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The Leslie-Gower model is a discrete time analog of the competition Lotka–Volterra model and is
known to possess the same dynamic scenarios of that famous model. The Leslie–Gower model played a
historically significant role in the history of competition theory in its application to classic laboratory
experiments of two competing species of flour beetles (carried out by Park in the 1940s–1960s).
While these experiments generally supported what became the Competitive Exclusion Principle, Park
observed an anomalous coexistence case. Recent literature has discussed Park’s ‘coexistence case’ by
means of non-Lotka–Volterra, non-equilibrium dynamics that occur in a high dimensional model with
life cycle stages. We study this dynamic possibility in the lowest possible dimension, that is to say, by
means of a model involving only two species each with two life cycle stages. We do this by extending
the Leslie–Gower model so as to describe the competitive interaction of two species with juvenile and
adult classes. We give a complete account of the global dynamics of the resulting model and show
that it allows for non-equilibrium competitive coexistence as competition coefficients are increased.
We also show that this phenomenon occurs in a general class of models for competing populations
structured by juvenile and adult life cycle stages.

Keywords: Competitive exclusion principle; Stage structured populations; Non-equilibrium
coexistence
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1. Introduction

The classic principle of competitive exclusion requires, for the coexistence of two species, that
competitive interference be low. In competition models this requirement generally means that
those coefficients which measure the intensity of the inter-specific competition be sufficiently
small (usually in relation to the coefficients measuring intraspecific competition). Put another
way, large values of inter-specific competition coefficients imply one of the species necessarily
goes extinct. This form of the principle finds its most forceful and straightforward expression
in the famous Lotka–Volterra system of differential equations.
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202 J. M. Cushing et al.

In the early development of competition theory, controlled laboratory experiments played
a significant role in establishing the competitive exclusion principle. Among these were the
famous experiments performed by G. F. Gause [1] and by T. Park [2–5]. Both worked within
the framework of the dynamic scenarios of Lotka–Volterra theory. The experimental results
of Gause and Park are widely cited to this day as experimental validation of the competi-
tive exclusion principle. However, one of Park’s experiments yielded a ‘difficult to interpret’
result [5]. Whereas one of the two species typically went extinct in Park’s experiments, con-
sistent with the competitive exclusion principle, in this exceptional case neither species went
extinct during the course of the experiment, which lasted over 32 generations. Park referred
to this anomalous case as a ‘coexistence case’. Moreover, Park’s results implied a dynamic
scenario not permitted by Lotka–Volterra theory (or any other competition theory known to
us). This scenario consists of three attractors, two competitive exclusion attractors and one
competitive coexistence attractor. Park and his collaborators addressed this ‘coexistence case’
with both experimental and model studies, but in the end they could offer no theoretical or
biological explanation [5, 6].

Gause centered the theoretical component of his work on the Lotka–Volterra system of
differential equations. That well-known competition model is based on the famous logistic
equation. Park and his collaborators (who included P. H. Leslie) utilized, on the other hand, a
discrete time competition model that is based on the discrete version of the logistic equation†

[7–10], namely

xt+1 = b
1

1 + cxt

xt b > 0, c > 0. (1)

Solutions xt of this difference equation (which defines a monotone map) with x0 > 0 equili-
brate as t → +∞, converging to 0 if b < 1 or to the equilibrium x = (b − 1)/c if b > 1. In
the Leslie–Gower competition model [11]

xt+1 = b1
1

1 + c11xt + c12yt

xt

yt+1 = b2
1

1 + c21xt + c22yt

yt bi > 0, cii > 0, cij ≥ 0 (i �= j) (2)

the dynamics of each species x and y, in the absence of the other, are governed by the discrete
logistic (1). It turns out that solutions of the Leslie–Gower model obey the same four phase
portrait alternatives of the Lotka–Volterra competition model [12, 13]. (See Appendix A1.) As
a result, this model cannot explain the triple attractor case (with mixed types that include both
coexistence and exclusion attractors) suggested by the coexistence case in Park’s experiment.

Edmunds et al. [14] addressed the anomalous coexistence case of Park using a differ-
ent competition model. Instead of basing their competition model on single-species logistic
dynamics, these authors based their competition model on a well validated single-species
model, developed and tested over several decades, that was designed specifically for the
biological organisms used by Park (namely, beetle species of the genus Tribolium). This
single-species model accounts for different life cycle stages in the life history of individuals
(specifically, larval, pupal, and adult stages) and therefore is a three-dimensional model. It is
no surprise, then, that this LPA model, unlike logistic type models, can have non-equilibrium
attractors. Indeed, the model has been used to predict and account for observed chaotic
dynamics in flour beetle experiments [15].

†Solutions of the logistic equation, when sampled at equally spaced census times, generate time sequences that
satisfy this difference equation [7].
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Juvenile–adult structured populations 203

The LPA model is one of the most successful models available in population dynamics
and ecology in terms of its rigorous connection to data and its quantitatively accurate, a
priori predictions of detailed dynamic phenomena that have been validated repeatedly by
controlled and replicated experiments [16]. The LPA model can be considered as a generic
model for species that have a three-stage life cycle (growing/feeding juveniles followed by
a pupal/quiescent stage and reproductive adulthood). Given these facts, it is interesting to
consider competition models based on this single species model and to compare their asymp-
totic dynamics to those of classic Lotka–Volterra-type models. In what sense would such
models support the principle of competitive exclusion? Can these models allow for new types
of dynamic scenarios and competitive outcomes, perhaps some that challenge the exclusion
principle? Can they offer a hypothesis that explains Park’s anomalous coexistence case?

Edmunds et al. showed that the answers to the last two questions are ‘yes’. First of all, they
showed that the competition LPA model, with parameter values equal or near to those esti-
mated for laboratory cultures of Tribolium, can exhibit the classical Lotka–Volterra equilibrium
scenarios. Specifically, if certain inter-specific competition coefficients are small, the model
predicts equilibrium coexistence and, as these coefficients increase past critical values, compet-
itive exclusion occurs with the surviving species equilibrating to its inherent equilibrium state
(carrying capacity). Moreover, just as with the Lotka–Volterra and the Leslie–Gower models,
if both inter-specific competition coefficients are sufficiently large, the ‘saddle’ case results, in
which the winning competitor depends on initial conditions. This saddle case is the dynamic
scenario in which Park placed his competition experiments [5]. However, Edmunds et al.
discovered something surprising in the competition LPA model. Namely, as the inter-specific
competition coefficients increase even further, there can result a stable coexistence cycle (of
period 2), which in the presence of the two exclusion equilibria constitutes a triple attractor
case. This cycle arises from a 2-cycle saddle-node (or blue sky) bifurcation. The basin of
attraction of the coexistence cycle is significantly large and is robust against further increases
in the competition coefficients. Thus, in seeming contradiction to the competitive exclusion
principle, the possibility of competitive coexistence is enhanced by increased competitive
intensity. As Edmunds et al. point out, it is intriguing that Park reported an increase in com-
petitive intensity (in this case, increased egg and pupae consumption in Tribolium) in the
anomalous coexistence case discussed above.

The competition LPA model is a six-dimensional discrete dynamic system with a large
number of parameters. Although some basic properties of the model have been established
analytically [17], the non-equilibrium, non-Lotka–Volterra dynamics such as those reported
by Edmunds et al. are difficult to analyze except by numerical simulations. This suggests that
a study of simpler, low-dimensional ‘toy’ models that focuses on key model ingredients in the
competition LPA model could be useful in establishing what kinds of biological mechanisms
can account for such dynamics. Since the LPA competition model is a discrete time model,
it is appropriate to use the Leslie–Gower model (1–2) as a point of reference, What are
the differences between these two models and which of them are key to the appearance of
non-equilibrium, non-Lotka–Volterra dynamics? Which of them result, for large values of
inter-specific coefficients, in multiple attractors of mixed (coexistence and exclusion) types?

The two fundamental differences between the Leslie–Gower and the LPA competition
models are that the LPA model has (1) life cycle stages and (2) ‘stronger’ (overcompen-
satory) nonlinearities. Life cycle stages are a kind of time lag in the dynamics of populations,
and it is well known that time lags can cause dynamic oscillations. The stronger nonlinearities
in the LPA model are of exponential (Ricker) type, instead of the rational polynomial type
appearing in the discrete logistic (1). These type of nonlinearities are also well known to pro-
vide the possibility of equilibrium de-stabilization and oscillations (even bifurcation cascades
to chaos).
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204 J. M. Cushing et al.

A recent study [18] considers a two-stage (juvenile–adult), semelparous adaptation of the
discrete logistic in interaction with an unstructured competitor (i.e. a competitor without life
cycle stages). The authors show that a 2-cycle, saddle-node bifurcation can occur in this model,
under certain circumstances, that results in multiple attractors of mixed types. Unlike in the
competition LPA model example, however, the multiple attractor scenario is not particularly
robust in that model. Our goal in this paper is to give a complete and global analysis of the
asymptotic dynamics of a stage-structured Leslie–Gower competition model that, unlike that
studied in [9], includes a juvenile-adult life cycle in both species. We will see in section 2
that this model leads, for large inter-specific competition coefficients, to a robust occurrence
of a multiple attractor case which includes a coexistence 2-cycle in the presence of two
competitive exclusion equilibria. This 2-cycle will not, on the other hand, arise from a saddle-
node bifurcation. In section 3 we prove the occurrence of this triple attractor case in a general
juvenile–adult competition model, in order to add further robustness to its occurrence.

