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Summary. Theorems are given which guarantee the bifurcation of  non-constant, 
periodic solutions (of fixed period) of a scalar functional equation with two 
independent parameters. These results are applied to a single, isolated species 
growth model of general form with a general Volterra (Stieltjes) delay using the 
'magnitudes' of the instantaneous and delayed growth rate responses as the 
independent bifurcation parameters. The case of linear growth rate responses 
(i.e. delay logistic models) is considered in more detail, particularly the often 
studied single lag logistic equation. 
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1. Introduction 

It is well known that a delay in the per unit growth rate response of a single, 
isolated species can cause the destabilization of an otherwise stable equilibrium 
density (see, for example [5, 12]). The general effect of such a delay is to cause 
oscillations around the equilibrium. These oscillations can be either convergent, 
divergent or sustained depending on the 'significance' of the delay as compared to 
other parameters in the model (e.g. the inherent species growth rate). The latter 
possibility of sustained, periodic oscillations around an equilibrium has been 
studied mathematically by several authors, beginning with the early work of 
Wright [16], Kakutani and Markus [11], Jones [9, 10] and Grafton [8] on the single- 
lag logistic model and continuing with more recent work of Nussbaum [14]. 
Logistic models with more general delays have been studied by Dunkel [6, 7], 
Walther [15] and Cushing [1, 2, 5]. 

Our purpose here is to demonstrate the existence of nonconstant periodic solutions 
of much more general single species models than those considered in these refer- 
ences and to do this in a new way. 

The majority of the mathematical literature concerning noneonstant periodic 
solutions of functional equations utilizes the concept of a non-ejective fixed point 
(e.g. [9, 15]), an approach which requires an extraordinary amount of detailed 
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analysis of the special nature of the specific equations considered. Here we approach 
the problem of periodic solutions as a bifurcation phenomenon, but we do this 
in a manner slightly different from the classical Hopf technique which studies the 
problem as one involving one explicit 'bifurcation' parameter. We will assume 
that more than one independent parameter appears explicitly in the model. 
Mathematically, as can be seen by the shortness of the proof of  our main result, 
Theorem 1 below, the advantage of this approach lies in the ease with which a 
bifurcation result is proved and in the generality of the models to which the result 
applies. The main conceptual difference between our approach and the classical 
Hopf bifurcation approach is that rather than treat the period as an unknown 
parameter we will consider bifurcation in a function space of fixed period by 
utilizing two parameters (rather than one) which appear explicitly in the equation. 
The appearance of two or more independent parameters in an equation is of course 
not unusual and is in fact highly likely in most applications. In the growth models 
considered below we will utilize three parameters: the inherent species growth 
rate and the 'magnitudes' of the delayed and nondelayed growth rate response to 
density changes. 

In the following section we present our main mathematical results together with 
the necessary preliminaries. Application to single species growth models is made 
in Section 3. Although the main application is to general models with very general 
delay functionals, we also discuss the important special case of linear response 
functionals ('logistic' models) and in Section 4 the special case of a single-lag 
logistic model. 

2. The Main Theorem 

In preparation for our consideration of single species delay models in Section 3, 
we consider the scalar functional equation 

(N)  x ' ( t )  = - A l x ( t )  - A2 x ( t  - s )  dh(s)  + g(x ,  al, A2)(t) 

where A1, ,~2 are reals a n d f o  dh(S) = 1. We will make specific assumptions about 

the integrator h(s)  and the functional g below. The essential requirement will be 
that g is 'higher order'  in x near x = 0 and as a result we first study the linear 
problems 

I; (H) y ' ( t )  = - a l y ( t )  - a 2  y ( t  - s ) d h ( s )  

(NH) z ' ( t )  = - a l z ( t )  - ~2 z ( t  - s )  dh(s)  - f ( t )  

where f ( t ) ~  P ( p ) ,  the Banach space of continuous p-periodic functions under the 
supremum norm [f[0 --  sup0 .~ t .~  Jf(t)l. 

Assume h(s)  is of  finite total variation on the half line s >i 0 and f o  dh(s)  = 1. 
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The facts contained in the following lemma are known (a proof  can be found in 
[4]). The period p will always be assumed to be minimal. 

Lemma 1. (A Fredholm Alternative.) Let cq, ~2 and p be fixed reals with p > O. 

(a) The homogenous problem (H) possesses at most a finite number k >1 0 of inde- 
pendent, nontrivial p-periodic solutions y~( t ) E P (p). 
(b) I f  k = 0 then the nonhomogeneous equation (NH) possesses a unique solution 
z(t) ~ e (p )  for every f ( t )  ~ e(p).  
(c) I f  k > 0 then (NH) has a solution z(t) ~ e (p)  i f  and only i f  f ( t )  ~ Po(P) where 
Po(P) is the Banach space 

fo' P o ( P ) = { f e P ( P ) : ( f , Y ~ ) : = P - 1  f ( t ) y~ ( t ) d t = O,  1 <<.i<~k}. 

I f  k > 0 and f ( t ) ~  Po(P) then (NH) has a unique solution z ( t )~  Po(P) and the 
operator L: Po(P) ~ Po(P) defined by z = L f  is linear and compact. 

By a solution we always mean a function which is differentiable almost everywhere. 

We are interested in those values of  a~ for which the homogeneous equation (H)  
possesses exactly two nontrivial, p-periodic solutions. Let 

fo fo S,(p) :=  sin 2nrrp-is dh(s), Cn(p) :=  cos 2mrp-is dh(s). 

