

p+k−1∏
t=p

Tt

⎞
⎠

⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠

⎛
⎝I −

p+k∏
t=k+1

Tt

⎞
⎠

−1
⎤
⎥⎦

= ρ

⎡
⎢⎣

(
F

k−1∏
t=0

Tt

) ⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠

⎛
⎝I −

p+k∏
t=k+1

Tt

⎞
⎠

−1
⎤
⎥⎦ .
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Using Lemma A2 we can write

ρ[B] = ρ

⎡
⎢⎣

(
F

k−1∏
t=0

Tt

) ⎛
⎝I −

p−1∏
t=0

Tt

⎞
⎠

−1 ⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠

⎤
⎥⎦ .

Since the spectrum of a product AB is the same as the spectrum of BA we have

ρ[B] = ρ

⎡
⎢⎣

⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠ (

F

k−1∏
t=0

Tt

) ⎛
⎝I −

p−1∏
t=0

Tt

⎞
⎠

−1
⎤
⎥⎦ ,

which is the same as formula (A1). �

Proof of Corollary 2 Recall that in Theorem 2, R0 corresponds to the specific periodic schedule j = 0 which is based
on the composite map

∏p−1
t=0 P(t) = P(p − 1) · · · P(k) · · · P(0) (where P(t) = F(t) + T (t) and F(t) = F at the point

t = k and zero everywhere else). Consider any other periodic schedule j and assume 0 < j < k (similar argument
holds for k ≤ j ≤ p − 1). Then the net reproductive number corresponding to the composite map �

p+j−1
t=j P (t) = P(j −

1) · · · P(0)P (p − 1) · · · P(k) · · · P(j) is defined as

R0,j = ρ

⎡
⎢⎣

⎛
⎝p+j−1∏

t=k+1

Tt

⎞
⎠

⎛
⎝F

k−1∏
t=j

Tt

⎞
⎠

⎛
⎝I −

p+j−1∏
t=j

Tt

⎞
⎠

−1
⎤
⎥⎦

= ρ

⎡
⎢⎣

⎛
⎝j−1∏

t=0

Tt

p−1∏
t=k+1

Tt

⎞
⎠

⎛
⎝F

k−1∏
t=j

Tt

⎞
⎠

⎛
⎝I −

j−1∏
t=0

Tt

p−1∏
t=j

Tt

⎞
⎠

−1
⎤
⎥⎦ . (A2)

We want to show that R0,j in formula (A2) is equal to R0 in Theorem 2. To this end, first note that for matrices A and
B we have: 1) ρ[AB] = ρ[BA] and 2) (I − BA)−1B = B(I − AB)−1 (which can be easily shown using the expansion
(I − M)−1 = I + M + M2 + · · · ). Hence,

R0,j = ρ

⎡
⎢⎣

⎛
⎝j−1∏

t=0

Tt

⎞
⎠

⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠

⎛
⎝F

k−1∏
t=j

Tt

⎞
⎠

⎛
⎝I −

j−1∏
t=0

Tt

p−1∏
t=j

Tt

⎞
⎠

−1
⎤
⎥⎦

= ρ

⎡
⎢⎣

⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠

⎛
⎝F

k−1∏
t=j

Tt

⎞
⎠

⎛
⎝I −

j−1∏
t=0

Tt

p−1∏
t=j

Tt

⎞
⎠

−1 ⎛
⎝j−1∏

t=0

Tt

⎞
⎠

⎤
⎥⎦

= ρ

⎡
⎢⎣

⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠

⎛
⎝F

k−1∏
t=j

Tt

j−1∏
t=0

Tt

⎞
⎠

⎛
⎝I −

p−1∏
t=j

Tt

j−1∏
t=0

Tt

⎞
⎠

−1
⎤
⎥⎦

= ρ

⎡
⎢⎣

⎛
⎝ p−1∏

t=k+1

Tt

⎞
⎠ (

F

k−1∏
t=0

Tt

) ⎛
⎝I −

p−1∏
t=0

Tt

⎞
⎠

−1
⎤
⎥⎦ = R0.
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