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We derive and analyze a general class of difference equation models for the dynamics of hierarchically
organized populations. Different forms of intra-specific competition give rise to different types of
nonlinearities. For our models, we prove that contest competition results asymptotically in only
equilibrium dynamics. Scramble competition, on the other hand, can result in more complex asymptotic
dynamics. We study both the case when the limiting resource is a constant and when it is dynamically
modeled. We prove, in all cases, that the population persists if the inherent net reproductive number of the
population is greater than one.
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1. Introduction

Intra-specific competition is an important intrinsic mechanism that regulates the growth of

biological populations. Often, competition among individuals is based on some kind of

physical or behavioral hierarchy of individuals within the population. For a population in

which there is a hierarchical ranking among individuals, there are two commonly

distinguished forms of intra-specific competition: contest and scramble. Contest

competition occurs when no individual in a class of lower rank can affect the birth or

death rate of any individual of higher rank. Scramble competition, on the other hand,

occurs when every individual can affect the vital rates of any other individual in the

population [13]. See Begon et al. [2] for more biological discussion about these two types

of competition.

Several authors have developed and studied models of intra-specific competition based

on competition hierarchies. A model based on chronological age and the McKendrick

(partial differential) equation is due to Cushing [5]. In a subsequent paper, Cushing [6]

derived and analyzed a hierarchical model in which intra-specific competition is based on

the body size of individuals. These studies conclude that contest competition results in

higher population equilibrium levels than does scramble competition and that the contest

equilibrium is more resilient. In a later study, Henson and Cushing [10] use a comparison
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criterion based on the total amount of limiting resource available to the population to

show that the concavity of the nonlinear, resource uptake rate is important in deciding the

outcome of the comparison.

Many biological populations are accurately modeled using discrete structuring classes and

discrete time [4,7]. Jang and Cushing [12] investigate a discrete version of the (partial

differential equation) model studied by Henson and Cushing [10]. In [17], Xu studies a

discrete analogue of the model examined by Cushing in [5]. In the absence of structuring,

Ricker and Beverton-Holt equations are frequently used to describe scramble and contest

competition for single species discrete-time population models, respectively [14].

By ignoring differences among individuals in each species and assuming local population

dynamics are topologically conjugate to either Ricker or Beverton-Holt equations, Best et al.

[3] investigated discrete-time competitive metapopulation models of a single patch in which

there is an hierarchy among competing species. Explicit conditions were derived for the

coexistence of all species and for the dominance of top species in the hierarchy [3]. Multiple

patches with dispersal between patches were also discussed in [3]. Yakubu studied single

species discrete-time models with two age classes in which there is no competition between

two classes and only individuals in the adult class can reproduce [18]. Yakubu showed that in

the absence of Allee effect, the model supports only single attractor when competition

between juveniles is pure contest and multiple attractors are supported under scramble

competition. However, both contest and scramble competition can generate multiple

attractors when Allee effect is incorporated into the model [18].

Our models presented here are in different spirit than those studied by Best et al. [3] and

Yakubu [18]. In particular, a single species is considered and the population is classified into

several different classes based on either age, size, or stage. Individuals in any class are

capable of reproducing and transition between classes is assumed to be arbitrary during one

time unit. Intra-specific competition occurs between individuals in different classes.

Specifically, the modeling methodology of Henson and Cushing [10] and Cushing [5–7] is

followed. However, unlike in [12] for which equations are derived and investigated

separately for two forms of intra-specific competition, the contest and scramble competitions

in the present study are connected by means of a homotopy class of equations. In one extreme

of the equations we have, pure contest competition and pure scramble competition is

represented by the other end of the equations. We will give a more complete analysis of this

model than [17] in the case when the resource is constant. In the case when the resource is

dynamically modeled, we will study a new and more general model than that studied in [17]

and [12].

The manuscript is organized as follows. In the following section we derive a general class

of hierarchical competition models and show how they can be reduced to one dimensional

equation for total population size. In section 3, we study the asymptotic dynamics of this one

dimensional equation and compare the two forms of competition when resource level is a

constant. In section 4, we consider the case when the resource varies dynamically. The final

section contains a summary.