Lemma 2. The homogeneous problem (H) possesses exactly two independent, non- 
constant p-periodic solutions i f  and only i f  p > 0 is such that the two conditions 

(HI) 

and 

(H2) 

&(p) # 0, C~(p) # 1 

for each integer n > 1 either S,(p) # nSl(p) 
or CI(p) # C.(p) 

hold and also the coefficients are given by 

al = -2~rCl(p)[pSl(p), a2 = 27r/pS~(p). 

The nontrivialsolutions are then y~(t) = sin 2~rp- ~t, y2(t) = cos 2zip- it. 

Proof. I f  the complex Fourier series 

+ o o  

y(  t ) = ~ c~ e 2~'n~- lt 
n =  - o o  

where c, --- e-n, n > O, ( ' - '  denotes complex conjugation) is substituted into (H) 
and coefficients of  like terms are equated, then one obtains the equations 

[al + %C~(p) + i(2rmp -1 - ~=&(p))]c. = O, n >t o. 

Since nontrivial solutions are obtained if and only if at least one coefficient c~ # 0; 
since each nonzero coefficient cn for n > 0 yields two independent solutions (namely, 
sin 2~rnp-~t and cos 2rmp-~t); and since p is assumed minimal we see that (H) has 
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exactly two independent  p-per iodic  solutions sin 2~rp-lt and cos 2rrp-lt  if  a n d  
only if  

~ 1 + ~ 2 4 = 0  ( n = 0 )  

a~ + ~2C1(p) = O, ~=SI(p) = 2r -1 (n = 1) 

~1 + ~2C,(p) # 0 or c~aS,~(p ) # 2~rnp -1 (n >1 2). 

The  second pair  o f  equations yield the values of  czl and ~2 as given in the l emma  
(provided S~(p) :~ 0) while the remaining condit ions are easily seen to be equivalent  
to ( H I )  and (H2). [ ]  

Example 1. Suppose h(s) -- ur(s), the unit  step funct ion at t = T, so that  the delay 
in equations (H)  and (NH)  reduces to a constant ,  instantaneous t ime lag o f  length 
T > 0. Then (H1) reduces to sin 2rrp- aT # 0. Moreover ,  it is easy to show that  (H2) 
is fulfilled, for  if bo th  sin 2rrnp-~T = n sin 2 r rp - lT  and  cos 2 r rp - IT  = cos 2nrrp- 1T 
hold for  some integer n /> 2 then the contradict ion (n 2 - 1)sin 2 2 r r p - l T  = 0 
follows. For  this example,  ~i = -2~rP -1 cot 2rrp-lT, ~2 = 2~rp -1 csc 2~rp-~T. 

Example 2. An example  for  the case of  cont inuously distributed delays is dh(s) = 
k(s)  ds where 

(w2se -ws f o r m  = 1 
kin(s) = ~ kwe  -~8 for  m = 0 

and w > 0 is a positive real. No te  tha t  kin(s) >1 0 and J'o kin(s)ds = 1. Such 

kernels are often used in delay models  (e.g. see [12, 5]). The  kernel ko(t) represents 
a ' w e a k '  delay in the sense that  it is monotonica l ly  decreasing while the kernel 
kl(s)  represents a ' s t r o n g '  delay in the sense tha t  it increases to a m a x i m u m  
before monotonica l ly  decreasing to zero. Thus k~(s) provides a cont inuously 
distr ibuted analogue to the case o f  a single, ins tantaneous t ime lag. 

F o r  these kernels we have (setting f = 2rrp-1) 

f ~  ~2nfwa(w = + n~f2) -2, m = 1 
S~m)(P) := o kin(s) sin nfs ds = ~ nwf(w 2 + n2fZ)_ l, m = 0 

Io~ km(s) cos nfs ds = f w2(w2 - n~fZ)(w= + n2f=)-2' m = 1 
C~"}(P) : =  " ~w=(w 2 + n=f=)-1, m = O. 

Since s(~m)(p) > 0, C~")(p) < 1 for  all n , m ,  w a n d f w e  see that  ( H 1 ) h o l d s .  It  is 
easy to see that  nS(~")(p) # s(,m~(p), n > 1, so that  (H2) holds also. Fo r  these delay 
kernels we find tha t  

~'(f2 _ w2)/2w, m = 1 
O~ 1 

~--W,  m ---- 0 

= f(w2 + f2)2/2w 3, m =  1 

ga k (w 2 + f2) /w,  m = O. 
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With these preliminaries concerning the linear problems (H) and (NH) out of  the 
way, we return to the nonlinear problem (N). Let Bp(r) denote the ball Bp(r) = 
(x eP(p):lxlo <<. r} of radius r in P(p)  and let B~ denote the corresponding 
ball in Po(P). Let I(cq, r)  = (~ - r, ~ + r)  and I(r)  = I(c~1, r) x I(~2, r). We 
will need the following hypotheses on the higher order terms in (N). 

(I-D): Assume (HI)  and (H2) hold for some p > 0. Suppose that the operator 
g: Bp(r) x I(r)  --->P(p) is continuous for some r > 0, that for each pair (At, ~2) 
I(r)  it maps bounded sets in Bp(r) into bounded sets and that [g(x, hi, A2)[o = 
o([x[o) near x = 0 uniformly for (A~, h2) ~ I(r). Finally, for each x E Bp(r) suppose 
that g is (Fr6chet) continuously differentiable in both h~ ~I(cq, r) with 
[(~/a~)g(x, ~1, ~2)10 = o([Xlo) near x = 0 uniformly in (;q, h2) ~ I(r).  

In our applications below g will be linear in ~. Such an operator g = Axgl(x) + 
A2g2(x) + g3(x) will satisfy (H3) when each operator g~(x) satisfies those conditions 
in (H3) involving g as an operator in x. 