2. A stage structured Leslie–Gower model

We begin with some notation. Let Rm+ � {(x1, . . . , xm) ∈ Rm : xi > 0} denote the positive
cone of m-dimensional Euclidean space. We denote the closure and the boundary of Rm+ by
R̄m+ and ∂Rm+ respectively.

In this section we consider a competition model that is built on a juvenile–adult version of
the discrete logistic equation (1), namely, the equations

Jt+1 = b
1

1 + dAt

At

At+1 = s
1

1 + cJt

Jt .

In this model there is a reproductive stage A whose juvenile production is self density reg-
ulated, and the coefficient d > 0 measures the intensity of the intrastage adult competition.
The juvenile (or growing stage) also experiences intrastage competition that reduces its sur-
vivorship to the adult stage below the inherent survivorship rate s, 0 < s ≤ 1. The coefficient
c > 0 measures the intensity of the intrastage juvenile competition. By a choice of population
units we can assume, without any loss in mathematical generality, that c = 1:

Jt+1 = b
1

1 + dAt

At

At+1 = s
1

1 + Jt

Jt . (3)

The coefficient b > 0 is the inherent per capita production of juveniles by adults. The unit of
time equals the maturation period of juveniles and the population is assumed ‘semelparous’
in the sense that adult life span is less than one unit of time. Note that R2+, R̄2+, ∂R2+ and
R̄2+/{(0, 0)} are all forward invariant sets under the map defined by equations (3).

If the net reproductive number n � bs (the expected number of juveniles produced by
each newborn during its life span [19, 20]) is less than 1, then the eigenvalues of the
Jacobian evaluated at the origin are ±n1/2 and the linearization principle implies that the
origin (J, A) = (0, 0) is locally asymptotically stable (LAS). Furthermore, all solutions of
equations (3) initiating in the closed cone R̄2+ tend asymptotically to the origin. This follows
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Juvenile–adult structured populations 205

from Theorem 1.8 in [21], but is not difficult to prove directly. The inequalities

0 ≤ Jt+1 ≤ bAt , 0 ≤ At+1 ≤ sJt

and an induction show

0 ≤ Jt ≤ xt , 0 ≤ At ≤ yt

where xt , yt solve the linear system equations

xt+1 = byt , yt+1 = sxt

with initial condition (x0, y0) = (J0, A0). Since n < 1 implies (xt , tt ) approaches (0, 0) as
t → +∞, it follows that (Jt , At ) approaches (0, 0) as t → +∞.

If an equilibrium is LAS and if all orbits with initial conditions lying in a set S tend to the
equilibrium, then we say the equilibrium is globally asymptotically stable (GAS) on S. Thus,
if n < 1 in the juvenile–adult model (3), then the origin is GAS on the closed cone R̄2+.

On the other hand, if n > 1 then (3) is uniformly persistent (permanent) with respect to the
origin.† This follows from Theorem 3 in [22] once it is noted that (3) is dissipative (all solutions
in R̄2+ satisfy 0 ≤ Jt ≤ b and 0 ≤ At ≤ sc−1 after one time step) and R̄2+/{(0, 0)} is forward
invariant (also see [21]). Moreover, if n > 1 there exists a unique nontrivial equilibrium, i.e.
an equilibrium lying in R2+/{(0, 0)}, namely

(J, A) =
(

n − 1

ds + 1
,
n − 1

d + b

)
. (4)

This equilibrium is LAS (the eigenvalues of the Jacobian at the equilibrium are ±n−1/2).
Moreover, it is GAS on the positive cone R2+. To see this, we consider the subsequence extracted
from a solution at even time steps. This subsequence satisfies the uncoupled equations

Jt+2 = n
1

1 + (1 + ds)Jt

Jt

At+2 = n1
1

1 + (d + b)At

At

each of which has the form of the discrete logistic (1). Therefore, for an initial condition
(j0,A0) ∈ R2+ each component of the even-step subsequence approaches an equilibrium.
Specifically, the subsequence (J2t , A2t ) approaches the equilibrium (4). It then follows from (3)
that the odd-step subsequence approaches the same equilibrium.

If, on the other hand, a nontrivial initial condition (J0, A0) lies on the boundary of the
cone, i.e. if (J0, A0) ∈ ∂R2+/{(0, 0)}, then the solution of (3) approaches a 2-cycle. This is
because one, but not both, of the components (J0, A0) equals 0 and hence that component
equals 0 at all even time steps, while the other component equilibrates. From the equations (3)
we see that at odd time steps the former component equilibrates while the latter tends to 0.
This means the solution approaches a so-called synchronous (or single class) 2-cycle [23]
in which, at each time, one life stage is absent. For example, (J0, A0) = (0, A0) implies the
solution approaches the 2-cycle that alternates between the two points (0, (n − 1)(d + b)−1)

and ((n − 1)(ds + 1)−1, 0) lying on the boundary of the cone. In the other case (J0, A0) =
(J0, 0), the solution tends to the phase shift of this same 2-cycle.

†This means there exists a constant α > 0 (that does not depend on the initial conditions) such that (J0, A0) ∈
R̄2+/{(0, 0)} implies lim inf t→+∞(|Jt | + |At |) ≥ α.
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206 J. M. Cushing et al.

THEOREM 2.1 If n � bs < 1, all solutions of the juvenile–adult model (3) converge to the
origin:

lim
t→+∞(Jt , At ) = (0, 0).

If n > 1, then (3) is uniformly persistent with respect to the origin. Moreover, the
equilibrium (4) is GAS on R2+. However, if (J0, A0) ∈ ∂R2+/{(0, 0)} then the solution of (3)
tends to the (synchronous or single class) 2-cycle defined by the two consecutive points(

0,
n − 1

d + b

)
←→

(
n − 1

ds + 1
, 0

)

lying on the boundary ∂R2+ of R2+.

See [23] for more concerning the existence and bifurcation of synchronous cycles in
semelparous population models.

Consider two species, each of whose dynamics are governed by a juvenile–adult model
of the form (3) in the absence of the other and whose juveniles (the feeding/growing stage)
compete when placed together. If we denote the two species by J, A and j, a, then we have a
stage structured Leslie-Gower model

Jt+1 = b1
1

1 + d1At

At

At+1 = s1
1

1 + Jt + c1jt

Jt

jt+1 = b2
1

1 + d2at

at

at+1 = s2
1

1 + c2Jt + jt

jt (5)

where the coefficients ci > 0 measure the intensity of the inter-specific competition between
the juveniles class. We assume each species, in the absence of the other, is viable, that is to
say, we assume

n1 > 1, n2 > 1

where ni � bisi are the inherent net reproductive numbers for each species.
The nontrivial equilibria (J, A, j, a) of the competition model (5) are

(Je, Ae, 0, 0), (0, 0, je, ae), (J ∗, A∗, j ∗, a∗)

where

Je � n1 − 1

1 + d1s1
, Ae � n1 − 1

d1 + b1
, je � n2 − 1

1 + d2s2
, ae � n2 − 1

d2 + b2

J ∗ � (1 + d2s2) (n1 − 1) − c1(n2 − 1)

(1 + d1s1) (1 + d2s2) − c1c2
, A∗ � s1

1

1 + J ∗ + c1j ∗ J ∗ (6)

j ∗ � (1 + d1s1) (n2 − 1) − c2(n1 − 1)

(1 + d1s1) (1 + d2s2) − c1c2
, a∗ � s2

1

1 + c2J ∗ + j ∗ j ∗.

We refer to the first two equilibria (which lie on the boundary ∂R4+ of the positive cone R4+) as
exclusion equilibria. We refer to the third equilibrium as the coexistence equilibrium, provided
it lies in the positive cone R4+.
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Juvenile–adult structured populations 207

The following theorem accounts for the stability properties of all nontrivial equilibria of (5).
We distinguish four cases for the inter-specific competition coefficients:

(a) c1 < (1 + d2s2)
n1 − 1

n2 − 1
, c2 < (1 + d1s1)

n2 − 1

n1 − 1

(b) c1 < (1 + d2s2)
n1 − 1

n2 − 1
, c2 > (1 + d1s1)

n2 − 1

n1 − 1

(c) c1 > (1 + d2s2)
n1 − 1

n2 − 1
, c2 < (1 + d1s1)

n2 − 1

n1 − 1

(d) c1 > (1 + d2s2)
n1 − 1

n2 − 1
, c2 > (1 + d1s1)

n2 − 1

n1 − 1
(7)

THEOREM 2.2 Assume ni � bisi > 1 in the competition mode (5).

In case (7a) the coexistence equilibrium is GAS on R4+.
In case (7b) the exclusion equilibrium (Je, Ae, 0, 0) is GAS on R4+.
In case (7c) the exclusion equilibrium (0, 0, je, ae) is GAS on R4+.
In case (7d) exclusion equilibria are LAS and the coexistence equilibrium (J ∗, A∗, j ∗, a∗) ∈
R4+ is a saddle.

