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Abstract. Cannibalism, which functions as a life history trait in at
least 1300 species of both invertebrates and vertebrates, plays important eco-
logical and evolutionary roles in populations. During times of low resource
availability, cannibalism of juveniles by adults can redirect reproductive en-
ergy to times of higher resource availability. For example, prolonged increases
in sea surface temperature depress marine food webs and lead to increased
egg cannibalism among glaucous-winged gulls (Larus glaucescens); consump-
tion of a single cannibalized egg provides almost half the daily energy needs
for an adult gull. Motivated by the glaucous-winged gull system, we use ma-
trix models and bifurcation theory to investigate population and evolutionary
dynamic consequences of adult-on-juvenile cannibalism. We show that in the
presence of cannibalism, a population can survive under circumstances of low
resource availability which, in the absence of cannibalism, lead to extinction.
The evolutionary version of the model shows that cannibalism can be an
evolutionarily stable strategy.

Key Words: Population dynamics, Allee effect, cannibalism, bifurca-
tion, evolutionary dynamics, matrix models.

1. Introduction. Cannibalism, the killing and eating of another member of the
same species, functions as a life history trait in a wide variety of animals, including
protozoans, invertebrates, and all the major vertebrate classes (Fox [1975], Elgar
and Crespi [1992]). Even otherwise herbivorous animals such as leaf- and bark-
eating insects engage in this behavior (Brower [1961], Beaver [1974], Richardson
et al. [2010]), and at least 1300 species exhibit this trait (Polis [1981]).

Cannibalism plays important ecological and evolutionary roles in populations. It
serves as a constraint on population size, favors the development of alternate life
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history strategies, complicates community dynamics, shapes social behavior, engen-
ders the development of kin selection, lowers reproductive success, and may lead to
complex nonlinear population dynamics including chaos (Davis and Dunn [1976],
Polis [1981], Elgar and Crespi [1992], Stanback and Koenig [1992], Brouwer and
Spaans [1994], Giray et al. [2001], Cushing et al. [2002]). Some individuals are ge-
netically predisposed to exhibit this behavior (Park et al. [1961], Giray et al. [2001],
Baker et al. [2014]) and geographically distinct populations may exhibit different
cannibalism rates (Baker et al. [2014]). During times of low resource availability,
cannibalism of juveniles by adults can redirect reproductive energy to times of
higher resource availability (Elgar and Crespi [1992]), and cannibalism of juveniles
may function as a “lifeboat” mechanism when resources are low and adults and
juveniles are competing for the same or even different resources (Van den Bosch
et al. [1988], Cushing [1991], Henson [1997]).

Cannibalism can result from overcrowding, stress, and the occurrence of unusual
behavior patterns by vulnerable animals (Fox [1975]). Victim age, size, develop-
mental stage, sex, and habitat may also contribute to its occurrence (Polis [1981],
Baur and Baur [1986]). Poor food quality and lack of adequate food, however, con-
stitute the most important reasons for cannibalism (Dong and Polis [1992]). For
example, prolonged increases in sea surface temperature associated with El Niño-
Southern Oscillation (ENSO) events depress marine food webs and lead adult Pe-
ruvian anchovy (Engraulis ringens) and Peruvian hake (Merluccius gayi peruanus)
to cannibalize eggs and larvae at higher than usual rates (Alheit and Niquen [2004],
Geurvara-Carrasco and Lleonart [2008]). Even human cannibalism in response to
conditions of starvation has been reported (Brown [2013]).

Egg and chick cannibalism occurs commonly among colonial-nesting gulls (Payn-
ter [1949], Tinbergen [1961], Patterson [1965], Drent [1970], Parsons [1971], Parsons
[1975], Davis and Dunn [1976], Burger [1980]). A recent study demonstrated that
egg cannibalism among glaucous-winged gulls (Larus glaucescens) and glaucous-
winged × western gull (L. glaucescens × occidentalis) hybrids increased and hatch-
ing success decreased in response to impoverished food supplies resulting from
ENSO-related high sea surface temperature events. Consumption of a single can-
nibalized egg provides almost half the daily energy needs for these birds (Hayward
et al. [2014]). Although cannibalism may provide a benefit to individual gulls during
times of environmental stress, it is not known whether cannibalism functions as an
actual adaptive strategy during these times. This question motivates the present
theoretical study.

Here, we investigate the population and evolutionary dynamic consequences of
some key mechanisms involved in the cannibalism of immature individuals by adult
individuals. Matrix models are particularly adept at describing the dynamics of pop-
ulations structured into well-defined life cycle stages (Caswell [2001]). Our goal is to
investigate the ways in which a low-dimensional matrix model that focuses on cer-
tain basic attributes of cannibalistic interactions can suggest plausible hypotheses
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concerning cannibalism as an adaptive life history strategy under environmental re-
source stress. We select the matrix model of the lowest possible dimension for these
purposes: a two-stage juvenile–adult model in which the adult stage cannibalizes
the juvenile stage (Cushing [1991], Henson [1997]). We also study an evolutionary
version of the model. Since we are interested in changing environmental circum-
stances, a natural mathematical approach to the resulting dynamics is to use the
methods of bifurcation theory. We will use this approach to demonstrate that a
stable, nonextinction (positive) equilibrium of the evolutionary model can occur
when cannibalism is present under circumstances for which only the extinction
equilibrium is stable in the absence of cannibalism. The model also shows that
cannibalism can be an evolutionarily stable strategy (ESS). The key biological and
mathematical elements of our approach are the following:

� Cannibalism provides both negative and positive feedbacks in the density-
dependent components of fitness. A positive feedback effect on fitness accrues
to the cannibal by means of the nutrients obtained from the victim.

� Nonlinear matrix models that contain dominant positive feedback density effects
at low population densities (component Allee effects; Courchamp et al. [2008])
and dominant negative feedback density effects at high population densities pro-
duce a backward bifurcation of positive (nonextinction) equilibria at R0 = 1 and
strong Allee effects for R0 < 1. Here, R0 is the net reproductive number at low
population densities (i.e., in the absence of any density effects) (Cushing [1998],
Cushing [2009], Cushing and Stump [2013], Cushing [2014]). This allows for pop-
ulation survival in a multiple attractor scenario when R0 < 1 (due, for example,
to low environmental resource availability).