Theorem 1. Assume that (HI),  (H2) and (H3) hold for  some period p > 0 and some 

delay integrator h(s) o f  finite total variation on s >>. O, So d h ( s ) =  1. Let 
y = kl sin 2~rp- ~t + kz cos 2~rp- it, k~ + k~ = 1, be any nontrivial solution o f  (H) 
for  the ~ given in Lemma 2. For each small I~1 there exists a solution o f  (N) of  the 
form 

x( t )  = ey(t) + ,z( t ,e) ,  z ( . , , ) ~ e o ( p ) ,  Iz(.,e)lo = 0([e l) (2.1) 

for  As = ~, + [3,(8) where I/~,(~)1 = 0(1~1). 

Proof. Substitution of (2.1) and h~ into (N) yields, after a cancellation of e, the 
equation 

z'( t)  = - ~ l z ( t )  - ~2 z(t - s) dh(s) - G(z, fl,, e) (2.2) 

where 

fo G(z, fl,, e) :=  fll(Y + z) + flz (y(t  - s) + z(t - s) dh(s) 

- e - ~ g ( ~ y  + , z ,  ~ + ~ ,  ~ + / 3 ~ )  

which must be solved for z e Po(P) for appropriate/3~. In as much as G E P(p)  it 
follows from Lemma i (c)  that in order for z ~ Po(P) it is necessary that G ~ Po(P). 
To solve (2.2) we will prove the existence of a fixed point of  an operator defined as 
follows : given any Z ~ B~ we choose the constants fl~ such that G(Z, fl~, e) lies in 
Po(P) in which case z = LG(Z, fl~, ~) is the unique solution in Po(P) of the linear 
nonhomogeneous equation (NH) with f ( t )  = G(Z, fl~, e). Clearly a fixed point of  
this operator solves the nonlinear equation (2.2). 

In order to accomplish this task we must first show that the fl~ can be chosen so that 
G(z, fl~, ~)~ Po(P), a requirement which yields the following two equations for 
~,  ~ : 

a~(y + z)flx + a,z(y + z)fla - ),,(y + z, fl~,flz, e) = 0, i =  1 a n d 2  (2.3) 
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where 

all(x) = (x(t), sin 2rrp-lt), a21(x) = (x(t), cos 2~rp-lt) 

a12(x) = ( f f x ( t  - s)dh(s),  sin 2 ~ , - l t ) ,  

(fo ) aa2(x) = x( t  - s) dh(s), cos 21rp-it 

yl(x, /31, /32, e) = (e-lg(ex,  ~1 +/31, ~z +/3z), sin 2~rp-it) 

9'2(x,/31,/32, e) = (8-1g(ex, al +/31, ~z +/32), cos 2rrp-lt) 

for x ~ P(p)  and e small enough. Equations (2.3) constitute two equations for two 
unknown/3,. The Jacobian J = J(z, e) with respect to/31,/32 of  the left hand side of 
(2.3) is, for z = 0 and e = 0, equal to J(0, 0) = (a,j(y)). A simple calculation 
shows that det (a~j(y)) = -$1(p) /4  and consequently det J(0, 0) ~ 0 by (HI). The 
implicit function theorem implies that (2.3) is uniquely solvable for fl, =/3~(z, e) 
where/3,(0, 0) = 0 and /3, is continuous in Z and 8 for z ~ B~ *) and I~1 ~< ~o, 
0 < r* ~< r, e ~ > 0. This implies fl~ has a bounded range (for r* and e ~ small) so 
that the hypotheses on g in (H3) imply b',l = 0(1~1) uniformly for z ~ B~ This 
fact, together with the fact that (a,;(y + z ) ) =  J(z, e ) +  0(1~1) uniformly for 
z e B~ implies from (2.3) that I/3,1 = 0(1~1) uniformly for z ~ B~ 

The operator Q,: B~ is thus well defined by Q~z = LG(z,/3,(z, e), e) 
and is continuous for each ~, le[ ~< e ~ Since L is compact, Q, is completely 
continuous. The hypotheses on g in (H3) and the properties of/3~ imply I Q,zlo = 
0(1~1) uniformly for z ~ B~ *) and consequently for e ~ smaller, if necessary, Q, 
maps B~ *) into itself for each lel ~< ~o. The Schauder-Tychonoff fixed point 
theorem guarantees the existence of  a solution of (2.2) in B~ *) for each I~1 ~< ~o 
Since z = Q~z it follows that Izlo = 0(le[). []  

Remark 1. The Schauder-Tychonoff fixed point theorem was used in the above 
proof. If  a suitable Lipschitz-type assumption is made on the functional g, then the 
contraction principle could be used with the added result that the fixed point is 
unique in B~ In this case the small amplitude solutions found in Theorem 1 
would be, for a given p, the only small amplitude solutions. 

It is often of  interest in applications to be able to compute some higher order terms 
in the ill. 