2. A general hierarchical model

The model we consider is based on a hierarchical matrix model of Xu and Cushing [7,17]. In

this model all individuals in a population are categorized into a finite number m of classes,
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m $ 2: Any suitable feature of the individuals can serve for the classification scheme

(e.g. age, size, life cycle stage, genetic composition, etc.). Let xiðtÞ $ 0 denote the density of

individuals in class i, 1 # i # m; at time t ¼ 0; 1; 2; . . .; and let xt ¼ col ðxiðtÞÞ
m
i¼1 be the

column vector consisting of these densities, i.e. the class distribution vector at time t. The

dynamics of the class distribution vector is given by the matrix equation

xtþ1 ¼ ðT þ FÞxt: ð2:1Þ

In this equation, the entries in the m £ m matrix T (the ‘transition’ matrix) are the fractions

of (surviving) individuals who move from one class to another. The entries in the matrix F

(the ‘fertility’ matrix) are the class specific, per capita numbers of (class specific, surviving)

newborns per unit time. In general, the model allows for transitions among any two classes

and births from any class individual into any class. In specific applications, of course, some

transitions and birth classes might be ruled out and hence result in zero entries in the

matrices.

The hierarchical model of Xu and Cushing assumes that the class specific entries in the

transition and fertility matrices are functions of a hierarchy based on rank associated with the

classes. Specifically,

T ¼ ðtijsjÞ; F ¼ ðwijbjÞ ð2:2Þ

where sj is the probability that an individual of class j will survive one unit of time and bj is

the number of surviving offspring from an individual in class j. The numbers tij and wij are the

fractions of the surviving j-class individuals and newborns that lie in class i, respectively,

after one unit of time. The fractions tij and wij are assumed constant in time (and hence density

independent) whereas sj and bj are density dependent functions related to the class rank as

follows. Let yi denote the total number (or density) of individuals of rank less than i, i.e.

yi ¼

0 i ¼ 1Pi21
j¼1 xj 2 # i # m þ 1:

8<
: ð2:3Þ

In particular, ymþ1 ¼ P ¼
Pm

i¼1 xi is the total population size. The hierarchical model

utilizes functions

s [ C 0 R2
þ; ½0; 1�

� �
; b [ C 0 R2

þ;Rþ

� �
that provide submodels for the quantities sj and bj in the matrix model. The probability an

individual will survive one unit of time is s ðz;PÞ when the total population size is P and the

density of individuals of lower rank is z. The per capita birth rate of the individual is b ðz;PÞ:

In the hierarchical model of Xu and Cushing

sj ¼

1
xj

Ð yjþxj

yj
s ðz;PÞdz; if xj – 0

s ðyj;PÞ; if xj ¼ 0

8<
:

bj ¼

1
xj

Ð yjþxj

yj
b ðz;PÞdz; if xj – 0

b ðyj;PÞ; if xj ¼ 0:

8<
:

ð2:4Þ

If s ðz;PÞ and b ðz;PÞ are functions of P alone then the (nonlinear) density dependence in

the model is a function of total population size and not of hierarchical rank. If these functions
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do not depend on P, then the density dependence is class rank dependent alone. In general,

the model allows for a mixture of both extremes.

Rather amazingly, from the complicated m-dimensional models (2.1)–(2.4), one can

derive a one dimensional model for total population size, namely,

Ptþ1 ¼ ~sðPtÞ þ ~bðPtÞ; ð2:5Þ

where

~sðPÞ ¼

ðP

0

s ðz;PÞdz; ~bðPÞ ¼

ðP

0

b ðz;PÞdz:

Our study of scramble and contest competition, in the following section, is based on this

equation.

For more details about the model and the derivation of the equation (2.5) see [7].

3. Scramble and contest models

In a model of pure scramble competition, the model components s ðz;PÞ and b ðz;PÞ are

functions of P alone. In a model of pure contest competition they are functions of P 2 z. We

study models in which both types of competitive interactions are present and s and b are

functions of a linear combination of z and P. Specifically, assume

s ðz;PÞ ¼ a0sðrz þ ð1 2 rÞðP 2 zÞÞ

b ðz;PÞ ¼ b0bðrz þ ð1 2 rÞðP 2 zÞÞ

where r is a real number between 0 (contest competition) and 1/2 (scramble competition).