� In the absence of positive feedback density effects (in particular, cannibalism),
the bifurcation of positive (nonextinction) equilibria at R0 = 1 is forward and
the population goes extinct if R0 < 1 (Cushing [1998], Cushing [2009], Cushing
and Stump [2013]).

We describe this bifurcation-theoretic approach for a general juvenile–adult, pop-
ulation dynamic model in Section 2. In Section 3, we apply these bifurcation theory
principles to study a juvenile–adult model that can include cannibalistic interac-
tions between the adult and juvenile stages. The cannibalism efficiency of individual
adults is measured by a parameter v ≥ 0. We show, in a case of low environmental
resource and hence R0 < 1, that the population will go extinct when adults are
not cannibalistic (v = 0), but can avoid extinction if adults are cannibalistic with
sufficiently high intensity v > 0. This survival potential occurs because of a strong
Allee effect created by a backward bifurcation that results from a positive feedback
from cannibalism to adult survival. In Section 4, we look at an evolutionary version
of the cannibalism model in which the cannibalism efficiency v of an individual
adult is subject to Darwinian evolution. In that example, we consider a population
that will go extinct because R0 < 1 and because the mean level u of cannibalistic
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efficiency among its adults is too low (even zero). We show that if cannibalism
efficiency is subject to Darwinian evolution, it can occur that evolution will select
for a high enough mean level of adult cannibalistic efficiency so that the population
avoids extinction, and that this mean is an “ESS.”

2. Juvenile–adult matrix models. In this section, we set the theoretical
framework for our study of a cannibalism model in Section 3. The lowest dimen-
sional matrix model

x (t + 1) = P (x (t)) x (t)(1)

for a population structured by juvenile and adult classes has 2 × 2 projection matrix

P (x) =
(

0 p12 (x)
p21 (x) p22 (x)

)
.(2)

Here,

x = col (x1 , x2) =
(

x1
x2

)

is a stage-structured demographic vector in which x1 is the density of juveniles and
x2 is the density of adults. The time unit is the juvenile maturation period, which
accounts for the 0 in the upper left corner of P (x). The structure of this projection
matrix is that of a (nonlinear) Leslie matrix in which p12(x) is adult fecundity,
p21(x) is the fraction of surviving (and hence maturing) juveniles, and p22(x) is
the fraction of surviving adults during one unit of time. These vital rates are, as
indicated, assumed to be density-dependent.

Let R2 denote two-dimensional Euclidean space and let

R2
+ =

{
x ∈ R2 : xi > 0

}
, R̄2

+ =
{
x ∈ R2 : xi ≥ 0

}
, ∂R2

+ = R̄2
+\R2

+

denote the positive cone, its closure, and its boundary, respectively. We assume that
the entries in P (x) satisfy the following conditions:

A1: There is an open set Ω ⊆ R2 containing R̄2
+ on which the entries pij (x)

are twice continuously differentiable and satisfy p12(x) > 0 and 0 < p21(x),
p22(x) < 1 for all x ∈ Ω.
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The projection matrix (2) is primitive for x ∈ R̄2
+ . The strictly dominant eigen-

value of P (x) is

r (x) =̊
1
2

(
p22 (x) +

√
p2

22 (x) + 4p12 (x) p21 (x)
)

.

Let

R0 (x) =̊p12 (x)
p21 (x)

1 − p22 (x)
.

The quantities r(x) and R0(x) are the population growth rate and net reproductive
number (expected number of juveniles produced per juvenile per life time), respec-
tively, under the assumption that the population is held fixed at x. For notational
simplification, we denote the inherent (i.e., density-independent) population growth
rate and net reproductive number by

r = r (0) and R0 = R0 (0) ,

respectively. We also use a superscript 0 to denote evaluation at x = 0. For example,

p0
ij � pij (0) , ∂0

k pij =
∂pij (x)

∂xk

∣∣∣∣
x=0

.

Note that r = 1 if and only if R0 = 1 (see Cushing and Zhou [1994]), i.e., if and
only if 1 − p0

22 = p0
12p

0
21 . Left and right eigenvectors wL,wR ∈ R2

+ of P (0) associated
with r = 1 are

wT
L =

1
1 + p0

12p
0
21

(
p0

21 1
)

and wR =
(

p0
12
1

)
.

The quantity

κ � −wT
L

(∇0pijwR

)
wR, ∇0pij =

(
∂0

1 pij ∂0
2 pij

)

will be important for us when evaluated at r = 1 (equivalently R0 = 1). A calcula-
tion shows

κ = −p0
21

[
p0

12∂
0
1 p12 + ∂0

2 p12
]
+ p0

12
[
p0

12∂
0
1 p21 + ∂0

2 p21
]
+

[
p0

12∂
0
1 p22 + ∂0

2 p22
]

1 + p0
12p

0
21

(3)

when R0 = 1.
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A positive (or nonnegative) equilibrium is a fixed point of the map (1) that lies
in R+

2 (or R̄+
2 ). We refer to the equilibrium x = 0 as the extinction equilibrium.

We consider these equilibria as they depend on r (or R0). If x is an equilibrium
that exists for a specified value of r (or R0), then we refer to (r, x) (or (R0 , x))
as an equilibrium pair. If x is a positive (nonnegative) equilibrium, then we refer
to the equilibrium pair as positive (nonnegative). Note that (r, 0) (or (R0 , 0)) is an
equilibrium pair for all values of r (or R0); we refer these as extinction equilibrium
pairs. The following facts are known about nonlinear matrix models with primitive
projection matrices, and therefore, about the juvenile–adult model (1)–(2) (Cushing
[1998], Cushing [2009]). The statements are valid for both equilibrium pairs (x, r)
and (x,R0).