This would be the case, for example, if the 'direction of  bifurcation' were desired; 
that is to say, if it is desired to know whether ,~ 1> a~ or A~ ~< ~, (or neither) for 
small lel. The familiar classical method for doing this is to substitute e series 
expansions for x and A, into (N) and to equate coefficients of  like powers of e. This 
generates a recursive sequence of linear equations, the first of  which is (H) and the 
remaining of which have the nonhomogeneous form (NH). The orthogonality 
conditions of Lemma 1(c) for these latter equations determine the successiv,~ 
coefficients in the e expansion of ,X~. This procedure is illustrated in Section 4 for 
the lag-logistic equation. We complete this section with a formal justification of  
this method. We will need stronger hypotheses on the nonlinear term g in (N): 
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(I-I4): Assume (H1) and (H2) holds for  some p > 0. Suppose tha t  m /> 2 is an 
integer, yj ~P(p)  are m arbi t rary  but  fixed funct ions (1 ~< j ~< rn) and ~j.~ are 
2m - 2 arbi t rary  but  fixed constants  (2 ~ j ~< m, 1 ~< i ~< 2). Assume that  there 
exists r > 0 and  e ~ > 0 such tha t  for  any z ~ B~(r), I/~,1 ~< r and le I ~< ~0 if 

X = ~ eJyj + emz 
t f f i l  

Ai = ~ ~j,~e j-1 + em-l~, cq.t = ~ 
j = l  

then 

g(x, 21, 22) = ~ eJgj + emgm+ l 
t = 2  

where gj = gj(yq, aq,i) eP(p )  for  1 ~< q ~ < j -  1, 2 ~<j ~< m and where gm+l is 
cont inuous  in z, fl~ and e and (Fr6chet) cont inuously differentiable with respect 
to 8, with Igm+ll0 = 0(I,I) and I(a/~/~,)gm+ll0 = 0(1~1) uniformly in z and fl~. 

This  hypothesis  (H4) says essentially that  when mth  order  (respectively (m - 1)st 
order)  expansions in e f o r  x (respectively ~)  are substi tuted into the opera tor  g 
there results an expansion in e whose coefficients depend only on coefficients in x 
and ;~ o f  equal or  less order.  I t  holds if  g is m times cont inuously  (Fr6chet) 
differentiable in x and ,~. 

As an illustration of  (H4) (which is pert inent  to our  appl icat ion below) we remark  
tha t  it is satisfied by opera tors  o f  the fo rm 

(f0  ) g(x; 11, Az) = Algl(x) + ~2g2 x(t -- s) dh(s) 

where g~ are m times cont inuously differentiable real valued funct ions of  real 
variables for  which g~(0) = g~ (0) = 0. 

We now define what  will turn out  to be the coefficients in the expansions of  solu- 
t ions x and A~ o f  Equat ion  (N). Let  yl(t) = y(t) be any nontrivial  p-periodic 
solution o f  (H) and =1.~ = ~ ( f rom L e m m a  2). Define yj and %.~ for  2 ~< j ~< m and 
i = 1, 2, recursively as follows: 

Y~ = -~lY~ - ~2 yj(t - s)dh(s) + Gj(t), yj ePo(p) (2.4) 

G j : = - ~ ,  ~j+l-q.lYq + ~j+1-~.2 y o ( t -  s) dh(s) +gj ,  2 <~j<~ m 
q = l  

a~l(y)~j.~ + a,2(y)c~.~ + ~,~.~ = 0, 2 ~<j~< m, 1 ~< i~< 2, (2.5) 

where a~(y) are defined as above in the p roo f  o f  Theo rem 1 and 

~'~.1 : =  (H~(t), sin 2~rp-~t), ~'~.2 : =  (H~(t), cos 2rrp-lt). 

/-/~ :=  ~ ~§ + ~§ Y1r - s) d~(s) - g~, 2 ~< j ~< m. 
q=2 
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The 2 x 2 linear system for aj,~ and aj.2 given by (2.5), which is uniquely solvable 
because its coefficient matrix has determinant -S~(p)/4 as in the proof of Theorem 
1, is equivalent to Gj ~ Po(P) and hence allows (2.4) to be uniquely solved in Po(P). 
Note that the properties of gj given in (H4) allow (2.4) and (2.5) to be solved 
recursively since Gj and Hj depend only on previously calculated yq and %.t, 2 ~< 
q < . j - 1 .  

Theorem 2. Assume (H1), (H2) and (H4) hoM for  some p > 0 and integer m >1 2. 
Le t  y j( t )  and aj , i for  1 <~ j <. m, 1 <x i <. 2 be defined by (2.4) and (2.5). For small 
[81 there exists a solution o f  (N) o f  the f o rm  

x( t )  = ~ 8Jyj(t) + 8'~z(t, 8) 
t = 1  

with 

(2.6) 

in 

= ~j., + 8m-zfl,(8 ), 1 ~< i 4 2, (2.7)  
t = 2  

where 

z( . ,  8) ~ eo(p) ,  Izlo = 0(181) 

and 

18,(~)1 = 0(lsI). 

Proof. Substitution of the expansions (2.6) and (2.7) into (N) yields, because of 
equations (2.4) and (2.5) and after a cancellation of an 8 m, an equation of the form 

) z'  = --cqz -- ~2 z( t  - s ) d h ( s )  - 8z eJ-lYj  + 8m-lz  

fo f: ) - 82 8 j -1  yj( t  - s )  dh(s) + 8 "~-1 z(t - s)  dh(s) 