The proof of this theorem, which appears in Appendix A2, is based on the composite
equations

Jt+2 = n1
1

1 + (1 + d1s1) Jt + c1jt

Jt

At+2 = n1
1

1 + (d1 + b1)At + c1b2at (1 + d1At)/(1 + d2at )
At

jt+2 = n2
1

1 + c2Jt + (1 + d2s2)jt

jt

at+2 = n2
1

1 + c2b1At(1 + d2at )/(1 + d1At) + (d2 + b2)at

at (8)

which are satisfied by both the even and odd step subsequences (J2t , A2t , j2t , a2t ) and
(J2t+1, A2t+1, j2t+1, a2t+1) of any solution sequence of (5). Note that the juvenile compo-
nents (Jt , jt ) of these subsequences satisfy uncoupled equations that have the form of the
Leslie–Gower equations (2), namely

xt+1 = n1
1

1 + (1 + d1s1)xt + c1yt

xt

yt+1 = n2
1

1 + c2xt + (1 + d2s2)yt

yt . (9)

The four global stability options for the Leslie–Gower model appear in Appendix A1.
As far as equilibria of the juvenile–adult competition model (5) are concerned, the four

dynamic scenarios in Theorem 2.2 match those of classic Lotka–Volterra competition the-
ory. They predict competitive exclusion of one species unless the inter-specific competition
coefficients ci are sufficiently small (case (7a)). Notice, however, that unlike Lotka–Volterra
theory, case (7d) does not describe the global dynamics of the model, as do cases (7a–c).
This is because it turns out in the saddle case (7d) that there is a non-equilibrium coexistence
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208 J. M. Cushing et al.

attractor, as Theorem 2.4 below shows. Thus, in contradistinction to Lotka–Volterra theory, the
competition model (5) does not necessarily predict competitive exclusion when inter-specific
competition coefficients ci are large.

As we will see, a coexistence 2-cycle (a non-equilibrium, periodic solution of period 2
in which both species are present) plays a prominent role in the global dynamics of the
competition model (5) in the saddle case (7d). The two points making up a 2-cycle are equilibria
of the composite equations (8). Consequently, we can account for all possible 2-cycles by
means of the equilibria of the uncoupled equations (9), which are equilibria for the even and
the odd step subsequences of the juvenile components.

The Leslie–Gower model (9) can have four equilibria in the closed cone R̄2+ when, ni > 1,

namely, (0, 0), (Je, 0), (0, je) and (J ∗, j ∗). By pairing equilibria, one for the even step sub-
sequence (J2t , j2t ) with one for the odd step subsequences (J2t+1, j2t+1), we get 2-cycle
sequences for (Jt , jt ). When extended by use of the second and fourth equations in the com-
petition system (5) to include the sequence of adult stages, these 2-cycle sequences of juveniles
yield 2-cycle solutions (Jt,At , jt , at ) of (5).

There are 16 possible pairings of the four equilibria of (9), although these include the four
equilibria (when an equilibrium is paired with itself). This leaves 12 2-cycles that are not
equilibria, although this count includes phase shifts of the 2-cycles. Modulo phase shifts there
are six 2-cycle sequences (Jt,jt ) which yield the following 2-cycle solutions of (5):

C1 : (Je, 0, 0, ae) � (0, Ae, je, 0)

C2 : (0, 0, 0, ae) � (0, 0, je, 0)

C3 : (0, Ae, 0, 0) � (Je, 0, 0, 0)

C4 : (0, A∗, 0, a∗) � (J ∗, 0, j ∗, 0)

C5 : (Je, A
∗, 0, a∗) � (J ∗, Ae, j

∗, 0)

C6 : (0, A∗, je, a
∗) � (J ∗, 0, j ∗, ae). (10)

In cases (7a,d) these six 2-cycles are the only 2-cycles lying in R̄4+. In cases (7b, c), C1, C2

and C3 are the only 2-cycles lying in R̄4+.

THEOREM 2.3 Assume ni � bisi > 1 in the competition model (5).

In case (7a) the only 2-cycles in R̄4+ are the six cycles Ci in (10) and they are all unstable.
In cases (7b) and (7c) the only 2-cycles in R̄4+ are C1, C2, C3 and they are all unstable.
In case (7d) the only 2-cycles in R̄4+ are the six cycles Ci in (10) and C2, C3, C4, C5, C6 are
unstable.

The proof of this theorem involves, for each 2-cycle (10), an investigation of the eigenvalues
of the Jacobian of the composite map or equivalently of the product of the Jacobian of (5)
(denoted by M(J, A, j, a)) evaluated at each of the points of the cycle. For example, for the
stability of cycle C1, we examine the product M(Je, 0, 0, ae) M(0, Ae, je, 0). The details are
given in Appendix A3.

To describe the global dynamics in the saddle case (7d) we introduce the basin BJ and Bj

of attraction of the two equilibria (x, y) = (Je, 0) and (0, je) of the Leslie–Gower model (9).
In the saddle case these open sets of R2+ have the property that

R2
+ = BJ ∪ Bj ∪ Ws

Jj
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Juvenile–adult structured populations 209

where Ws
Jj

is the stable manifold of the saddle equilibrium (J ∗, j ∗). This stable manifold
is the graph of a strictly increasing continuously differentiable function. The sets are open,
connected and invariant. See [13, 24].

Consider an initial condition (J0, A0, j0, a0) ∈ R4+ for the competition model (5). If
(J0, j0) ∈ BJ then (J2t , j2t ) approaches (Je, 0) as t → +∞. The fate of the odd step sub-
sequence (J2t+1, j2t+1) is determined by their initial condition (J1, j1). If (J1, j1) ∈ BJ then
(J2t+1, j2t+1) approaches (Je, 0) as t → +∞, which then results in

lim
t→+∞(Jt,At , jt , at ) = (Je, Ae, 0, 0).

If, on the other hand, (J1, j1) ∈ Bj then (J2t+1, j2t+1) approaches (0, je) as t → +∞. This
means (Jt , At , jt , at ) approaches the 2-cycle C1 as t → +∞.

The map

F : (A, a) −→
(

b1
1

1 + d1A
A, b2

1

1 + d2a
a

)

is a one-to-one, onto, bicontinuous map of R2+ onto the rectangle

� � {(J, j) ∈ R2
+ : 0 < J < b1/d1, 0 < j < b2/d2}.

Define the open, connected, and disjoint sets

BA � F−1(� ∩ BJ ), Ba � F−1(� ∩ Bj).

Then

R2
+ = BA ∪ Ba ∪ Ws

Aa

where Ws
Aa � F−1(Ws

Jj ) is the graph of a curve in the plane (and hence has measure zero).
Define the sets

Bc1 � {(J, A, j, a) ∈ R4
+ | (J, j) ∈ BJ , (A, a) ∈ Ba}

∪ {(J, A, j, a) ∈ R4
+ | (J, j) ∈ Bj , (A, a) ∈ BA}

BJA � {(J, A, j, a) ∈ R4
+ | (J, j) ∈ BJ , (A, a) ∈ BA}

Bja � {(J, A, j, a) ∈ R4
+ | (J, j) ∈ Bj , (A, a) ∈ Ba}.

These are open, disjoint sets in R4+ and, by the properties of BJ , BA, Bj and Ba , the set
R4+/{BC1 ∪ BJA ∪ Bja} has measure zero. By construction

(J0, A0, j0, a0) ∈ BC1 =⇒ (Jt , At , jt , at ) tends to the 2-cycle C1

(J0, A0, j0, a0) ∈ BJA =⇒ (Jt , At , jt , at ) tends to (Je, Ae, 0, 0)

(J0, A0, j0, a0) ∈ Bja =⇒ (Jt , At , jt , at ) tends to (0, 0, je, ae).

We have characterized the basins of attraction of the two exclusion equilibria and the coexis-
tence 2-cycle in terms of the basins of attraction of the Leslie–Gower model (9). The global
asymptotic dynamics of saddle case (7d) is described (up to a set of measure zero) by the
following theorem.

THEOREM 2.4 Assume ni � bisi > 1 in the competition model (5) and that the inequali-
ties (7d) hold. All 2-cycles (10) are unstable except the coexistence 2-cycle C1 which is LAS.
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The basin of attraction of the 2-cycle C1 is BC1 , the basin of attraction of the exclusion equilib-
rium (Je, Ae, 0, 0) is BJA, and the basin of attraction of the exclusion equilibrium (0, 0, ja, ae)

is Bja.

Proof All that remains to prove is the local asymptotic stability of the 2-cycle C1. A
calculation shows that the product M(Je, 0, 0, ae)M(0, Ae, je, 0) is⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n1

c1je + 1
0 0 0

0
n1

(Je + 1)2(d1Ae + 1)2
0 − b2s1c1Je

(Je + 1)2

− n2c2je

(je + 1)2(d2ae + 1)2
0

n2

(je + 1)2(d2ae + 1)2
0

0 0 0
n2

c2Je + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and that the four eigenvalues of this matrix are

λ1 = n1

c1je + 1
, λ2 = n1

(Je + 1)2(d1Ae + 1)2

λ3 = n2

(je + 1)2(d2ae + 1)2
, λ4 = n2

c2Je + 1

all of which are real and positive. From the formulas (6) we find that

λ1 = n1(1 + d2s2)

(n2 − 1)c1 + 1 + d2s2
, λ2 = 1

n1

λ3 = 1

n2
, λ4 = n2(1 + d1s1)

(n1 − 1)c2 + 1 + d1s1
. (11)

The inequalities in case (7d) and ni > 1 imply all four eigenvalues are less than one. �

Figures 1 and 2 illustrate the dynamic scenarios for the stage structured Leslie–Gower
model (5) described in Theorems 2.3 and 2.4. In the sequence of graphs appearing in figure 1
we see, for fixed initial conditions, the competitive outcome begin with coexistence, then pass
to global exclusion (of species j, a), and finally arrive at cyclic coexistence as the inter-specific
competition coefficients c1 and c2 increase. In the case of cyclic coexistence in figure 1(c),
figure 2 illustrates the triple attractor scenario of Theorem 2.4 by showing that competitive
exclusion of either species can also result if initial conditions are changed.

In the next section we show that this triple attractor scenario for strong inter-specific compe-
tition described in Theorem 2.4 is not restricted to the stage structured Leslie–Gower model (5),
but occurs in a general class of stage-structured competition models.