The set of positive equilibrium pairs of (1)–(2) contains a (maximal) continuum
C with the following properties:

• (1, 0) ∈ C (i.e., the continuum C bifurcates from (1, 0));
• C ⊂ R+ × R2

+ (i.e., the continuum C consists of positive equilibrium pairs
corresponding to positive values of r (or R0));

• C is unbounded in R+ × R2
+ .

These facts derive fundamentally from the well-known Rabinowitz alternative in
bifurcation theory (Rabinowitz [1971]; see also Keilhöfer [2004]). The bifurcation at
the extinction equilibrium when R0 = 1 is a transcritical bifurcation, and therefore
we typically expect an exchange of stability to occur between the continuum of
extinction pairs and the positive equilibria on C (Keilhöfer [2004]). This, indeed,
occurs for matrix models. We say that a backward or forward bifurcation occurs if
there exists a neighborhood N of (1, 0) such that (r, x) ∈ N ∩ C implies r < 1 or r >
1, respectively (equivalently R0 < 1 or R0 > 1). We say that the bifurcation is stable
(respectively, unstable) if the positive equilibrium pairs in the neighborhood are
(locally asymptotically) stable (respectively, unstable). The following fundamental
bifurcation theorem is proved in Cushing [1998]:

The extinction equilibrium pair is (locally asymptotically) stable if r <
1 and unstable if r > 1 (equivalently R0 < 1 or R0 > 1). Suppose κ 
= 0.
Then, in a neighborhood of the bifurcation point (1, 0), the direction of
bifurcation determines the stability of the bifurcation:

� the bifurcation at r = R0 = 1 is unstable if it is backward and stable if it is
forward;

� the bifurcation at r = R0 = 1 is backward if κ < 0 and forward if κ > 0.

Note 1. When r > 1 (equivalently R0 > 1), the extinction equilibrium is not
only unstable, but the matrix model is uniformly persistent with respect to ∂R2

+
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(Cushing [1998], Kon et al. [2004]). In this case, no orbits in the positive cone tend
to 0 as t → +∞. �

Note 2. The stability properties described above are obtained by the linearization
principle. The stable equilibria are hyperbolic. �

The direction of bifurcation is determined by the sign of κ and hence by the
partial derivatives of the matrix entries pij with respect to the components of x, all
evaluated at x = 0 and r = R0 = 1. A negative derivative ∂0

xk
pij < 0 means that a

negative feedback mechanism is in play at low densities, whereas a positive derivative
∂0

xk
pij > 0 means the presence of a positive feedback mechanism at low densities,

which is called a component Allee effect (Courchamp et al. [2008]). If only negative
feedback mechanisms are present in a model (as is often the case), then clearly,
κ > 0 (there is no need to actually calculate κ) and a forward and hence stable
bifurcation occurs as r (equivalently R0) increases through 1.

Note 3. If only negative feedback effects are present in the model, or more gen-
erally, if pij (x) ≤ p0

ij for all x ∈ R̄2
+ , then r < 1 (equivalently R0 < 1) implies that

x = 0 is globally asymptotically stable with respect to nonnegative initial condi-
tions (Cushing [1998]). In other words, extinction is assured if r < 1 (equivalently
R0 < 1). �

Necessary, but not sufficient, for a backward bifurcation is the presence of some
component Allee effects. If the component Allee effects are of sufficient magnitude
(compared to the negative feedback mechanisms present) at low densities so that
κ < 0, then a backward and hence unstable bifurcation occurs.

We say a strong Allee effect occurs in a model if there exists both a positive and
an extinction attractor. Thus, a necessary condition for a strong Allee effect is that
r < 1 or equivalently that R0 < 1.

An example of a strong Allee effect is when, in addition to a stable extinction
equilibrium, there also exists a stable positive equilibrium. If a backward bifurca-
tion occurs, then there do exist positive equilibria for r < 1(R0 < 1), namely, those
from the bifurcating continuum C. However, in a neighborhood of the extinction
equilibrium (1, 0), the bifurcating positive equilibria from C are unstable. Strong
Allee effects, with respect to positive equilibria, usually occur in population mod-
els because the backward bifurcating continuum C “turns back to the right” and
thereby creates multiple positive equilibria for values of r and R0 < 1. The reason
for this is that population models generally include negative feedback mechanisms
at high densities. See Figure 1b for a schematic representation of such a bifurca-
tion diagram. This phenomenon implies a potential for a strong Allee effect, since
it creates multiple positive equilibria for r < 1 (equivalently R0 < 1). One obvious
criterion sufficient for this to occur is the existence of a positive equilibrium pair
from the continuum C associated with r = 1 (equivalently R0 = 1). In that case,
there is an interval of r (equivalently R0) values less than 1 (with 1 as its upper
end point) on which there exist at least two positive equilibria, one of which is on
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FIGURE 1. Schematic representations are shown for the two basic (transcritical) bifurcations
that occur at the extinction equilibrium x = 0 in nonlinear matrix models as r (equivalently
R0 ) increases through 1. (a) A forward (right or supercritcal) bifurcation of positive equilibria
x occurs if κ > 0 and the bifurcating positive equilibria are stable (at least in a neighbor-
hood of the bifurcation point). (b) A backward (left or subcritical) bifurcation of positive
equilibria x occurs if κ < 0 and the bifurcating positive equilibria are unstable (at least in a
neighborhood of the bifurcation point). Because of assumed negative effects at high densities,
the bifurcating continuum C of positive equilibria “turns around” at a value of r (or R0 ) less
than 1. This is generally a saddle-node bifurcation, which usually (but not always) results is
a branch of stable positive equilibria as indicated. This creates an interval of r (equivalently
R0 ) values less than 1 on which a strong Allee effect occurs.

the branch of unstable equilibria that bifurcates from the extinction equilibria. An
analytic criterion sufficient to guarantee this is given in Cushing [2014]. It involves
establishing an a priori bound on positive equilibria in terms of r or R0 .