+ R(z, 8,, ~) + p(t, ~) (2.8) 

to be solved for z ~ B~ for appropriate 8,- 

Here p( . ,  e) e Po(P) satisfies Iplo = 0(1~1) and by (H4) both IRIo and I(a/o8,)RIo = 
0(]e[) uniformly for z e B~ and 18,1 ~ r. This Equation (2.8) can be shown to 
have a solution in B~ in exactly the same way that (2.2) was: the necessary 
condition that the last four terms on the right hand side of (2.8) lie in Po(P) leads 
to two equations for the two constants 8~ whichare solvable by the implicit function 
theorem (the Jacobian at z = 0, e = 0, is the same as that in the proof of Theorem 
1) for 8~ = 8i(z, e) which have the same properties as in the proof of Theorem 1. 
The operator Q~ has the same properties as the analogous operator in the proof of 
Theorem 1 and the proof follows exactly as in the last paragraph of that proof. [] 
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The result of  Theorem 1 is different from classical Hopf  bifurcation in that bi- 
furcation occurs within a space of  fixed period with respect to two independent 
bifurcation parameters '~1, A2- Hopf  bifurcation deals with equations with one 
bifurcation parameter and consequently results (in general) in bifurcating solutions 
of  varying period. The reason for this is that in order to deal with the two orthogo- 
nality conditions which result from the two independent solutions of  the lineariza- 
tion, the Hopf  approach must introduce a second parameter into the analysis, 
which it does by considering the unknown period of the solution. Our approach on 
the other hand uses two parameters which already appear explicitly in the equation, 
an approach which results in a short proof  which applies in a general setting. 

Viewed in a certain way these two different approaches can be seen to yield the 
same bifurcation phenomena. If  Hopf  bifurcation is seen as prescribing a relation- 
ship A(A1, ,X2) = 0 between A1 and ;~2 so that there appears only one independent 
parameter, then in principle the equation A(;h(e, p), Aa(~, P)) = 0 (we now view A~ 
in Theorem 1 as functions of p as well as e) determines p = p(e) and hence the 
varying period in the bifurcating solutions of  Theorem 1. Geometrically this 
comparison can be viewed as in Figure 1 where the amplitude of  the solutions x is 
plotted against the corresponding A1, A2. For  fixed period p = pj Theorem 1 
yields a branch curve Cs above the base curve Bj in the ,~1, '~z plane determined by 
,~ = A~(e, Ps) as a function of  e. These curves C; and Bj meet at the bifurcation 
point corresponding to e = 0 lying on the 'bifurcation curve' B given by ,~ = 
,~(0, p) as a function of the period p. Thus, we obtain a 'bifurcation surface' S 
swept out by the curves Cj as the period varies. Now, i fa  relationship A(,Xx, '~2) = 0 
is prescribed as a curve A in the A~, ~2 plane, then one obtains a bifurcation curve C 
on S with base curve A which in general will be transversal to Cj and hence will 
yield period varying, Hopf-type bifurcation. 
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A figure similar to Figure 1 is drawn for the specific case of the lag logistic equation 
in Figure 2. 

3. Single Species Delay Models 

Suppose that the per unit growth rate of a single, isolated species of density 
N = N( t )  is modeled by an equation 

1 d N ( t )  = b - a f ( N ( t ) )  - d F ( N ) ( t )  (3.1) 
N(t )  dt 

where the term f accounts for the instantaneous effect of species density on its 
growth rate while the functional expression F accounts for any such delayed effects. 
The symbols a, b and d are parameters which, roughly speaking, can be thought of 
as follows: a is a measure of the magnitude of the instantaneous density effects on 
growth rate, b is the inherent growth rate of the species in the absence of any 
density effects (i.e. in an environment with unlimited resources) and finally d is the 
magnitude of the delayed density effects on growth rate. We assume (3.1) has a 
positive equilibrium N = e: 

(hi) the equation af(e) + dF(e)(t) = b has at least one 
(not necessarily unique) constant solution e > 0. 

We are interested in the existence of nonconstant, periodic solutions of (3.1) 
near N = e for critical values of the parameters a, b, and d. To apply the results 
of the previous section we first center the problem on the equilibrium by set- 
ting x = N - e. I f  we assume that the functions f and F satisfy the following 
hypotheses: 

(h2) (a)f is  a real valued function of a real variable which is twice continuously 
differentiable in a neighbourhood of  N = e with f ' (e )  ~ 0; 
(b) h(s) is an integrator of finite total variation on the half-line s >i 0, 

5o dh(s) -- 1, and satisfies (HI)  and (H2) for some period p > 0 for 

which we can write 

io F(x + e)(t) = F(e) + x(t - s) dh(s) + R(x)(t), x ~ B,(r) 

for some r > 0 where the higher order term R(x) satisfies the conditions 
which g satisfies in (H3), 

then x will satisfy an equation of the form (N) in Section 2 with 

)'1 = aef'(e), )'2 = de 

g(x, )`x, )'2) :=  )'lgx(x) + )`2gz(x) 

gl(x) :=  - (eq(x)  + f ' (e )x  2 + xq(x))/ef'(e) 

g2(x) : = - ( e R ( x ) + x  f o  x ( t -  s)dh(s)  + x R ( x ) ) / e  

q(x) :=  f ( x  + e) - f (e)  - f ' (e)x .  
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Moreover, under these conditions the resulting equation satisfies the hypotheses 
(H1), (H2) and (H3) of  Section 2. We now view a and d as free parameters with e 
fixed and b determined by (ha). From Theorem 1 we obtain the following result. 

Theorem 3. Assume that the response functions f and F in the single species model 
(3.1) satisfy hypotheses (h~) and (ha). For a fixed value of  the equilibrium e the delay 
single species model (3.1) has nontrivial p-periodie solutions (p as in (H1) and (H2)) 
of  the form 

U(t)  = e + ey(t) + 8z(t, e) 

for I~1 small, z(. ,  e) E Po(P) and for y as in Theorem 1 with parameters 

a = (~1 + fl~(e))/ef'(e) = ~/ef ' (e)  + O(e) 

d = (a:  + fl2(e))/e = a2/e + O(e) 

b = af(e) + dF(e) = a~f(e)/ef'(e) + azF(e)/e + O(e), 

where the critical values al, a2 are given in Lemma 2 and where fl~ = 0(H ) and 
Iz(t, DIo = o(l~l). 