3. A general stage-structured competition model

The system

Jt+1 = b1f1(At )At

At+1 = s1g1(Jt + c1jt )Jt

jt+1 = b2f2(at )at

at+1 = s2g2(c2Jt + jt )jt (12)
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Juvenile–adult structured populations 211

Figure 1. Graphs (a), (b), and (c) show total population sizes Jt + At and jt + at for solutions of
the competition model (5) as the inter-specific competition coefficients c1 = c2 increase. Other para-
meter values are fixed at b1 = b2 = 5, s1 = s2 = 0.9, d1 = 0.1, d2 = 0.3. The initial condition in all cases is
(J0, A0, j0, a0) = (0.1, 0.2, 0.2, 0.2). Coexistence is attained for both small and large values of c1 = c2.
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212 J. M. Cushing et al.

Figure 2. The graphs show plots of the total population sizes Jt + At and jt + at for solutions of the
competition model (5) with the same parameter values used in figure 1(c). In figure 1(c) the initial condi-
tion (J0, A0, j0, a0) = (0.1, 0.2, 0.2, 0.2) result in (oscillatory) coexistence. Here the initial conditions in (a),
(J0, A0, j0, a0) = (0.1, 0.1, 0.2, 0.2) and in (b), (J0, A0, j0, a0) = (0.1, 0.1, 0.1, 0.1), lead to the competitive
exclusion of one species.

is a generalization of the stage-structured Leslie–Gower competition model (5). We assume
that the density-related functions fi and gi satisfy the following conditions on an interval
Iδ = {x: − δ < x < +∞} for some δ > 0:

fi ∈ C2(Iδ, R
1
+), f ′

i < 0, fi(0) = 1

gi ∈ C1(Iδ,R
1
+), g′

i < 0, gi(0) = 1, gi(+∞) = 0
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Juvenile–adult structured populations 213

hi(x) � fi(x)x and ki(x) � gi(x)x are bounded

h′
i > 0, k′

i > 0. (13)

The coefficients satisfy

bi, ci > 0, 0 < si < 1.

The coefficient bi is the inherent fecundity of adults and si the inherent juvenile survivorship.
The competition coefficients ci measure the intensity of competition between the juvenile
classes of the two species.

Our goal is to show that the triple-attractor scenario of Theorem 2.4 occurs for the system
(12) when both inter-specific competition coefficients ci are sufficiently large. To do this in a
mathematically convenient way, we fix the ratio ρ between the competition coefficients and
study how the dynamics of the system depends on a single parameter c, i.e. we substitute

c1 = c, c2 = ρc

into (12) and consider the system

Jt+1 = b1f1(At )At

At+1 = s1g1(Jt + cjt )Jt

jt+1 = b2f2(at )at

at+1 = s2g2(ρcJt + jt )jt (14)

for large values of c. We will show that for c sufficiently large, this system has two stable
competitively exclusion equilibria as well as a stable coexistence 2-cycle.

To begin, we need to understand the dynamics of each species in the absence of the other.
Toward this end we consider the juvenile–adult model

Jt+1 = bf (At)At

At+1 = sg(Jt )Jt . (15)

This is an example of a semelparous model of the type studied in [23]. Note that R2+ and
its boundary ∂R2+ are forward invariant. The proof of the following theorem appears in
Appendix A4.

THEOREM 3.1 Consider (15) under the assumptions

f ∈ C1(Iδ, R
1
+), f ′ < 0, f (0) = 1

g ∈ C1(Iδ, R
1
+), g′ < 0, g(0) = 1, g(+∞) = 0

h(x) � f (x)x and k(x) � g(x)x are bounded

h′ > 0, k′ > 0.

If n � bs > 1 then there exists a GAS equilibrium in R2+. There also exists a 2-cycle on ∂R2+
that is GAS on ∂R2+/{(0, 0)}.

As a result of this theorem, the competition model (14) has two competitive exclusion
equilibria

(J, A, j, a) = (Je, Ae, 0, 0) and (0, 0, je, ae)

where (Je, Ae) ∈ R2+ is the equilibrium of (14) with f = f1, g = g1, b = b1 and s = s1 and
(je, ae) ∈ R2+ is the equilibrium of (14) with f = f2, g = g2, b = b2 and s = s2.



D
ow

nl
oa

de
d 

By
: [

U
ni

ve
rs

ity
 o

f A
riz

on
a]

 A
t: 

18
:5

8 
20

 A
pr

il 
20

07
 

214 J. M. Cushing et al.

The Jacobian of (14) evaluated at the equilibrium (Je, Ae, 0, 0)⎛
⎜⎜⎜⎜⎝

0 b1h
′
1(Ae) 0 0

s1g1(Je) + s1g
′
1(Je)Je 0 cs1Jeg

′
1(Je) 0

0 0 0 b2

0 0 s2g2(ρcJe) 0

⎞
⎟⎟⎟⎟⎠

is block diagonal. The 2 × 2 in the upper left corner is the Jacobian of the single-species
model (15) with f = f1, g = g1, b = b1 and s = s1 evaluated at its equilibrium (Je, Ae).
According to Theorem 3.1, the eigenvalues of this block are less than one in magnitude if
b1s1 > 1. The remaining two eigenvalues of the Jacobian are those of the 2 × 2 block in the
lower right corner, which satisfy λ2 = n2g2(ρcJe). Since Je is independent of c, we have
by (13) that |n2g2(ρcJe)| > 1 for c sufficiently small and |n2g2(ρcJe)| < 1 for c sufficiently
large. Thus, the equilibrium (J, A, j, a) = (Je, Ae, 0, 0) of the competition model (14) is
unstable for c small and LAS for c large. An analogous proof shows that the equilibrium
(J, A, j, a) = (0, 0, je, ae) of the competition model (14) is also unstable for c small and LAS
for c large.

For c = 0 the uncoupled model (14) has a GAS equilibrium (Je, Ae, je, ae) ∈ R4+.
A straightforward application of the implicit function theorem shows that there exists an
equilibrium in R4+ for c small. A continuity argument implies that this equilibrium is LAS.
We summarize these conclusions in parts (a)–(c) of the following theorem. Proofs of parts (d)
and (e) appear in Appendix A6.

THEOREM 3.2 Assume the competition model (14) satisfies (13).

For c sufficiently small
(a) the exclusion equilibria (Je, Ae, 0, 0) and (0, 0, je, ae) are unstable and
(b) there exists LAS coexistence equilibrium (J ∗, A∗, j ∗, a∗) ∈ R4+.

For c sufficiently large
(c) the exclusion equilibria (Je, Ae, 0, 0) and (0, 0, je, ae) are LAS,

(d) there exists unique coexistence equilibrium (J ∗, A∗, j ∗, a∗) ∈ R4+ and
(e) the equilibrium (J ∗, A∗, j ∗, a∗) ∈ R4+ is a saddle.

The even and odd time step sub-sequences of solutions of (14) satisfy the composite
equations

Jt+2 = n1f1(s1g1(Jt + cjt )Jt )g1(Jt + cjt )Jt

jt+2 = n2f2(s2g2(cρJt + jt )jt )g2(cρJt + jt )jt

At+2 = n1g1(b1f1(At )At + cb2f2(at )at )f1(At )At

at+2 = n2g2(cρb1f1(At )At + b2f2(at )at ) f2(at )at .

Note that the two equations for the juveniles uncouple from the two equations for the adults.
Thus, both even and odd time step sub-sequences of solutions of (14) satisfy the uncoupled
systems (with (xt , yt ) = (Jt , jt ) and (zt , wt ) = (At , at ))

(a) xt+1 = b1h1(s1g1(xt + cyt )xt )

(b) yt+1 = b2h2(s2g2(cρxt + yt )yt )
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Juvenile–adult structured populations 215

(c) zt+1 = s1g1(b1h1(zt ) + cb2h2(wt ))b1h1(zt )

(d) wt+1 = s2g2(cρb1h1(zt ) + b2h2(wt ))b2h2(wt ). (16)

Equilibria of the composite equations (16) give rise to equilibria or 2-cycles of (14). One
equilibrium is (x, y, z, w) = (Je, 0, 0, ae). This equilibrium gives rise to the (non-equilibrium)
2-cycle

(Je, 0, 0, ae) � (0, Ae, je, 0) (17)

of the competition model (14). For sufficiently large values of c another equilibrium is
(x, y, z, w) = (J ∗, j ∗, A∗, a∗), which corresponds to the equilibrium (J, A, j, a) = (J ∗, A∗,
j ∗, a∗) of the competition model (14). A proof that this equilibrium is stable is found in
Appendix A5.

THEOREM 3.3 Assume the competition model (14) satisfies (13). For c sufficiently large the
coexistence 2-cycle (17) is LAS.