A2: Suppose there exists a function m : R+ → R+ which is bounded on
compact intervals of R+ such that

‖x‖ � |x1 | + |x2 | ≤ m (r) or m (R0)

for all positive equilibrium pairs x ∈ R2
+ of (1)–(2).

Theorem 1. (Cushing [2014]). Assume A1 and κ < 0. If there exists a positive
equilibrium for r = R0 = 1 (which occurs if A2 holds), then there exist, in addition
to a stable extinction equilibrium, at least two positive equilibria of the juvenile–adult
matrix model (1)–(2) for r � 1 (equivalently R0 � 1), one of which is unstable.

While the conditions of Theorem 1 imply the potential for a strong Allee effect,
it is necessary for a strong Allee effect that one of the positive equilibria be stable.
This is model-dependent and might or might not occur (Cushing [2014]). However,
when the continuum C “turns around,” it usually does so at a saddle-node bifurca-
tion (sometimes called a blue sky or tangent bifurcation). Saddle-node bifurcations
generally involve the collision of unstable and stable equilibria. Therefore, one can
usually expect that a strong Allee effect will occur under the circumstances of
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Theorem 1. We will see that this is, indeed, the case in the juvenile–adult canni-
balism model studied in the next section.

3. A juvenile–adult cannibalism model. In this section, we adapt the gen-
eral juvenile–adult model (1)–(2) to account for cannibalism on juveniles by adults
and apply the results of Theorem 1. We focus on the effects of cannibalism on the
survival probabilities p21 and p22 of juveniles and adults, respectively.

In the absence of cannibalism, we assume that survival probabilities and fecundity
are functions of the amount of noncannibalistic food resources ρ ≥ 0 available in
the habitat:

p12 = b (ρ) , p21 = s1 (ρ) , p22 = s2 (ρ) ,

where b(ρ) > 0 and the fractions si(ρ) are all increasing functions of ρ. We assume
b(0) = 0, that is to say, that reproduction fails in the absence of the resource ρ.

In the presence of juvenile cannibalism by adults, juvenile survival p21 is modified
by the probability that a juvenile survives cannibalism, i.e.,

p21 (x1 , x2 , ρ) = s1 (ρ) (1 − p (x1 , x2 , ρ) x2) .

The fraction p(x1 , x2 , ρ)x2 is the probability a juvenile is cannibalized in the pres-
ence of x2 adults and x1 juveniles, and hence, 1 − p(x1 , x2 , ρ)x2 is the probability
of a juvenile surviving under these circumstances.

We assume that the probability of a juvenile being cannibalized increases as the
number of adults increases, i.e., the fraction p(x1 , x2 , ρ)x2 is an increasing function
of x2 ≥ 0. On the other hand, the fraction p(x1 , x2 , ρ)x2 is a decreasing function
of x1 , as a result of the familiar prey (or, in this case, victim) saturation effect
in response to predation (cannibalism). Finally, we assume that p(x1 , x2 , ρ)x2 is a
decreasing function of ρ, that is to say, cannibalism decreases if the noncannibalistic
food resource availability increases.

The other effect of cannibalism we place in the model is an increase in the adult
cannibal survival probability that accrues from its victims. (We ignore, in this
model, benefits that might accrue to adult fecundity.) To do this, we modify adult
survival probability s2 by a factor so that

p22(x1 , x2 , ρ) = s2 (ρ) σ (w) ,

where

w � p (x1 , x2 , ρ) x1

is the number of juveniles cannibalized per adult. In the absence of cannibalism,
we assume in this model that population regulation is by means of adult regulation
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of fecundity, namely, per adult fecundity b(ρ) is modified by a factor ϕ(x2) that is
dependent on adult density x2 :

p12 (x, x2) = b (ρ) ϕ (x2) .

In summary, we have the juvenile–adult model (1) with the projection matrix

P (x) =
(

0 b (ρ) ϕ (x2)
s1 (ρ) (1 − p (x1 , x2 , ρ) x2) s2 (ρ) σ (p (x1 , x2 , ρ) x1)

)
.(4)

The mathematical assumptions we make (in addition to the general requirements
on the entries pij in A1 ) are the following:

� Inherent vital rates: b(ρ) and si(ρ) are increasing continuous functions of ρ
on an open interval I containing R̄+ which satisfy b(0) = 0 and b(ρ) ≥ 0, 0 <
si(ρ) ≤ 1 for ρ ≥ 0.

� Population regulation in the absence of cannibalism: ϕ(x2) is a continu-
ously differentiable and nonincreasing function of x2 on I which satisfies

ϕ (0) = 1, ϕ′ (0) < 0, ϕ (x2) ≥ 0 for x2 ≥ 0.

Assume ϕ(x2)x2 is bounded, i.e., there is a constant ϕ0 > 0 such that

ϕ (x2) x2 ≤ ϕ0 for x2 ≥ 0.

� Cannibalism interactions:

(1) p(x1 , x2 , ρ)x2 is a continuous function on Ω × I that is twice continuously
differentiable in x1 and x2 and that satisfies the following conditions for
ρ ≥ 0 and xi ≥ 0:

0 ≤ p (x1 , x2 , ρ) x2 ≤ 1
p (x1 , x2 , ρ) x2 increasing in x2 and decreasing in both x1 and ρ.

(2) σ(w) is twice continuously differentiable on I, is nondecreasing for w ≥ 0,
and satisfies

σ (0) = 1, σ′ (0) > 0, 0 < s2 (ρ) σ (w) ≤ σ0 (ρ) < 1

for ρ,w ≥ 0 and some constant σ0(ρ).



AN EVOLUTIONARY GAME THEORETIC MODEL 507

The bifurcation alternatives described in Section 2 apply to the juvenile–adult
model (1) with projection matrix (4). The direction of bifurcation (and hence the
stability) of the positive equilibria that bifurcate at R0(ρ) = 1, where

R0 (ρ) = b (ρ)
s1 (ρ)

1 − s2 (ρ)
,

is determined by the sign of κ as given by the formula (3), which for the projection
matrix (4) is

κ =
1

s1 (ρ)
1 − s2 (ρ)
2 − s2 (ρ)

([s1 (ρ) − s2 (ρ) σ′ (0)] p (0, 0, ρ) − s1 (ρ) ϕ′ (0)) .