As an illustration of  Theorem 3 we consider the case when b o t h f a n d  F are linear: 

1 dN(t)  f ;  N( t )  "& = b -  a N ( t ) -  d N(t  - s) dh(s), a +  d r O. (3.2) 

Here (h~) holds and e = b/(a + d), which we assume is positive. For convenience 
we will assume that the units used for species density are chosen so that e = 1 or, 
in other words, we assume 

b = a + d .  (3.3) 

In this application f(1)  = 1, f ' (1)  = 1, q(x) = O, R(x) = 0 and F(1) = 1. All of 

the needed hypotheses on f ( N )  = N and F(N) = fo N( t  - s) dh(s) hold. Thus 

all that is needed in order to apply Theorem 3 to (3.2) are the requirements that 
the period p be chosen so that (H1) and (H2) hold for the given delay integrator 
h(s). Thus we have the following corollary of  Theorem 3. 

Corollary 1. I f  p is chosen so that (HI)  and (H2) hoM then the linear-response model 
(3.2)-(3.3) has nontrivial p-periodic solutions of the form described in Theorem 2 
(with e = 1)for parameter values 

a = -2*rCl(p)/pSl(p) + O(e), d = 2~r/pS~(p) + O(e) 

b = 2~r(1 - C~(p))/pS~(p) + O(e). 

Remark 2. If  dh(s) = k(s) ds, k(s) >1 O, fo k(s) ds = 1 then it is known [13] that 

a > [d I implies the global asymptotic stability of  the equilibrium of the delay 
logistic model (3.2). The result in Corollary 1 is consistent which this known fact 
since ICa(p)[ < 1 implies, at least to lowest order in e, that la[ < [d[. In this sense 
the growth rate response delay in (3.2) must be of sufficient magnitude in order that 
that the species density exhibit sustained oscillations. 
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Remark 3. Remark 1 is applicable to the results in Theorem 3 and hence in 
Corollary 1. Thus, for the linear response model (3.2), the small amplitude solutions 
in Corollary 1 are unique. 

Remark 4. In most linear-response models (3.2) the constants are to satisfy the 
sign conditions b > 0, a >t 0, d/> 0. In applying Corollary 1 in this case we need 
only require, in addition (H2), the inequalities 

St(p)  > O, CI(p) < 0 (3.4) 

in order to insure these sign conditions (at least for small e). 

In the case of the instantaneous, constant time lag h(s) = ur(s) in Example 1 
above, the sign requirements (3.4) reduce to 

sin 2~rp-lT > 0, cos 2~rp-IT < O. 

The condition (H2) is fulfilled as was shown in Example 1 and consequently 
Corollary 1 guarantees the existence of nonconstant p-periodic solutions for the 
given coefficients a, b and d under these inequalities. More is said about this 
example in Section 4 below. 

For  the 'weak generic' delay kernel dh(s) = ko(s)ds  = we - ~  ds, w > 0, we see 
from the results in Section 2 that (3.4) fails to hold because CI(p) = w2/(w 2 + f2 )  > 
0, f = 2~r/p. Thus for this model the p-periodic solutions of Corollary 1 (again, for 
small e) are associated with a coefficient a < 0, i.e. an instantaneous autocatalytic 
response to density (or an Allee effect) in the growth rate of  the species. 

For  the 'strong generic' delay kernel d h ( s ) =  k~(s)ds  = w2se -~ds ,  w > O, 
however, the condition (3.4) is fulfilled when 2~r > wp since 

Cx(p) = w2(w ~ - f 2 ) / ( w 2  + f2)2, f = 2trip. 

Since (H2) holds (see Example 2) Corollary 1 yields p-periodic solutions for 
coefficients a > 0, b > 0 for periods p < 2~r/w. 

Remark 5. Theorem 2 applies to the logistic equation (3.2) for any m >/ 2 and as a 
result e expansions of any desired order m can be found for the periodic solutions 
N ( t )  and the parameters a, b and d as described in Theorem 2 and its proof. An 
example of this is given in the next section. 

Remark 6. An easy integration over the interval 0 ~< t ~< p of both sides of  Equa- 

tion (3.2) for a p-periodic solution shows that the average [N] = p -1  fo N ( t )  dt 

equals the equilibrium b/(a + d). 

4. The Lag-Logistic Model 

A model which has been frequently studied in the literature is the linear-response 
model (3.2) with a = 0 (see for example [6, 7, 9, 10, 15, 16] and other references 
cited in these papers). This model is a delay version of the well-known logistic 
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growth model  and also arises in applications in fields other than populat ion 
dynamics [9]. With our  approach  in this paper  it is not  clear that  the results which 
we have derived apply to the case when a = 0, since in Corol lary 1 a is a function 
o f  8. However,  in Corol lary 1 we have found  ' b r anches '  o f  solutions o f  the form 
N ( t ,  8), a(8), b(8), d(8)  for  small values o f  a parameter  8 which bifurcate f rom the 
values e, a~, ~t + c~2, ~2 respectively and it is conceivable that  for one or  more  o f  
these branches (i.e. for  one or  more  periods p) that  a(e) = 0 for some va lue  o f  
8 r 0. In  such an event the solution N on this branch would solve, for  this e, 
the equat ion (3.2) with a = 0 (and certain values o f  b and d). It  is o f  course possible 
to cause ~ = 0 and hence to make a = 0 to lowest order  in e (namely, by choosing 
a period p for which C~(p)  = 0), but  since in general it is not  true that  a(e)  = 0 the 
corresponding branch will have a(8) # 0 for  e # 0. 