Theorems 3.2 and 3.3 together imply that for large inter-specific competition coefficients c

and ρc in (14) three possible asymptotic outcomes are possible. Depending on initial condi-
tions, the competitive outcome can asymptotically result in the elimination of one species or the
other, by approaching one of the two stable exclusion equilibria (J, A, j, a) = (Je, Ae, 0, 0)

or (0, 0, je, ae), or result in non-equilibrium coexistence by approaching the 2-cycle (17).
By applying recent results of Kulenović and Merino [24] for planar strongly monotone maps

(Theorem 4.1 in Appendix A7) we can give a global description of the basins of attraction
of these three attractors. Define the partial ordering on R2 by u = (u1, u2) ≤ (v1, v2) = v ⇔
u1 ≤ v1 and u2 ≥ v2. Define u < v to mean u ≤ v and u �= v.Also define u � v to mean u ≤ v

and u1 �= v1, u2 �= v2. A map (continuous function) T : R2+ → R2+ is strongly monotone if
u < v implies T (u) � T (v) for all u, v ∈ R2+. A C2 planar map is strongly monotone on R2+
if the Jacobian J (x, y) has the sign structure [24](+ −

− +
)

. (18)

For the planar map defined by equations (16 a, b) we have from (13) that

d

dx
(fi(x + c)x) = d

dx
(hi(x + c) − fi(x + c)c)

= h′
i (x + c) − f ′

i (x + c)c > 0

d

dx
(gi(x + c)x) = d

dx
(ki(x + c) − gi(x + c)c)

= k′
i (x + c) − g′

i (x + c)c > 0

for c ≥ 0. These imply the sign conditions (18) and consequently this map is strongly monotone
on R2+. (Similar calculations show the map defined by the equations (16c, d) is also strongly
monotone on R2+.) If we assume

(16a, b) has no (non-equilibrium) 2-cycle in R2
+ (19)

then the hypotheses of the Theorem 4.1 in Appendix A7 (see [24]) are satisfied for monotone
maps defined by equations (16a, b) and (16c, d) provided c is sufficiently large. That theorem
implies the stable manifold Ws

xy of the equilibrium x = J ∗, y = j ∗ is the graph of a continuous
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and strictly increasing function whose endpoints lie on ∂R2+ and the basins of attraction Bx

and By of the two exclusion equilibria (x, w) = (Je, 0) and (x, y) = (0, je), respectively, are
open, invariant, disjoint, and connected sets that satisfy

R2
+/Ws

xy = Bx ∪ By.

Similarly the stable manifold Ws
zw of the equilibrium z = A∗, w = a∗ is the graph of a contin-

uous and strictly increasing function whose endpoints lie on ∂R2+ and the basins of attraction
Bz and Bw of the two exclusion equilibria (z, w) = (Ae, 0) and (z, w) = (0, ae), respectively,
are open, invariant, disjoint, and connected sets that satisfy

R2
+/Ws

zw = Bz ∪ Bw.

Using the sets Bx, By, Bz and Bw we can describe the basins of attraction of the stable equi-
librium and 2-cycle given in Theorems 3.2(c) and 3.3 for the competition model (14). Define
the open sets

BJA � {(J, A, j, a) ∈ R4
+ : (J, j) ∈ Bx and (A, a) ∈ Bz}

Bja � {(J, A, j, a) ∈ R4
+ : (J, j) ∈ By and (A, a) ∈ Bw}

BJa � {(J, A, j, a) ∈ R4
+ : (J, j) ∈ Bx and (A, a) ∈ Bw}

BjA � {(J, A, j, a) ∈ R4
+ : (J, j) ∈ By and (A, a) ∈ Bz} (20)

in R4+. Note that R4+/(BJA ∪ Bja ∪ BJa ∪ BjA) has measure zero. In fact, a point in R4+ not
in this set must have an associated pair (J, j) or (A, a) that lies on a boundary of Bx or By .

THEOREM 3.4 Assume (13) and (19). For c sufficiently large, solution sequences in R4+ of
the competition model (14) with initial conditions lying in BJA ∪ Bja ∪ BJa ∪ BjA satisfy the
following alternatives as t → +∞ :

Competitive exclusion

(J0, A0, j0, a0) ∈ BJA ⇒ (Jt , At , jt , at ) −→ (Je, Ae, 0, 0)

(J0, A0, j0, a0) ∈ BJa ⇒ (Jt , At , jt , at ) −→ (0, 0, je, ae)

Competitive (2-cycle) coexistence

(J0, A0, j0, a0) ∈ BJa ⇒
{

(J2t , A2t , j2t , a2t ) −→ (Je, 0, 0, ae)

(J2t+1, A2t+1, j2t+1, a2t+1) −→ (0, Ae, je, 0)

(J0, A0, j0, a0) ∈ BjA ⇒
{

(J2t , A2t , j2t , a2t ) −→ (0, Ae, je, 0)

(J2t+1, A2t+1, j2t+1, a2t+1) −→ (Je,0, 0, ae).

4. Discussion

The triple-attractor case in Theorem 2.4 (and 3.4), in which both coexistence and exclusion
attractors are represented, is unusual in competition models. Even more unusual is that this
case occurs when the inter-specific competition coefficients are large. In the stage-structured
Leslie–Gower model global competitive exclusion occurs only for intermediate levels of inter-
specific competition (where global exclusion occurs in cases (7b, c) in Theorem 2.4). From an
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Juvenile–adult structured populations 217

initial condition where one species competitively excludes the other, the model allows the two
species to attain coexistence by either a decrease or an increase of the competition coefficients.
This result seemingly contradicts the classic competitive exclusion principle, at least when
that principle is expressed by the assertion that in order to coexist two species must decrease
the intensity of their inter-specific competition.

There is a reconciliation, however, and that lies in the observation that the juvenile classes
are never simultaneously present in the 2-cycle coexistence attractor in Theorem 2.4 (and 3.4).
Therefore, after arriving at this attractor no competition occurs between the species. Large
values of the competition coefficients in a model represent the potential for strong competitive
interactions, should such interactions take place. In the stage-structured competition models
(5) and (12) it is possible for the species to avoid inter-specific competition by synchronizing
their life cycle stages. This observation shows that there would be no contradiction to the
competitive exclusion principle if this principle were stated slightly differently (as it often
is in the ecological literature): in order to survive a species must find a way to minimize or
avoid competition from other species (i.e. find its ‘niche’). What our results show is that the
competition coefficients in a model might not relate in a straightforward way (e.g. by means of
their magnitudes) to this form of the competitive exclusion principle. However, the model (5)
also questions this formulation competitive exclusion principle. This is because the ‘avoidance’
coexistence 2-cycle in Theorems 2.4 and 3.4 in fact exists for all values of the competition
coefficients, including small values where global equilibrium coexistence occurs. In this case
rather than seeking to avoid competition in order to coexist (by tending to the avoidance
2-cycle), the two species coexistence in equilibrium where competition is not avoided.

Appendices

A1 The Leslie–Gower model

To analyze the stability properties of these equilibria we will use the following facts about the
Leslie–Gower competition model (2) [13, 18, 24]:

xt+1 = b1
1

1 + c11xt + c12yt

xt

yt+1 = b2
1

1 + c21xt + c22yt

yt .

There exist three nontrivial equilibria, namely,

(x, y) = (xe, 0), (0, ye), (x∗, y∗) (A1)

where

xe � b1 − 1

c11
, ye � b2 − 1

c22

x∗ � c22(b1 − 1) − (b2 − 1)c12

c11c22 − c12c21
, y∗ � c11(b2 − 1) − c21(b1 − 1)

c11c22 − c12c21
.

Assuming bi > 1, then

c12 < c22
b2 − 1

b1 − 1

c21 < c11
b1 − 1

b2 − 1

⎫⎪⎪⎬
⎪⎪⎭ =⇒ (x∗, y∗) is GAS on R2

+ (A2a)
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c12 < c22
b2 − 1

b1 − 1

c21 > c11
b1 − 1

b2 − 1

⎫⎪⎪⎬
⎪⎪⎭ =⇒ (xe, 0) is GAS on R2

+ (A2b)

c12 > c22
b2 − 1

b1 − 1

c21 < c11
b1 − 1

b2 − 1

⎫⎪⎪⎬
⎪⎪⎭ =⇒ (0, ye) is GAS on R2

+ (A2c)

c12 > c22
b2 − 1

b1 − 1

c21 > c11
b1 − 1

b2 − 1

⎫⎪⎪⎬
⎪⎪⎭ =⇒ (xe, 0), (0, ye) are LAS and (x∗, y∗) is a saddle. (A2d)

In the latter case, the stable manifold Ws of (x∗, y∗) lies on the graph of a strictly increasing,
continuously differentiable function and R2+ = Bx ∪ By ∪ Ws where Bx and By are the open,
disjoint and connected basins of attraction of (xe, 0) and (0, ye), respectively (Theorems 5 and
6 in [24]).

A2 Proof of theorem 2.2

Case (a). The inequalities concerning the coefficients in this case correspond to the option
(A2a) in the Leslie–Gower system (9) for the subsequences of juvenile components. Given an
initial condition (J0, A0, j0, a0) ∈ R4+, and hence an initial condition (x0, y0) = (J0, j0) ∈ R2+
for the even step subsequence, it follows from Appendix A1 that the juvenile components
(J2t , j2t ) of the even step subsequence converge to (J ∗, j ∗). (See (Al).) Since (J0, A0, j0, a0) ∈
R4+ implies (J1, A1, j1, a1) ∈ R4+, the initial condition (x0, y0) = (J1, j1) ∈ R2+ and the odd
subsequence of the juvenile components (J2t+1, j2t+1) also converge to (J ∗, j ∗). It follows
that the time series of juvenile components (Jt , jt ) converges to (J ∗, j ∗). From this conclusion
equations (5) imply

lim
t→∞ At+1 = s1

1

1 + J ∗ + c1j ∗ J ∗ = A∗

lim
t→∞ at+1 = s2

1

1 + c2J ∗ + j ∗ j ∗ = a∗.

To complete the proof that the coexistence equilibrium (J ∗, j ∗, A∗, a∗) is GAS on R4+ we
need to show that it is LAS.