Notice that the sign of κ is ambiguous under the monotonicity assumptions made
on ϕ and σ. The term

−s1 (ρ) ϕ′ (0) > 0

is positive while the sign of the term

[s1 (ρ) − s2 (ρ) σ′ (0)] p (0, 0, ρ)(5)

depends on that of the bracketed factor.

If cannibalism is absent, i.e., if p(x1 , x2 , ρ) ≡ 0 or if the benefit of cannibalism
to adult survival is weak, i.e., σ′(0) is small, then κ > 0 and the bifurcation at
R0(ρ) = 1 is forward. Note that R0(0) = 0 and therefore R0(ρ) will be less than 1
when resource availability ρ is low. Moreover, when R0(ρ) < 1, Note 4 in Section 2
applies and the extinction equilibrium x = 0 is globally asymptotically stable (with
respect to nonnegative initial conditions). This means that there is no chance of
survival if R0(ρ) < 1, i.e., if the resource ρ is low.

We are interested in a backward bifurcation and the potential for a strong Allee
effect, in order to have the possibility of nonextinction when R0(ρ) < 1. A backward
bifurcation (κ < 0) occurs if (and only if) the term (5) is sufficiently negative.
This occurs when p(0, 0, ρ) > 0 and when σ′(0) is large. The meaning of these
mathematical conditions is, respectively, that cannibalism must be present (at low
population densities) and that the benefit of cannibalism to adult survival must
be sufficiently large. To obtain the potential for a strong Allee effect by means of
Theorem 1, we have remaining the establishment of the equilibrium a priori bound
in A2. From the equilibrium equations, for positive equilibria, we have

0 ≤ x1 ≤ R0 (ρ)
1 − s2 (ρ)

s1 (ρ)
ϕ0
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0 ≤ x2 ≤ s1 (ρ) x1 + σ0 (ρ) x2 .

The second inequality implies

0 ≤ x2 ≤ R0 (ρ)
1 − s2 (ρ)
1 − σ0 (ρ)

x1 ≤ R2
0 (ρ)

(1 − s2 (ρ))2 ϕ0

(1 − σ0) s1 (ρ)
,

and hence A2 holds with

m (R0 (ρ)) = R0 (p)
1 − s2 (ρ)

s1 (ρ)
ϕ0 + R2

0 (ρ)
(1 − s2 (ρ))2 ϕ0

(1 − σ0 (ρ)) s1 (ρ)
.

By Theorem 1, we conclude that for an interval Rmin
0 ≤ R0(ρ) < 1 of R0(ρ) values,

there exist, in addition to the stable extinction equilibrium, at least two positive
equilibria, one of which is unstable. What remains to prove is that there is a stable
positive equilibrium for these R0(ρ) values. Unfortunately, we do not have a general
criterion that guarantees the stability of a positive equilibrium (or any other positive
nonextinction attractor). We can, however, illustrate that a strong Allee effect can
occur in the model (1)–(4) by means of specific examples and numerical studies.

For this purpose, we utilize some specific formulas for the model coefficients that
satisfy the required conditions for Theorem 1 (assumptions A1 and A2). We utilize
rational functions of types commonly used in population dynamics (such as Holling
type II and Beverton–Holt functionals).

We model the probability that a juvenile is cannibalized by

p (x1 , x2 , ρ) x2 =
1

1 + c4ρ

1
1 + c1x1

vx2

1 + vx2
.(6)

The derivative (sensitivity) of p(x1 , x2 , ρ)x2 with respect to x2 evaluated at x = 0,
namely,

1
1 + c4ρ

v,

is a measure of adult cannibal aggressiveness (at low population densities) in that it
measures the increase in the probability a juvenile is cannibalized that results from
an increase in the number of cannibals. Note that this model assumes that canni-
balism aggressiveness is inversely related to the amount ρ of noncannibal resource
available and that v is the maximal aggressiveness, which occurs when the resource
ρ vanishes. We will say simply that v is cannibalism aggressiveness. The model (6)
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also assumes a cannibalism saturation effect, which is modeled by a Holling-II-type
functional of cannibal density x2 .

We assume that the consumption (or capture) of the noncannibalistic resource ρ
also follows a saturating, Holling-II-type functional

c4ρ

1 + c4ρ
,

and assume that inherent adult fecundity and survival and inherent juvenile survival
are each proportional to this consumed amount of noncannibalism resource, as
follows:

First, we assume that inherent adult fecundity is described by

b (ρ) = βe−c5 v c4ρ

1 + c4ρ
.(7)

This assumes efforts expended toward cannibalism decrease efforts toward obtaining
noncannibalistic resources. Here, β is the maximal possible inherent fecundity. We
also assume that adult fecundity is regulated by the density of adults according to
the discrete logistic (or Beverton–Holt) functional:

ϕ (x2) =
1

1 + c2x2
.(8)

Second, we assume that adult survival s2(ρ)σ(p(x1 , x2 , ρ)x1) is described by the
expressions:

s2 (ρ) =
[
s0

2 +
(
sm

2 − s0
2
) (

1 − e−c6 v
)] c4ρ

1 + c4ρ
,(9)

σ (w) =
(1 + γ) (1 + c3w)

1 + γ + c3w
.(10)

These embody two assumptions with regard to how adult survival depends on can-
nibalism. It assumes that more aggressive cannibals have a higher inherent survival
probability. This accounts for the bracketed factor in s2(ρ), which is an increasing
function of v from the low level of s0

2 (in the absence of cannibalism) to a highest
level of sm

2 > s0
2 . It also assumes that the number of juveniles w = p(x1 , x2 , ρ)x1

cannibalized by an adult increases its survival probability by the factor σ(w). This
factor is an increasing function of w that ranges from a low of 1 to a high of 1 + γ.
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Finally, we assume that inherent juvenile survivorship is proportional to the con-
sumed noncannibalism resource

s1 (ρ) = s0
1

c4ρ

1 + c4ρ
.(11)

Here, s0
1 is the maximum possible inherent juvenile survival probability.