One way to investigate the possibility that  a(8) = 0, at least to  lower order  terms 
in e, is to  compute  some lower order terms in the ~ expansions o f  N, a, b and d as 
given in Theorem 2. We will do this in some detail for  the case o f  a constant  time lag 
o f  length T > 0 in (3.2) which, after a time scaling, we assume without  loss in 
generality is T = 1. Thus,  we take h(s )  = u~(s) in (3.2) and consider 

1 d N ( t )  = b -  a N ( t ) - d N ( t -  1), b a n d d >  0. (4.1) 
N ( t )  d t  

We again assume (3.3) so that  e = 1 is the equilibrium. This equat ion has been 
studied in great detail in the case a = 0 by Jones [9, 10] and others.  We have 
already pointed out  in Remark  4 that  Corol lary 1 applies when sin 2~rp- 1 ~ 0 and 
hence for  such periods p satisfying this condit ion we have the existence o f  
non-cons tant  p-periodic solutions for  certain values o f  the parameters a, b and d. 
We further  assume 

sin 2,rp - t  > 0 (4.2) 

in which case we see f rom Corol lary 1 tha t  d > 0, b > 0, for  small e. 

We apply Theorem 2 with m = 3 (it applies to (4.1) for  any m 1> 2) and conclude 
that  (4.1) has solutions o f  the form 

N = 1 + 8ya + 82y2 + ~3y3 + 83z(8) for  Y2, Y3 and z e Po 
(4.3) 

a = a t  + 3x8 + 7~e 2 + 82fl~(e), d = t~a + S2e + 7282 + e2f12(8) 

and b = a + d. 

The Equat ion (4.1) is au tonomous  in the sense that  time translates o f  solutions 
are also solutions. As a result we loose no generality in choosing y~ = sin 2rrp- i t  in 
Theorems l, 2 and Corol lary l and hence in the expansions (4.3). I f  we substitute 
(4.3) into (4.1) and equate like powers o f  8 we find that  

Y'z = - -~1Y2 -- ~2y2( t  -- 1) -- 81y~ -- 82y2(t  -- l) -- ~ y ~  -- ~ 2 y l ( t -  1)yt 

(4.4) 
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which is to be solved for  y~. e Po(P). Since y~ and  y l ( t  - 1)yl are easily shown to lie 
in Po(P) we see tha t  (4.4) is solvable  uniquely in Po(p)  i f  and  only if  31 = 32 = 0. 
Then a s t ra igh t forward  Four ie r  analysis  shows tha t  

Y2 = A sin 4~rp- l t  + B cos 4rrp- l t  c Po(p) 

A = ~ n p - l l ( n  2 + r2) ,  B = - ~ I ' p - ~ l ( t ~  2 + I "2) 

f~ = a l  + ~2 cos 4,rp -1, F = 4,trp -1 - a2 sin 4rrp -1. 

The  equa t ion  for  Y3 ~ Po(P) is then found  to be 

! 
Y3 = - - ~ 1 Y 3  -- a2ya(t -- 1) -- YlYl -- 72Y1( t -- 1) 

- 2 a l y l y 2 ( t  - 1) - a2y2y l ( t  - 1) (4.5) 

the last five terms on the r ight  hand  side o f  which mus t  be made  to  lie in Po(P) by 
a n a p p r o p r i a t e  choice o f  71 and  y2. In  o rder  to  find the first nonzero  0(e) terms o f  
the coefficients a, b and  d these constants  yl  and  72 must  be computed ,  a task  
which is obviously  quite involved.  Thus,  ra ther  than  compute  exact  formulas  for 
7, we will ob ta in  approx ima t ions  val id  for  per iods  p near  a crit ical value o f  interest,  
specifically, we will consider  per iods  p n e a r p  = 4. The  reason for  this is as follows. 
Since we are interested in the case a = 0 it is na tu ra l  to consider  the  case when the 
lowest order  t e rm al  = - 2~-p- ~ cot  2~rp - 1 in a is small ,  i.e. when ~: = ~r/2 - 2~rp- 1 = 
�9 r(p - 4)/2p is small .  Trea t ing  ~'1 and  y2 as funct ions  of~ r we wish to compute  these 
quant i t ies  only  to  o rder  0(so). 

F i rs t  o f  all  CI(p )  = cos 27rp-1 = ~r + 0(~r and  SI (p )  = sin 2rrp-1 = 1 - 
(1/2)~ r + 0(~ :4) f rom which fol lows 

= ,~/2 - ~ + 4~:  + 0(~:3), ~2 

r '  = ~ + 0(~) 

~1 = - = ~ / 2  + ~ + 0(~3), 

~q = -~ r /2  + 0(~:), 

and  hence 

A = - ~ o  + 0 ( 0 ,  B = _ 1  + 0(~) 

in y2(t).  The two or thogona l i ty  condi t ions  for  (4.5) lead to the equat ions  

q-g 

�89 + (�89 cos 2rrp-1)72 = 8-0 + 0(~) 

3~r 
- (�89 sin 2 , rp-1)y 2 = -8 -0  + 0(~) 

for  71 and 7'2, which yield finally 

,r 3,r 
yl = ~ + 0 ( 0 ,  r~ = ~ + 0(~). 
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If  we drop  all terms of  order  0(~:% q) for  p + q />  3 we obtain the approximations 

~:2 w 2 ~r 4 3~r 2 az- -~+  +~ , ,  d z ~ - ~ +  ~2+T6 ~, 

b ~ -  1 + ~ : +  1 + ~:2+]--0e (4.6)  

N(t )  ~ 1 + e sin 27rp-lt + ( - - ~  sin 4"rrp-lt - �89 cos 4"rrp-lt)e 2 (4.7) 

where ~ = rr(p - 4)/2p for the solutions of  the lag-logistic model  (4.1) for small e 
and for  p ~ 4. 