The characteristic polynomial p(λ) of the Jacobian

M(J, A, j, a) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
b1

(Ad1 + 1)2
0 0

s1(jc1 + 1)

(J + jc1 + 1)2
0 − s1c1J

(J + jc1 + 1)2
0

0 0 0
b2

(ad2 + 1)2

− s2c2j

(j + Jc2 + 1)2
0

s2(J c2 + 1)

(j + Jc2 + 1)2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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of (5) is quadratic in λ2. Specifically, p(λ) = q(λ2) where

q(z) � z2 − a1z + a2

a1 � n1
1 + c1j

(1 + d1A)2(1 + J + c1j)2
+ n2

1 + c2J

(1 + d2a)2(1 + c2J + j)2

a2 � n1n2
1 + c2J + c1j

(1 + d1A)2(1 + d2a)2(1 + J + c1j)2(1 + c2J + j)2
.

The roots λ of p have magnitude less than 1 if and only if the roots z of q do. Since ai > 0
the roots of z of the quadratic q have magnitude less than 1 if and only if the Jury conditions†

hold if (and only if)

1 − a1 + a2 > 0, a2 < 1. (A3)

If (at least) one of these inequalities is reversed, then there is a root λ of magnitude greater
than 1. To establish the local stability of an equilibrium by means of the linearization principle
we need to evaluate ai at the equilibrium and investigate the two inequalities (A3).

Consider the coexistence equilibrium (J ∗, j ∗, A∗, a∗). Multiplying together the first two
equilibrium equations and then the last two equilibrium equations, we find that

n1 = (1 + d1A
∗)(1 + J ∗ + c1j

∗)

n2 = (1 + d2a
∗)(1 + j ∗ + c2J

∗) (A4)

and hence

n1n2 = (1 + d1A
∗)(1 + d2a

∗)(1 + J ∗ + c1j
∗)(1 + j ∗ + c2J

∗).

It follows that

a2 = 1

1 + d1A∗
1

1 + d2a∗
1 + c2J

∗ + c1j
∗

(1 + J ∗ + c1j ∗)(1 + j ∗ + c2J ∗)

is less than 1 (because each factor is). It also follows that

1 − a1 + a2 = 1 −
(

1 + c1j
∗

n1
+ 1 + c2J

∗

n2

)
+ 1 + c2J

∗ + c1j
∗

n1n2

= (n1 − 1)(n2 − 1)

n1n2

(
1 − 1

n2 − 1
c2J

∗ − 1

n1 − 1
c1j

∗
)

.

The formulas for J ∗ and j ∗ yield, after some algebra,

1 − a1 + a2 = (1 + d1s1)(1 + d2s2) − c1c2

n1n2
J ∗j ∗.

The inequalities in case (a) imply this expression is positive.

†The roots of the quadratic z2 + βz + α satisfy |z| < 1 if and only if |α| < 1 and |β| < 1 + α. If one of these
inequalities is reversed, there is a root satisfying |z| > 1.
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220 J. M. Cushing et al.

Case (b). The inequalities concerning the coefficients in this case correspond to the option
(A2b) in the Leslie–Gower system (9) for the subsequences of juvenile components. Given an
initial condition (J0, A0, j0, a0) ∈ R4+, and hence an initial condition (x0, y0) = (J0, j0) ∈ R2+
for the even step subsequence, it follows from Appendix A1 that the juvenile components of
the even step subsequence (J2t , j2t ) converge to (Je, 0) (See (Al).) Since (J0, A0, j0, a0) ∈
R4+ implies (J1, A1, j1, a1) ∈ R4+, the initial condition (x0, y0) = (J1, j1) ∈ R2+ and the odd
subsequence of the juvenile components (J2t+1, j2t+1) also converges to (Je, 0). It follows
that the time series of juvenile components (Jt , jt ) converges to (Je, 0). From this conclusion
the equations (5) imply

lim
t→+∞ At+1 = s1

1

1 + Je

Je = Ae

lim
t→+∞ at+1 = 0.

To complete the proof that the coexistence equilibrium (Je, Ae, 0, 0) is GAS on R4+ we need
to show that it is LAS. The Jacobian

M(Je, Ae, 0, 0) =
(

M11 M12

0 M22

)

is block triangular with

M22 =
⎛
⎝ 0 b2

s2(1 + d1s1)

c2(n1 − 1) + 1 + d1s1
0

⎞
⎠ .

The eigenvalues of M11 are less than one in magnitude since this matrix is the Jacobian of the
J, A single species model (2.1) and n1 > 1. The remaining eigenvalues of M(Je, Ae, 0, 0) are
those of M22, which are

λ = ±
√

n2(1 + d1s1)

c2(n1 − 1) + (1 + d1s1)

and hence, under the assumptions of case (b), are less than one in magnitude.
Case (c). This case is proved analogously to Case (b).
Case (d). The proof that (Je, Ae, 0, 0) is LAS is the same as the proof in Case (b).

An analogous proof shows (0, 0, je, ae) is LAS. From the calculations in the proof of Case (a),
we find in this case that the coefficients ai that define the characteristic polynomial p(λ) =
q(λ2) of the Jacobin associated with coexistence equilibrium (J ∗, j ∗, A∗, a∗) satisfy

ai > 0, 1 − a1 + a2 < 0 and a2 < 1.

It follows that q(z) = z2 − a1z + a2 has two positive real roots 0 < z1 < 1 < z2 and that two
eigenvalues λ = ±√

z1 are less than one in magnitude and two eigenvalues λ = ±√
z2 are

greater than one in magnitude. Therefore, (J ∗, j ∗, A∗, a∗) is a saddle, with two-dimensional
stable and unstable manifolds.

A3 Proof of theorem 2.3

We investigate the stability of each of the six 2-cycles (10) consecutively. By the linearization
principle, a 2-cycle that oscillates between points (J0, j0, A0, a0) and (J1, A1, j1, a1) is LAS
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Juvenile–adult structured populations 221

if the eigenvalues of the product M(J0, j0, A0, a0) M (J1, A1, j1, a1) are less than one in
magnitude. If one eigenvalue has magnitude greater than one, the 2-cycle is unstable.

In the proof of Theorem 2.4 we calculated the eigenvalues (11) of the product
M(Je, 0, 0, ae) M(0, Ae, je, 0). In cases (7a,b,c) at least one of the eigenvalues λ2 or λ3

is greater than one. Therefore, the 2-cycle C1 is unstable in these cases.
Calculations show that the matrices

M(0, 0, 0, ae)M(0, 0, je, 0)

M(0, Ae, 0, 0)M(Je, 0, 0, 0)

are, respectively,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n1

c1je + 1
0 0 0

0 n1 0 0

− n2c2je

(je + 1)2(d2ae + 1)2
0

n2

(je + 1)2(d2ae + 1)2
0

0 0 0 n2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n1

(Je + 1)2(d1Ae + 1)2
0 − n1c1Je

(Je + 1)2(d1Ae + 1)2
0

0 n1 0 0

0 0
n2

c2Je + 1
0

0 0 0 n2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Both of these matrices have eigenvalues ni > 1 and, as a result, the 2-cycles C2 and C3 are
unstable in all cases (7).

In Cases (7a,d) the 2-cycles C4, C5 and C6 lie in R̄4+. A calculation shows
M(0, A∗, 0, a∗)M(J ∗, 0, j ∗, 0) equals

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n1(c1j
∗ + 1)

(d1A∗ + 1)2(J ∗ + c1j ∗ + 1)2
0 − n1c1J

∗

(d1A∗ + 1)2(J ∗ + c1j ∗ + 1)2
0

0 n1 0 0

− n2c2j
∗

(d2a∗ + 1)2(j ∗ + c2J ∗ + 1)2
0

n2(c2J
∗ + 1)

(d2a∗ + 1)2(j ∗ + c2J ∗ + 1)2
0

0 0 0 n2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This matrix has eigenvalues ni > 1 and consequently the 2-cycle C4 is unstable.
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222 J. M. Cushing et al.

To investigate 2-cycle C5 we calculate the product of the two Jacobians M(Je, A
∗, 0, a∗)

and M(J ∗, Ae, j
∗, 0), which turns out to be

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n1(c1j
∗ + 1)

(d1A∗ + 1)2(J ∗ + c1j∗ + 1)2
0 − n1c1J

∗

(d1A∗ + 1)2(J ∗ + c1j∗ + 1)2
0

0
n1

(Je + 1)2(d1Ae + 1)2
0 − b2s1c1Je

(Je + 1)2

− n2c2j
∗

(d2a∗ + 1)2(j∗ + c2J ∗ + 1)2
0

n2(c2J
∗ + 1)

(d2a∗ + 1)2(j∗ + c2J ∗ + 1)2
0

0 0 0
n2

c2Je + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

which, by formulas (6) and (4), reduces to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1j
∗ + 1

n1
0 −c1J

∗

n1
0

0
1

n1
0 − b2c1s1Je

(Je + 1)2

−c2j
∗

n2
0

c2J
∗ + 1

n2
0

0 0 0
n2

c2Je + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

One eigenvalue of this matrix is λ1 = n−1
1 < 1. Another eigenvalue

λ2 = n2

c2Je + 1
= n2(1 + d1s1)

c2(n1 − 1) + (1 + d1s1)

is greater than one in case (7a), but less than one in case (7d). To investigate the latter case,
we factor the characteristic polynomial

p(λ) = (λ − λ1)(λ − λ2)

(
λ2 − n2 + n1 + c2n1J

∗ + c1n2j
∗

n1n2
λ + 1 + c2J

∗ + c1j
∗

n1n2

)

and consider the two roots of the quadratic polynomial

λ2 − n2 + n1 + c2n1J
∗ + c1n2j

∗

n1n2
λ + 1 + c2J

∗ + c1j
∗

n1n2
.