These model specifications require for the coefficients appearing in (6)–(11) that

0 < s0
1 < 1, 0 < s0

2 < sm
2 < 1, sm

2 (1 + γ) ≤ 1

v ≥ 0, ci ≥ 0.

We note that cannibalism is absent in the model population if v = 0. We also note
that this model contains a trade-off due to cannibalism activity, namely, a higher
level of cannibalism aggressiveness v increases adult survival, but decreases adult
fecundity.

Table 1 contains a summary of the biological interpretations of the model coeffi-
cients in this example.

In this example,

p (0, 0, ρ) =
v

1 + c4ρ
, σ′ (0) = c3

γ

1 + γ
.

From our remarks above (derived from and appearing after (5)), we see that a
backward bifurcation occurs in this model if v > 0 (cannibalism occurs), γ > 0
(there is a positive benefit of cannibalism to adult survival), and c3 is sufficiently
large (adult survival is sufficiently responsive to cannibalism aggressiveness).

To be more explicit about the parameter relationships that lead to a backward
bifurcation in this example, we calculate

κ =
1

s1 (ρ)
1 − s2 (ρ)
2 − s2 (ρ)

[
s1 (ρ) c2 +

(
s1 (ρ) − s2 (ρ)

γ

1 + γ
c3

)
1

1 + c4ρ
v

]
.

From this expression, we see that a backward bifurcation occurs if the bracketed
term is negative, a constraint we can write (using (11) and (9)) as

c2 (1 + c4ρ) <

(
s0

2

s0
1

γ

1 + γ
c3 − 1

)
v.(12)

From this inequality, we can see the key mechanisms in this model that promote
a backward bifurcation (given the necessary condition that there exists a benefit
of cannibalism to adult survival γ > 0): the benefit to adult survival is high (c3 is
large); inherent juvenile survival is low (s0

1 is small); and cannibalism aggressiveness
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is high (v is large). Working against a backward bifurcation is a high level of food
resource ρ, a high resource uptake rate c4 , and strong density regulation of fecundity
by adult density (large c2).

In this example,

R0 (ρ) = βs0
1e

−c5 v

(
c4ρ

1 + c4ρ

)(
c4ρ

1 + c4ρ − (s0
2 + (sm

2 − s0
2) (1 − e−c6 v )) c4ρ

)

is an increasing function of ρ satisfying

R0 (0) = 0, R0 (+∞) = βs0
1e

−c5 v 1
1 − (s0

2 + (sm
2 − s0

2) (1 − e−c6 v ))
.

Thus, R0(ρ) < 1 for low resource levels ρ. If R0(+∞) > 1, then R0(ρ) > 1 for high
resource levels ρ. Otherwise, R0(ρ) never rises above 1 for any level of resource
availability ρ.

Figure 2 shows simulations of this model that illustrate a strong Allee effect aris-
ing from a backward bifurcation caused by the positive feedbacks from cannibalism.
Figures 1a and b show, respectively, a sample orbit for a noncannibalistic popula-
tion (v = 0) in a favorable environment (value of ρ for which R0(ρ) > 1) and in an
unfavorable environment (value of ρ for which R0(ρ) < 1). Because only negative
feedbacks are in force in the absence of cannibalism, the bifurcation at R0(ρ) = 1
is forward and stable. As expected, Figure 2a shows population survival and equi-
libration to a positive equilibrium, while Figure 2b shows population extinction.
In the latter case, if the population were to adopt cannibalism (v > 0), all other
parameters remaining the same, Figure 2c shows the population no longer goes
extinct; specifically, the population equilibrates to a positive equilibrium. This sur-
vival is initial-condition-dependent, however (i.e., there is a strong Allee effect).
This is illustrated by Figure 2d in which only the initial condition is changed and
extinction results.

4. Evolutionary dynamics. The juvenile–adult model in Section 2 and the
cannibalism version in Section 3 are time autonomous models in that they assume
that the entries in the projection matrix do not depend explicitly on time t. There
are, however, numerous reasons why one might want to study cases when these
entries, or more specifically when the vital rates describing survival, fecundity, and
so on, change over time, due, for example, to stochastic fluctuations or regular (e.g.,
seasonal) oscillations. In this section, we consider the case in which the entries in
the projection matrix change over time due to Darwinian natural selection.

We briefly describe an evolutionary game-theoretic version of the juvenile–adult
model (1)–(2) and describe some recent theoretical results with regard to how the
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FIGURE 2. Sample time series generated by the juvenile–adult model (1)–(4) with ex-
pressions (6)–(11). All cases use parameter values β = 4, s0

1 = s0
2 = 0.25, sm

2 = 0.50, c1 =
c2 = c4 = c5 = 0.01, c3 = 10, c6 = 0.04, and γ = 0.9. Simulations were computed for 10,000
time steps. (a) Cannibalism absent (v = 0) and high resource level ρ = 2000, which imply
R0 (2000) ≈ 1.19 > 1: the population survives and equilibrates to (x1 , x2 ) ≈ (61.0, 19.0) from
initial condition (x1 , x2 ) = (10, 0). (b) Cannibalism absent (v = 0) and low resource level
ρ = 600, which imply R0 (600) ≈ 0.935 < 1: the population goes extinct from initial condition
(x1 , x2 ) = (10, 0). (c) Cannibalism present (v = 5) and low resource level ρ = 600, which imply
R0 (600) = 0.936 < 1: the population survives and equilibrates to (x1 , x2 ) ≈ (10.3, 3.25) from
initial condition (x1 , x2 ) = (10, 0). (d) Cannibalism present (v = 5) and low resource level
ρ = 600, which imply R0 (600) = 0.936 < 1: the population goes extinct from initial condition
(x1 , x2 ) = (0.3, 0).

fundamental bifurcation theorem described in Section 2, in particular the relation-
ship between stability and the direction of bifurcation of positive equilibria, extend
to the evolutionary model. We are particularly interested, as we were in the nonevo-
lutionary model, in backward bifurcations and potential strong Allee effects that
occur when cannibalism aggressiveness increases in response to low noncannibalistic
resource levels.
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As an example, we look briefly at the evolutionary version of the example in Sec-
tion 3 when the cannibalism intensity coefficient v is subject to Darwinian evolution.
This will allow us to consider conditions under which the adoption of cannibalism
is an ESS, even for a population that is initially noncannibalistic, when faced with
a shortage of environmental food resource ρ.