The functions s and b satisfy the conditions

ðH1Þ b [ C 2ðRþ;RþÞ; bð0Þ ¼ 1; b0 , 0; b00 . 0; limz!1bðzÞ ¼ 0:

ðH2Þ s [ C 2ðRþ; ½0; 1�Þ; sð0Þ ¼ 1; s0 , 0; s00 . 0; limz!1sðzÞ $ 0:

Note that if r , 1=2 then s and b are increasing functions of z (for fixed population size P).

Thus, an individual of higher rank (higher class membership) has an increased survivorship

and birth rate.

The quantities b0 . 0 and 0 , a0 , 1 are the ‘inherent’ birth rate and survival probability

of per unit time in the absence of competitive interactions and

n ¼ b0 1 þ a0 þ a2
0 þ · · ·

� �
¼

b0

1 2 a0

is the ‘inherent net reproductive number’, i.e. the expected number of offspring per

individual over its life time [7] (in the absence of intra-specific competition). It has been

shown in many discrete and continuous hierarchical models that the dynamics of the total

population size depend on n. This parameter will play an important role in our analysis.

Under assumptions (H1) and (H2) we can rewrite the equation (2.5) for P as follows.

Let w ¼ rz þ ð1 2 rÞðP 2 zÞ and write

ðP

0

b ðz;PÞdz ¼
b0

1 2 2r

ðð12rÞP

rP

bðwÞdw
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if r – 1=2 and

ðP

0

b ðz;PÞdz ¼ b0b
P

2

	 

P

if r ¼ 1=2: Similar calculations can be performed for
Ð P

0
s ðz;PÞ dz: Letting dðzÞ ¼

b0bðzÞ þ a0sðzÞ; equation (2.5) becomes

Ptþ1 ¼

1
122r

Ð ð12rÞPt

rPt
dðzÞdz; 0 # r , 1=2

d Pt

2

� �
Pt; r ¼ 1=2:

8<
:

We rewrite this equation as

Ptþ1 ¼ Fðr;PtÞPt z f ðr;PtÞ ð3:6Þ

P0 $ 0;

where

Fðr;PÞ ¼

1
ð122rÞP

Ð ð12rÞP

rP
dðzÞdz; 0 # r , 1=2

d P
2

� �
; r ¼ 1=2:

8<
: ð3:7Þ

Equation (3.6) is a family of difference equations with parameter r, 0 # r # 1=2:

Note f (r, P) is a C 2-function on ½0; 1=2� £ ½0;1Þ and a C 3-function on ½0; 1=2Þ £ ½0;1Þ:

Equation (3.6) has a trivial steady state P ¼ 0 for all r. A positive steady state P* . 0 must

satisfy Fðr;PÞ ¼ 1: Our first goal is to show that under the given assumptions there exists a

unique positive steady state for n . 1: Note that limP!0þFðr;PÞ ¼ dð0Þ for 0 # r # 1=2;

and for 0 # r , 1=2; that

›F

›P
¼

ð1 2 rÞPdðð1 2 rÞPÞ2 rPdðrPÞ2
Ð ð12rÞP

rP
dðzÞdz

ð1 2 2rÞP2
:

Since

ðð12rÞP

rP

dðzÞdz ¼ dðz*Þ½ð1 2 rÞP 2 rP�

for some z* [ ðrP; ð1 2 rÞPÞ and

dðz*Þ½ð1 2 rÞP 2 rP� . dðð1 2 rÞPÞð1 2 rÞP 2 dðrPÞrP;

we have

›F

›P
, 0; 0 # r ,

1

2
:

If r ¼ 1=2; then

›F

›P
¼

1

2
d 0 P

2

	 

, 0:
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We have shown that

›F

›P
, 0; 0 # r #

1

2
; P $ 0:

Moreover,

lim
r!1=22

›F

›P
¼

1

2
d 0 P

2

	 