In case (7d) the first Jury inequality (A3) for stability is reversed for this polynomial and hence
it has a root larger than one in magnitude. This follows from a calculation that shows

1 − a1 + a2 = 1 − n2 + n1 + c2n1J
∗ + c1n2j

∗

n1n2
+ 1 + c2J

∗ + c1j
∗

n1n2

= (c1(n2 − 1) − (1 + d2s2)(n1 − 1))(c2(n1 − 1) − (1 + d1s1)(n2 − 1))

n1n2((1 + d1s1)(1 + d2s2) − c1c2)

and hence 1 − a1 + a2 < 0 in both cases (7a, d). We conclude that the cycle C5 is unstable.
The analysis of the 2-cycle C6, based on the eigenvalues of M(0, A∗, je, a

∗)M(J ∗, 0, j ∗, ae)

is analogous to that of C5.
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Juvenile–adult structured populations 223

A4 Proof of theorem 3.1

Solving the equilibrium equations

J = bf (A)A, A = sg(J )J

is equivalent, for nontrivial equilibria, to solving the equation

bf (sg(J )J )sg(J ) = 1

for J > 0 and then letting A = sg(J )J . The left side of the equation, namely
bf (sg(J )J )sg(J ), is strictly decreasing in J ≥ 0, equals n > 1 at J = 0, and approaches
0 as J → +∞. As a result there exists a unique root Je > 0 of the equation and a unique
positive equilibrium (Je, Ae) = (Je, sg(Je)Je). The eigenvalues of the Jacobian evaluated at
this equilibrium (

0 bh′(Ae)

sk′(Je) 0

)

satisfy the characteristic equation λ2 = bh′(Ae)sk
′(Je) > 0. Since

0 < bh′(Ae) = bf (Ae) + bf ′(Ae)Ae = Je

Ae

+ bf ′(Ae)Ae <
Je

Ae

0 < sk′(Je) = sg(Je) + sg′(Je)Je = Ae

Je

+ sg′(Je)Je <
Ae

Je

(A5)

it follows that λ2 < 1 and the equilibrium is LAS.
To see that the equilibrium (Je, Ae) is GAS on R+

2 we consider the odd and even time
step subsequences (J2t+1, A2t+1) and (J2t , A2t ) of a solution (Jt , At ) sequence, both of which
satisfy the uncoupled system

(a) xt+1 = bh(sk(xt ))

(b) yt+1 = sk(bh(yt )). (A6)

These equations define one dimensional, bounded, monotone maps and hence their solution
sequences are monotone and convergent. The origin 0 is unstable for both equations (the
linearization at 0 has coefficient n > 1), and no solution with positive initial condition can
approach it. Each has a unique positive equilibrium (x = Je and y = Ae respectively), which,
therefore, is approached by all solutions with positive initial conditions.

If J0 > 0 and A0 > 0, then both odd and even subsequences (J2t+1, A2t+1) and (J2t , A2t ),

and hence the solution sequence (Jt , At ) itself, converge to (Je, Ae). This shows (Je, Ae) is
GAS on R2+.

If, on the other hand, either J0 > 0 and A0 = 0 or J0 = 0 and A0 > 0 then the odd and even
subsequences converge to different limits, one to a positive limit (Je or Ae, respectively) and
the other to 0. This means the sequence (Jt , At ) converges to one of the phases of the 2-cycle
whose points are (Je, 0) and (0, Ae). The 2-cycle is LAS because, as (A5) shows, Je and Ae

are LAS fixed points of (A6a) and (A6b), respectively. �
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224 J. M. Cushing et al.

A5 Proof of theorem 3.3

The 2-cycle (17) is stable if the equilibrium (x, y, z, w, ) = (Je, 0, 0, ae) of the composite
system (16) is stable. The Jacobian of (16) is block diagonal

M(x, y, z, w) =
(

D1(x, y) 02×2

02×2 D2(z, w)

)

where the 2 × 2 matrix D1(x, y) is the Jacobian of equations (16a, b) and the 2 × 2 matrix
D2(z, w) is the Jacobian of equations (16c, d). (02×2 is the 2 × 2 zero matrix.) The eigenvalues
of the Jacobian at the equilibrium (x, y, z, w) = (Je, 0, 0, ae) are the eigenvalues of D1(Je, 0)

and D2(0, ae).
A calculation shows the eigenvalues of

D1(Je, 0) =
(

n1h
′
1(Ae)k

′
1(Je) n1ch

′
1(Ae)g

′
1
(Je)Je)

0 n2g2(cρJe)

)

are

λ1 = b1h
′
1(Ae)s1k

′
1(Je) > 0

λ2 = n2g2(cρJe) > 0

Now

0 < b1h
′
1(Ae) = b1f1(Ae) + b1f

′
1(Ae)Ae = Je

Ae

+ b1f
′
1(Ae)Ae <

Je

Ae

0 < s1k
′
1(Je) = s1g

′
1(Je) + s1g

′
1(Je)Je = Ae

Je

+ s1g
′
1(Je)Je <

Ae

Je

and hence 0 < λ1 < 1. The second eigenvalue λ2 approaches 0 as c → +∞ and hence 0 <

λ2 < 1 for c sufficiently large.
The remaining two eigenvalues of M(Je, 0, 0, ae) are those of D2(0, ae). A calculation

shows

D2(0, ae) =
(

n1g1(cje) 0

s2cρb1g
′
2(je)je n2h

′
2(ae)k

′
2(je)

)

whose eigenvalues are

λ3 = n1g1(cje) > 0

λ4 = n2h
′
2(ae)k

′
2(je) > 0.

Since λ3 approaches 0 as c → +∞ , it follows that 0 < λ3 < 1 for c sufficiently large. An
argument similar to that used to study λ2 shows 0 < λ4 < 1. Thus, the eigenvalues of D2(0, ae)

also satisfy 0 < λ3, λ4 < 1 for c sufficiently large. �
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Juvenile–adult structured populations 225

A6. Proof of Theorem 3.2d, e

Part (d). The equilibrium equations

J = b1f1(A)A

A = s1g1(J + cj )J

j = b2f2(a)a

a = s2g2(ρcJ + j)j

of (14) are equivalent to the equations

J = b1f1(s1g1(J + cj)J )s1g1(J + cj)J

j = b2f2(s2g2(cρJ + j)j)s2g2(cρJ + j)j

A = s1g1(J + cj)J

a = s2g2(cρJ + j)j. (A7)

To solve these equations for positive J, j, A, a is equivalent to solving the first two equations
for (J, j) ∈ R2+ and using the second two equations to define positive A, a. Rewriting the first
two equations as

J = b1h1(s1g1(J + cj)J )

j = b2h2(s2g2(cρJ + j)j) (A8)

we see that any positive solutions (J, j) must lie in the open, bounded set r1 × r2 where

ri � ]bihi(−δ), bihi(∞)[.

On r1 × r2 the equations (A8) are in turn equivalent to the equations

g1(J + cj) = s−1
1 h−1

1 (b−1
1 J )J−1

g2(cρJ + j) = s−1
2 h−1

2 (b−1
2 j)j−1.

Since the range of g1 is the unit interval [0, 1[, for any positive solution the right hand sides
of these equations must lie in ]0, 1[. Thus, these equations are equivalent to

J + cj = g−1
1 (s−1

1 h−1
1 (b−1

1 J )J−1)

cρJ + j = g−1
2 (s−1

2 h−1
2 (b−1

2 j)j−1) (A9)

for (J, j) ∈ r̂1 × r̂2 where the sets

r̂1 � {J ∈ r1 : s−1
1 h−1

1 (b−1
1 J )J _1 < 1} ⊂ R1

+
r̂2 � {j ∈ r2 : s−1

2 h−1
2 (b−1

2 j)j−1 < 1} ⊂ R1
+

are open. Under assumptions (13) hi and hence h−1
i are twice continuously differentiable. Since

h−1
i (0) = 0, it follows that h−1

i (b−1
i J )J−1 is continuously differentiable on ri . As a result, the
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226 J. M. Cushing et al.

right hand sides of equations (A9) are continuously differentiable on r̂i . Calculations show

lim
J→0

s−1
1 h−1

1 (b−1
1 J )J−1 = n−1

1 < 1

lim
j→0

s−1
2 h−1

2 (b−1
2 j)j−1 = n−1

2 < 1

and hence 0 ∈ r̂i . Rewrite (A9) equivalently as

ξ̂ = c−1F̂ (ξ̂ ) (A10)

where ξ̂ � (J, j) ∈ r̂1 × r̂2 and where F̂ (ξ̂ ) = (F1(j), F2(J )) is defined by

F1(j) � ρ−1(−j + g−1
2 (s−1

2 h−1
2 (b−1

2 j)j−1))

F2(J ) � −J + g−1
1 (s−1

1 h−1
1 (b−1

1 J )J−1).

Note that F̂ ∈ C1(r̂1 × r̂2, R
2+).

Choose ε > 0 so small that

D(ε) � [0, ε] × [0, ε] ⊂ r̂1 × r̂2.

For c sufficiently large, c−1F̂ : D(ε) → D(ε). Since the first order derivatives of Fi are
bounded on [−ε, ε] it follows that for each c sufficiently large c−1F̂ is a contraction and
therefore has a unique fixed point (J ∗, j ∗) = (J ∗(c), j ∗(c)) ∈ D(ε).

Since

F1(0) = ρ−1g−1
2 (n−1

2 ) �= 0

F2(0) = g−1
1 (n−1

1 ) �= 0

it follows that J ∗(c) > 0 and j ∗(c) > 0. This positive fixed point yields the positive
equilibrium (J ∗(c), A∗(c), j ∗(c), a∗(c)) of (14) where

A∗(c) = s1g1(J
∗(c) + cj ∗(c))J ∗(c)

a∗(c) = s2g2(cρJ ∗(c) + j ∗(c))j ∗(c).