The entries in the projection matrix are per capita vital rates. We assume that
the rates associated with a focal individual (sometimes referred to as a mutant) are
determined by a phenotypic trait v that has a heritable component and, in some
circumstances, by the traits of all other individuals as represented by the mean trait
u. Thus, the projection matrix P (x, v, u) and its dominant eigenvalue r(x, v, u) are
functions of x, v, and u. The methodology of evolution game theory asserts that
the dynamics of x and u are described by the equations (Vincent and Brown [2005],
McGill and Brown [2007]):

x (t + 1) = P (x (t) , v, u (t))|v=u(t) x (t)(13a)

u (t + 1) = u (t) + θ2 ∂ ln r(x(t),v ,u(t))
∂v

∣∣∣
v=u(t)

.(13b)

In some derivations of these dynamic equations, θ2 ≥ 0 is a constant of propor-
tionality related to the variance of the trait v, which is assumed constant over time.
The constant θ2 measures the speed of evolution (in particular, evolution is absent
if θ2 = 0). In this model, ln r(x, v, u) is taken as fitness. The trait dynamic equa-
tion (13b) has a long history in evolutionary modeling (e.g., in population genetics
related to the additive genetic variance assumption). It is sometimes referred to
as the breeder’s equation, Fisher’s equation of additive genetic variance, Lande’s
equation, or the canonical equation of adaptive dynamics (Lande [1976], Abrams
et al. [1993], Dieckmann and Law [1996], Abrams [2001], Abrams [2006], McGill and
Brown [2007], Dercole and Rinaldi [2008]). Some authors instead use R0(x, v, u) as
the measure of fitness in this methodology (Roff [1992]).

If evolution is absent, θ2 = 0, then u(t) = u0 for all t and the fundamental bifur-
cation theorem described in Section 2 applies to the population dynamic equation
(13a). If θ2 > 0, a fundamental bifurcation theorem for the evolutionary model
(13) is given in Cushing [2010] for the case when P = P (x, v) and r = r(x, v) do
not depend on the mean trait u, which is the case in Section 3 in which we are
interested.

An extinction equilibrium of the evolutionary model (13) is an equilibrium
(x, u) = (0, u). An extinction equilibrium occurs at and only at a critical trait
u = u∗, i.e., a trait for which
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∂r (0, v)
∂v

∣∣∣∣
v=u∗

= 0.(14)

With r∗ = r(0, u∗) as a bifurcation parameter, the local bifurcation of positive equi-
libria of (13) (i.e., equilibria (x, u) with x ∈ R2

+) from an extinction equilibrium
(x, u) = (0, u∗) at r∗ = 1 (equivalently R∗

0 = 1) has been established in Cushing
[2010]. If

∂2r (0, v)
∂v2

∣∣∣∣
v=u∗

< 0,(15)

then the extinction equilibrium loses (local asymptotic) stability as r∗ increases
through 1 and the stability or instability of the bifurcating positive equilibria de-
pends on the direction of bifurcation (as in the nonevolutionary model). The bifur-
cation is forward and stable if κ∗ > 0 and backward and unstable if κ∗ < 0 where

κ∗ � −w∗
L (∇∗pijw

∗
R ) w∗

R ,

and w∗
L , w∗

R are (positive) left and right eigenvectors in R2
+ of P (0, u∗) associated

with eigenvalue r∗ = 1. Here, ∇∗pij denotes the (row vector) gradient of pij (x)
with respect to x = col(x1 , x2) evaluated (x, u) = (0, u∗) when r∗ = 1 (equivalently
R∗

0 = 1). (If the inequality (15) is reversed, then both the extinction equilibrium
and the bifurcating positive equilibria are unstable for r∗ less than and greater
than 1.)

We note in passing that the results in Cushing [2011] show that R0(0, v) can
replace r(0, v) in the critical trait equation (14) and in the local maximum criterion
(15). This is often useful in applications since formulas for R0 are often available
when formulas for r are not.

When r(0, v) (equivalently R0(0, v)) has a local maximum at a critical trait v = u∗

when r(0, u∗) = 1 (R0(0, u∗) = 1), one key ingredient for a strong Allee effect is
available in the evolutionary model (13), namely, a backward bifurcation when
κ∗ < 0. As in the nonevolutionary model, the occurrence of a strong Allee effect, in
the presence of a backward bifurcation, requires the existence of another positive
attractor. The a priori bound criterion A2 that guarantees the existence of at least
one other positive equilibrium for the nonevolutionary model is not, as yet, available
for the evolutionary model. This is because the existence of a global, unbounded
bifurcating continuum of positive equilibria has not yet been established for the
evolutionary model (13).

However, we show that a strong Allee effect can occur in the evolutionary model
by means of numerical simulations of the evolutionary version of the specific model
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FIGURE 3. This simulation of (13) uses coefficients (6)–(11) and the same parameter values
as in Figure 2b except that now the mean cannibalism intensity u(t) is allowed to evolve
from u0 = 0 (a noncannibalistic state) with variance θ2 = 10. Simulations were computed for
10,000 time steps. (a) and (b) The population equilibrates to (x1 , x2 ) ≈ (22.4, 9.29). The mean
trait u(t), initially equal to u0 = 0 (a noncannibalistic population), initially increases rapidly
before slowly (monotonically) equilibrating to u = ue ≈ 26.5 (a cannibalistic population).
(c) This plot of the fitness landscape ln r(xe , v) shows a global maximum as a function of
v > 0 attained at v = ue (open circle). (d) R0 (0, u(t)) decreases from R0 (0, 0) ≈ 0.935 to
R0 (0, ue ) ≈ 0.873, and hence remains less than 1.

considered in Section 3 based on the ingredients (6)–(11). We use the cannibalism
efficiency parameter v as the evolving trait.