Returning now to the question of  a = 0, we choose e = e0 so that  the lower order  
approximat ion  of  a given in (4.6) vanishes: 

eo = ~ : ( 2 -  ~: ) __40~r = 40~r(p - 4)/p 2. (4.8) 

Substi tut ion of  this e into (4.6) yields approximations for N(t ) ,  b and d. 

To  summarize:  given aperiod p > 4, p ,~ 4 there exists a p-periodic solutien o f  

1 dN(t)  = b(1 - N(t  - 1)) (4.9) 
N(t )  dt 

of  the form (4.7)for e ,~ eo given by (4.8) and for 

= 7r(p ~ 4)/2p > 0. 

This result is consistent with those of  Jones [9, 10] and others (e.g. Walther  [15]), 
which assert the existence o f  a periodic solution for  each b > ~-/2. Note  that  in 
our  result above b > 7r/2 (for small e) and that  the solutions found are the only 
small ampli tude periodic solutions (Remark 1). 

Al though Jones gives no formula for the period, his estimates [9, 10] imply 
2 < p < 6 which is again consistent with our  result above. 

In Figure 2 is drawn the bifurcation surface S for (4.1) as described in a general 
setting in Figure 1 except that in Figure 2 we have used the original variables in 
(4.1) so that  there appears a plot of  the maximum (minimum) o f  the solution N 
for e > 0 (e < 0) against a and b. Here the equilibrium is N = 1 (instead of  0 as in 
Figure 1). I f  ~ << e so that from (4.6) 

a z - ~ + ~ ,  bz~.- 1+ ~:+T6~ 

then the base curve Bj are approximated by the straight lines b = 4a + 7r/2 + 
(3~r/2 - 1)~: and the bifurcation curve B is approximated by the straight line b = 
(1 + 2/~r)a + ~r/2. Solutions of  (4.9) are obtained by considering bifurcation 



160 J .M.  Cushing 

a long  the curve A given by  a = 0 (i.e. by  slicing the b i fu rca t ion  surface S by  the 
coord ina te  p lane  a = 0) which  results in a typical  "right h a n d e d '  b i furca t ion  curve 
C o f  Hopf - type  (or  pe r iod  varying type)  for  (4.9). 

~r12 
= b  

Figure 2 

References 

1. Cushing, J. M.: Periodic solutions of Volterra's population equation with hereditary 
effects, SIAM J. Appl. Math. 31, 251-261 0976) 

2. Cushing, J. M.: Errata to Periodic solutions of Volterra's population equation with 
hereditary effects, SIAM Appl. Math. 32, 895 0977) 

3. Cushing, J. M.: Time delays in single species growth models, J. Math. Biology 4, 257-264 
(1977) 

4. Cushing, J. M.: Bifurcation of periodic solutions of integrodifferential systems with 
application to time delay models in population dynamics, SIAM J. Appl. Math. 33, 
640-654 (I 977) 

5. Cushing, J. M.: Integrodifferential Equations and Delay Models in Population Dynamics, 
I .~ .  Notes in Biomath. 20, Berlin, Heidelberg, New York: Springer, 1977 

6. Dunkel, G. M.: Some mathematical models for population growth with lags, thesis, 
University of Maryland, College Park, Md., 1968 

7. Dunkel, G. M.: Single species model for population growth depending on past history, 
pp. 92-99, Lec. Notes in Math. 60, Berlin, Heidelberg, New York: Springer, 1968. 

8. Grafton, R. B.: A periodicity theorem for autonomous functional differential equations, 
J. Diff. Eqs. 6, 87-109 (1969) 

9. Jones, G. S.: The existence of  periodic solutions of f ' ( x ) = - e f ( x -  1){1 + f(x)}, J. 
Math. Anal. Appl. 5, 435-450 (1962) 

10. Jones, G. S.: On the nonlinear differential-difference equation f ' ( x )  = - a f ( x  - -  1){1 + 
f(x)}, J. Math. Anal. Appl. 4, No. 3, 440-469 (1962) 

11. Kakutani, S., Markus, L.: On the nonlinear difference-differential equation y ' ( t ) =  

( A  - -  8 y ( t  - -  O)y(t), in Contributions to the Theory of Nonlinear Oscillations, pp. 1-18, 
Princeton, New Jersey: Univ. Press, 1958 

12. May, R. M., Conway, G. R., Hassell, M. P., Southwood, T. R. E.: Time delays, density- 
dependence and single species oscillations, J. Anita. Ecol. 43, No. 3, 747-770 (1974) 

13. Miller, R. K.:  On Volterra's population equation, SIAM J. Appl. Math. 14, No. 3, 446-452 
(1966) 



Bifurcation of Periodic Oscillations Due to Delays in Single Species Growth Models 161 

14. Nussbaum, R. D.: Periodic solutions of some nonlinear, autonomous functional differential 
equations II, J. Diff. Eq. 14, 360-394 (1973) 

15. Walther, H. O.: Existence of a non-constant periodic solution of a nonlinear autonomous 
functional differential equation representing the growth of a single species population J. 
Math. Biology 1,227-240 (1975) 

16. Wright, E. M.: A nonlinear difference-differential equation, J. Reine Angew. Math. 194, 
66-87 (1955) 

Received November I1, I977/Revised January 31, 1978 