Part (e). We begin by noting that from

h−1
i (θ) = 1

h′
i (0)

θ + O(θ2)

and h′
i (0) = 1 we have

lim
θ→0

h−1
i (θ)θ−1 = 1.

Both F1(j) and F2(J ) are bounded for (J, j) ∈ D(ε) and it follows from (A10), i.e. from
the equations

J ∗(c) = c−1F1(j
∗(c))

j ∗(c) = c−1F2(J
∗(c)),

that

lim
c→∞ J ∗(c) = lim

c→∞ j ∗(c) = 0
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Juvenile–adult structured populations 227

and

lim
c→∞ cJ ∗(c) = lim

c→∞ F1(j
∗(c))

= lim
θ→0

ρ−1(−b2θ + g−1
2 (s−1

2 b−1
2 h−1

2 (θ)θ−1))

= ρ−1g−1
2

(
b−1

2 s−1
2 lim

θ→0
h−1

2 (θ)θ−1

)
or

lim
c→∞ cJ ∗(c) = ρ−1g−1

2 (n−1
2 ).

A similar calculation shows

lim
c→∞ cj ∗(c) = g−1

1 (n−1
1 ).

Using these limits, we can calculate the limit, as c → +∞, of the Jacobian of (14) evaluated
at the equilibrium (J ∗(c), A∗(c), j ∗(c), a∗(c)) and obtain⎛

⎜⎜⎜⎝
0 b1 0 0

b−1
1 0 ρ−1s1g

′
1(g

−1
1 (n−1

1 ))g−1
2 (n−1

2 ) 0

0 0 0 b2

ρs2g
′
2(g

−1
2 (n−1

2 ))g−1
1 (n−1

1 ) 0 b−1
2 0

⎞
⎟⎟⎟⎠ .

The characteristic polynomial of this matrix is λ4 − 2λ2 + (1 − p) where

p � [n1g
′
1(g

−1
1 (n−1

1 ))g−1
1 (n−1

1 )][n2g
′
2(g

−1
2 (n−1

2 ))g−1
2 (n−1

2 )].
Thus λ2 = z± where

z± � +1 ±
√

[n1g
′
1(g

−1
1 (n−1

1 ))g−1
1 (n−1

1 )][n2g
′
2(g

−1
2 (n−1

2 ))(g−1
2 (n−1

2 )].
Note that ni > 1 implies

nig
′
i (g

−1
i (n−1

i ))g−1
i (n−1

i ) > −1.

This follows from (13) because

1

gi(x)
g′

i (x)x > −1

⇐⇒ g′
i (x)x + gi(x) > 0

⇐⇒ k′
i (x) > 0.

It follows that

[n1g
′
1(g

−1
1 (n−1

1 ))g−1
1 (n−1

1 )][n2g
′
2(g

−1
2 (n−1

2 )g−1
2 (n−1

2 )] < 1

and hence

0 < z− < 1 < z+ < 2.

Hence, for c sufficiently large, the four eigenvalues λ of the Jacobian are real and satisfy

−√
2 < λ1 < −1 < λ2 < 0 < λ3 < 1 < λ4 <

√
2.

Thus the equilibrium is a saddle (with, locally, a two-dimensional stable manifold and a
two-dimensional unstable manifold).
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A7. Proof of Theorem 3.4

The theorem below is a corollary of Theorems 5 and 6 in [24]. Denote two of the quadrants
determined by a point (x1, y1) by

Q1(x1, y1) � {(x, y) : x1 ≤ x, y2 ≤ y}
Q3(x1, y1) � {(x, y) : x1 ≥ x, y2 ≥ y}.

THEOREM 4.1 [24] Suppose T : R2+ → R2+ is strongly monotone. Assume

(a) T has a unique fixed point (x∗, y∗) ∈ R2+
(b) (x∗, y∗) is a saddle
(c) either

(i) det J (x∗, y∗) > 0 and T (x, y) = (x∗, y∗) ⇒ (x, y) = (x∗, y∗)
(ii) T has no prime period two orbits in Q1(x

∗, y∗) ∪ Q3(x
∗, y∗).

The global stable manifold Ws = Ws(x∗, y∗) is the graph of a continuous and strictly
increasing function whose endpoints lie on ∂R2+. Let

Bx = {(x, y) ∈ R2
+/Ws : ∃(x1, y1) ∈ Ws such that x < x1, y > y1}

By = {(x, y) ∈ R2
+/Ws : ∃(x1, y1) ∈ Ws such that x > x1, y < y1}.

Then Bx and By are open, invariant, disjoint, and connected and satisfy

R2
+/W 2 = Bx ∪ By.

Suppose further that T = (T1, T2) has a unique fixed point (xe, 0) on the positive x-axis
such that x > xe implies T1(x, 0) < x. Then Bx is the basin of attraction for (xe, 0) Suppose
T = (T1, T2) has a unique fixed point (0, ye) on the positive y-axis such that y > ye implies
T2(0, y) < y. Then By is the basin of attraction for (0, ye).

Let T : R2+ → R2+ be the strongly monotone map defined by the equations (16a, b). For c

sufficiently large we apply Theorem 4.1 to obtain the sets Bx and By . Define the open sets
(20) in R4+.

Recall the even and odd step subsequences of any solution of the competition model (14)
satisfy the equations (16a, b). In the following lemma we refer to pairs (J, A) and (j, a) as
associated components of (J, A, j, a) ∈ R4+.

LEMMA 4.1 Assume (13) for the competition model (14). If the even-step (or odd-step) sub-
sequence of a solution sequence in R4+ converges to a point which has a 0 component, then the
odd-step (respectively even-step) subsequence of the orbit cannot approach a point in which
the corresponding associated component is nonnegative.

Proof We prove the lemma for the even-step subsequence of a convergent solution sequence.
The proof for the odd-step subsequence is analogous.
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Let (Jt , At , jt , at ) ∈ R4+ be any solution sequence of (14) and suppose the J component of
the even-step subsequence converges to 0:

lim
t→+∞(J2t , A2t , j2t , a2t ) −→ (0, Ae, j e, ae).

The proofs are similar should any one of the other three components converge to 0. For the
purposes of contradiction, assume

lim
t→+∞(J2t+1, A2t+1, j2t+1, a2t+1) −→ (J o, Ao, jo, ao), Ao > 0.

If we choose t > 0 so large that

0 ≤ J2t ≤ 1

3s1
Ao and A2t+1 ≥ 2

3
Ao

then from the second equation in (14) we arrive at the contradiction

A2t+1 = s1g1(J2t + cj2t )J2t ≤ s1J2t ≤ 1

3
Ao.

�

LEMMA 4.2 Assume (13) for the competition model (14). For the map T defined by the
competition system (14) we have

T : BJA −→ BJA, T : Bja −→ Bja

T : BJa −→ BjA, T : BjA −→ BJa.

Proof We’ll give the proof for T : BJA → BJA. The proofs for the other three cases are
similar. Assume (Jo, Ao, jo, ao) ∈ BJA. By the definition (20) of BJA it follows that

lim
t→+∞(J2t , A2t , j2t , a2t ) = (Je, Ae, 0, 0). (A11)

If (J1, A1, j1, a1) ∈ Bja then by the definition (20) of Bja it would follow that

lim
t→+∞(J2t+1, A2t+1, j2t+1, a2t+1) = (0, 0, je, ae),

which together with (A11) yields a contradiction to Lemma 4.1. If (J1, A1, j1, a1) ∈ BjA then
by the definition (20) of BjA it would follow that

lim
t→+∞(J2t+1, A2t+1, j2t+1, a2t+1) = (0, Ae, je, 0)

which together with (A11) yields a contradiction to Lemma 4.1. Similarly, a contradiction
arises if (J1, A1, j1, a1) ∈ BJa . Finally, if

(J1, A1, j1, a1) ∈ R4
+/(BJA ∪ Bja ∪ BJa ∪ BjA),

then (J1, j1) and/or (A1, a1) would lie on the boundary of a basin and hence on the sta-
ble manifold of the positive equilibrium (J ∗, j ∗) and/or (A∗, a∗). In this case, (J2t+1, j2t+1)

and/or (A2t+1, a2t+1) would tend to the positive equilibrium (J ∗, j ∗) and/or (A∗, a∗). Either
case, together with (A11), is a contradiction to Lemma 4.1. The only alternative left is that
(J1, A1, j1, a1, ) ∈ BJA. �
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Proof of Theorem 3.4. We can now enumerate the possibilities for all orbits with initial con-
ditions in BJA ∪ Bja ∪ BJa ∪ BjA (i.e. all orbits in R4+ except for a set of measure zero).
This is done by interlacing the asymptotic dynamics of the even and odd step subsequences
of the solution sequence. We illustrate with one case. The other cases are similar. Sup-
pose (Jo, Ao, jo, ao) ∈ BJA. Then by the definition (3.9) of BJA we have (Jo, jo) ∈ Bx and
(Ao, ao) ∈ Bz. Hence, the even step subsequences (J2t , j2t ) and (A2t , a2t ) approach (Je, 0)

and (Ae, 0), respectively. Lemma 4.2 implies (J1, A1, j1, a1) ∈ BJA and hence the odd step
subsequences (J2t+1, j2t+1) and (A2t+1, a2t+1) approach the same limits. Consequently, the
solution sequence (Jt , At , jt , at ) approaches (Je, Ae, 0, 0).
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