We use the parameter values in Figure 2b, which imply that the noncannibalistic
population suffers extinction, because the resource ρ is so low that r < 1. In Figure
2c, we saw that by introducing cannibalism into the model, by choosing v = 5, the
resulting cannibalistic population will not go extinct. In Figure 3, we see a different
scenario, in which cannibalism is allowed to enter the population evolutionarily.
Starting from the absence of cannibalism, u0 = 0, we see in Figure 3 a sample orbit
of the evolutionary version (13) of the model showing that the population adapts by
increasing the (mean) cannibalism intensity u(t) from 0 to an positive equilibrium
level ue (Figure 3b) and, in so doing, no longer suffers extinction (Figure 3a).
Moreover, Figure 3c shows that the equilibrium mean trait ue is located at a global
maximum of the adaptive landscape ln r(xe, v) (as a function of v) and therefore
is an ESS (Vincent and Brown [2005], McGill and Brown [2007]). Figure 3d shows
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FIGURE 4. This simulation of (13) uses coefficients (6)–(11) and the same parameter values
as in Figure 2a except that now the mean cannibalism intensity u(t) is allowed to evolve from
u0 = 0 (a noncannibalistic state) with variance θ2 = 10. Simulations were computed for 10,000
time steps. (a) and (b) The population equilibrates to (x1 , x2 ) ≈ (76.9, 32.2). The mean trait
u(t), initially equal to u0 = 0 (a noncannibalistic population), initially increases rapidly before
slowly (monotonically) equilibrating to ue ≈ 18.7 (a cannibalistic population). (c) This plot
of the fitness landscape ln r(xe , v) shows a global maximum as a function of v > 0 attained at
v = ue (open circle). (d) R0 (0, u(t)) increases from R0 (0, 0) ≈ 1.19 to R0 (0, ue ) ≈ 1.18, and
hence remains greater than 1.

that the inherent net reproductive number R0(0, u(t)) remains less than 1 (and in
fact, decreases) during this entire evolutionary adaptation.

For the simulation in Figure 3, calculations show that there is a unique critical
mean trait u∗ ≈ 4.20 (obtained by numerically solving (14)); that

∂2r (0, v)
∂v2

∣∣∣∣
v=u∗

≈ −1.28 × 10−4 ,

and hence (15) holds; and that κ∗ ≈ −0.574 < 0 and hence a backward bifurcation
occurs. Changing the initial condition (x1 , x2) = (10, 0) to a small value of x1 results
in population extinction (not shown in Figure 3).
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Figure 4 shows the changes that occur when the resource level ρ is increased to
the level in Figure 2a when the noncannibalistic population does not go extinct
because R0 > 1. In the evolutionary case shown in Figure 4, the noncannibalistic
population still adapts by introducing cannibalism, albeit at a lower ESS level
(Figure 4b) than in the adverse environment (Figure 3b). In this case, R0(0, u(t))
remains (and equilibrates) higher than 1 during the approach to equilibrium.

5. Concluding remarks. Motivated by an example from colonial seabirds in
which depressed resources are associated with increased egg cannibalism, we have
constructed a low dimensional, proof-of-concept, two-stage population model in
which adults cannibalize juveniles and the vital rates, including the cannibalism
rate, depend on the (noncannibalism) food resource availability. The model in-
cludes positive effects of cannibalism on adult survivorship and negative effects of
cannibalism on juvenile survivorship. We also constructed an evolutionary version
of this model in which a parameter that measures cannibalism aggressiveness is
allowed to evolve.

In our model, increased (noncannibalism food) resource levels ρ have a positive
effect on fecundity and survivorship and a negative effect on the adult cannibalism
rate. We showed that in the absence of cannibalism, the population model has a
forward bifurcation of stable positive equilibria at R0(ρ) = 1, so that when resources
are high (R0(ρ) > 1), the population survives, but when resources are low (R0(ρ) <
1), the population goes extinct. If adult cannibalism is present and its benefit to
adult survival is sufficiently high, then the bifurcation can be backward and the
bifurcating branch of equilibria, unstable near the bifurcation point, can turn back
to the right at a saddle-node bifurcation, and become stable. Therefore, the benefit
of cannibalism for adult survival can cause a strong Allee effect, that is, a range
of R0(ρ) values less than one over which there are two attractors: the extinction
state and a positive stable equilibrium. This indicates that adult cannibalism on
juveniles can allow a population to avoid extinction during when the availability
of environmental food resource is so low (caused, perhaps, by climate or other
environmental changes) that the population is threatened with extinction.

In the evolutionary model, the cannibalism efficiency of an individual adult is
subject to change by means of Darwinian evolution. This model predicts, in cir-
cumstances when availability of environmental food resource and the benefits for
adult survival by cannibalism are so low that the population will go extinct, that it
is possible for evolution to raise the mean level of cannibalism efficiency among the
adults to a level at which the population will not go extinct. Moreover, the mean
level of cannibalism efficiency attained is an evolutionary stable strategy. Interest-
ingly, should the resource availability increase to a level at which the population
will not go extinct even in the absence of adult cannibalism (due, say, to a recovery
of environmental factors), the model predicts that the mean cannibalism efficiency
will not evolve to 0.
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The proof-of-concept model used in this study, although not descriptive of a par-
ticular ecological system, shows that adult cannibalism on juveniles can be beneficial
to the survival of the population and can serve as an ESS trait. In future studies of
the colonial seabird system in relation to local sea surface temperature, we will de-
rive and analyze models that incorporate more detailed and realistic mechanisms of
cannibalism, as well as other life history characteristics that are affected by climate
change.
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