¼

›F

›P

����
ðr;PÞ¼ð1=2;PÞ

and ›F=›P is continuous for 0 # r # 1=2; P $ 0:

On the other hand if 0 # r , 1=2; it follows from the Mean Value Theorem that

lim
P!1

Fðr;PÞ ¼ lim
P!1

dðz*Þ; z* [ ðrP; ð1 2 rÞPÞ

¼ lim
z!1

dðzÞ

¼ lim
P!1

F
1

2
;P

	 

:

Thus

lim
P!1

Fðr;PÞ ¼ lim
P!1

dðPÞ , 1; 0 # r #
1

2
:

Since F(r,P) is a decreasing function of P and Fðr; 0Þ ¼ dð0Þ; we conclude that equation

(3.6) has a positive steady state P *(r) if and only if dð0Þ . 1 (i.e. n . 1) and that this steady

state is unique.

Theorem 3.1 The dynamics of equation (3.6) are summarized below.

(a) If n , 1; then solutions Pt of equation (3.6) satisfy limt!1Pt ¼ 0 for 0 # r # 1=2:

(b) If n . 1 and r ¼ 0; then solutions Pt of equation (3.6) with P0 . 0 converge to P *(0).

(c) If n . 1 and 0 , r # 1=2; then solutions of equation (3.6) are bounded. Moreover,

P *(r) is locally asymptotically stable if d0ð0ÞP*ðrÞ . 21=r:

Proof Clearly Pt ¼ 0 for t $ 0 if P0 ¼ 0; and Pt . 0 for t . 0 if P0 . 0: We may

assume P0 . 0:

(a) There exists z* [ ðrPt; ð1 2 rÞPtÞ such that

Ptþ1 ¼

dðz*ÞPt; 0 # r , 1
2

d Pt

2

� �
Pt; r ¼ 1

2
:

8<
:

Thus Ptþ1 , dð0ÞPt for t $ 0 as d0 , 0: Hence limt!1Pt ¼ 0 when n , 1:

(b) If n . 1; then a unique positive steady state P*ðrÞ exists for equation (3.6). When

r ¼ 0;

f ð0;PÞ ¼

ðP

0

dðzÞdz and
›f ð0;PÞ

›P
¼ dðPÞ . 0:
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Since ›F=›P , 0;

ðP 2 P*ð0ÞÞ ð f ð0;PÞ2 PÞ ¼ ðP 2 P*ð0ÞÞ ðFð0;PÞ2 1ÞP , 0

for 0 , P – P*ð0Þ: Thus if 0 , P , P*ð0Þ; then P0 , P1 , P*ð0Þ and (by induction)

{Pt}
1
t¼0 is an increasing sequence of real numbers which is bounded above by P *(0). Thus

{Pt} converges to a positive steady state by the continuity of f (0, P). We conclude that

limt!1Pt ¼ P*ð0Þ: Similarly if P0 . P*ð0Þ; then {Pt}
1
t¼0 is a decreasing sequence which is

bounded below by P *(0). Thus one can conclude that limt!1Pt ¼ P*ð0Þ if P0 . P*ð0Þ; and

the proof of (b) is complete.

(c) We first prove that solutions of equation (3.6) are bounded. A calculation yields

›f

›r
¼

ð1 2 2rÞ22{ 2 ð1 2 2rÞP½dðð1 2 rÞPÞ þ dðrPÞ� þ 2
Ð ð12rÞP

rP
dðzÞdz}; 0 # r , 1

2

0; r ¼ 1
2
;

8<
:

and

lim
r!1=22

›f ðr;PÞ

›r
¼ 0 ¼

›f ðr;PÞ

›r

����
r¼1=2:

Since d0 , 0 and d00 . 0; it is straightforward to show that

2

ðð12rÞP

rP

dðzÞdz , ð1 2 2rÞP½dðð1 2 rÞPÞ þ dðrPÞ�:

It follows that

›f

›r

, 0; r [ 0; 1
2

� �
; P . 0

¼ 0; r ¼ 1
2
; P $ 0:

8<
:

Therefore, Ptþ1 ¼ f ðr;PtÞ # f ð0;PtÞ for t $ 0: Since ð›f ð0;PÞ=›PÞ . 0 for P $ 0 and

positive solutions of equation (3.6) converge to P *(0) when n . 1 and r ¼ 0; we

immediately conclude that solutions of equation (3.6) satisfy lim supt!1Pt # P*ð0Þ for any

r with 0 , r # 1=2:

We next derive a sufficient condition for the local stability of the positive steady state

P *(r). For simplicity we denote P *(r) by P *. Observe that

›f

›P

����
ðr;PÞ¼ðr;P *Þ

¼

1
122r

{ð1 2 rÞdðð1 2 rÞP*Þ2 rdðrP *Þ}; 0 # r , 1
2

1
2
d0 P *

2

� �
P* þ 1; r ¼ 1

2
;

8<
:

where

ð1 2 rÞdðð1 2 rÞP*Þ2 rdðrP*Þ

1 2 2r
, dðð1 2 rÞP*Þ , 1
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and thus

›f

›P

����
ðr;PÞ¼ðr;P *Þ

, 1; 0 # r #
1

2
:

When 0 , r , 1=2;

ð1 2 rÞdðð1 2 rÞP*Þ2 rdðrP *Þ

1 2 2r
. rd

0

ðz*ÞP* . rd
0

ð0ÞP*

for some z* [ ðrP*; ð1 2 rÞP*Þ: Thus

›f

›P

����
ðr;PÞ¼ðr;P *Þ

. 21

if d
0

ð0ÞP* . 21=r:

If r ¼ 1=2; then since

›f

›P

����
ðr;PÞ¼ð1=2;P *Þ

.
1

2
d

0 1

2
P*

	 

P*;

P *(1/2) is locally asymptotically stable if d 0ð0ÞP* . 22: A

Our result in Theorem 3.1 is more complete than that in [17]. In particular, we showed the

trivial steady state 0 is globally asymptotically stable when n , 1; and when n . 1 and

r ¼ 0; we showed the positive steady state is globally asymptotically stable. We also verified

that solutions of the equation are bounded when n . 1:

We remark that P *(r) is locally asymptotically stable when r . 0 is sufficiently small

since P *(0) is locally asymptotically stable and f (r, P) is smooth. On the other hand, since

P *(r) is continuous, letting r ! 0þ in d 0ð0ÞP*ðrÞ . 21=r; the inequality becomes

d0ð0ÞP*ð0Þ . 21 which is trivially true. Consequently the condition (c) in Theorem 3.1

implies that P *(0) is locally asymptotically stable.

Recall that ›f=›Pjðr;P *Þ , 1 for 0 , r # 1=2: Therefore, P *(r) will lose its stability

only when ›f=›Pjðr;P *Þ . 21 is violated. It is strongly suspected that a period doubling

bifurcation will occur as r increases. An example illustrates this observation. Let b0 ¼ 20;

a0 ¼ 0:7; bðzÞ ¼ e2z and sðzÞ ¼ e22z: Then the total population size equation (3.6)

becomes

Ptþ1 ¼

1
122r

Ð ð12rÞPt

rPt
ð20e2z þ 0:7e22zÞdz; 0 # r , 1=2

ð20e2Pt=2 þ 0:7e2Pt ÞPt; r ¼ 1=2

8<
: ð3:8Þ

The bifurcation diagram in figure 1 shows a period doubling cascade to chaos as

r increases.

We next turn to a comparison of two forms of intra-specific competition. We first compare

equilibrium sizes. Our analysis presented here is the same as that of Xu [17]. Since

Fðr;P*ðrÞÞ ¼ 1 for 0 # r # 1=2; we have

›F

›r
þ

›F

›P

dP*

dr
¼ 0
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and thus

dP*

dr
¼ 2

›F=›r

›F=›P
:

Recall that ›F=›P , 0 for 0 # r # 1=2 and P $ 0: We proceed to calculate ›F=›r: Since

F ¼ f=P; it follows from ›f=›r that

›F

›r
¼

1
ð122rÞ2P

{ 2 ð1 2 2rÞP½dðð1 2 rÞPÞ þ dðrPÞ� þ 2
Ð ð12rÞP

rP
dðzÞdz}; 0 # r , 1

2

0; r ¼ 1
2
:

8<
:

Hence, for 0 # r , 1=2; we have ›F=›r , 0; and when r ¼ 1=2; ›F=›r ¼ 0: Moreover,

limr!1=22›F=›r ¼ 0 for P $ 0; and limP!0þ›F=›r ¼ 0 for 0 # r # 1=2: Hence ›F=›r is

continuous for 0 # r # 1=2; P $ 0: Thus dP*=dr , 0 for 0 # r , 1=2: Since dP*=dr is

continuous on [0, 1/2], we have P*ð0Þ . P*ð1=2Þ; i.e. contest competition has a larger

equilibrium size than scramble competition. We summarize our discussion into the

following.

Theorem 3.2 Let n . 1 and P*ðrÞ denote the positive steady state of equation (3.8). Then

P*ð0Þ . P*ð1=2Þ:

Figure 1. Bifurcation diagram for equation (3.8) using r as a bifurcation parameter. Numerical simulations suggest
that the positive steady state is globally asymptotically stable when r . 0 is very small and the equation undergoes
period doubling route bifurcations to chaos.
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We next compare equilibrium resilience, a measure of how fast a population will return to

its equilibrium if the population is perturbed from its equilibrium P*. For hyperbolic

equilibria it follows from the linearization theory that whether a small perturbation will die

out or not depends on

lðrÞ z
›f ðr;PÞ

›P

����
P¼P *

:

The smaller the magnitude of l(r), the more resilient is the steady state. Notice both P*

and l are functions of r, and P*ðrÞ ¼ 0 and lðrÞ ¼ 1 for 0 # r # 1=2 when n ¼ 1: Thus, for

n . 1 and sufficiently close to 1, lðrÞ . 0 on the interval 0 # r # 1=2:

The following theorem demonstrates that a scramble competition leads to a more resilient

population than contest competition. (See [17].)

Theorem 3.3 Let n ¼ 1 þ 1, where 1 . 0 is sufficiently small. Then for 0 # r # 1=2;

lðrÞ ¼ 1 2 ð1 2 a0Þ1þ
d00ð0Þ

6
P2

1qðrÞ

	 

12 þ Oð13Þ

where qðrÞ ¼ r 2 2 r þ 1 and P1 ¼ 22ð1 2 a0Þd
0ð0Þ.

Proof Since when n ¼ 1; P*ðrÞ ¼ 0 and lðrÞ ¼ 1; second order Taylor expansions for P*

and l around P* ¼ 0 and l ¼ 1 are respectively given by

P* ¼ 0 þ P11þ
1

2
P21

2 þ Oð13Þ l ¼ 1 þ l11þ
1

2
l21

2 þ Oð13Þ;

where Pi; li; i ¼ 1; 2 will be determined below. Since P * satisfies Fðr;PÞ ¼ 1; we have

(for 0 # r , 1=2Þ

ðð12rÞP *

rP *

dðzÞdz ¼ ð1 2 2rÞP*:

Therefore,

ðð12rÞP *

rP *

dð0Þ þ d0ð0Þz þ
d00ð0Þ

2
z2

	 

dz ¼ ð1 2 2rÞP*

and

dð0Þ þ
d0ð0Þ

2
P* þ

d00ð0Þ

6
P*2ð1 2 r þ r 2Þ ¼ 1:

Let qðrÞ z r 2 2 r þ 1 and use the expansion for P* above to obtain

dð0Þ2 1 þ
d0ð0Þ

2
P11þ

d0ð0Þ

4
P21

2 þ
d00ð0Þ

6
qðrÞP2

11
2 þ Oð13Þ ¼ 0:

On the other hand, since n ¼ 1 þ 1 and dð0Þ ¼ a0 þ b0; we have dð0Þ2 1 ¼ ð1 2 a0Þ1

and this equation becomes

1 2 a0 þ
d0ð0Þ

2
P1

	 

1þ

d0ð0Þ

4
P21

2 þ
d00ð0Þ

6
P2

1qðrÞ12 þ Oð13Þ ¼ 0:

S.R.-J. Jang and J.M. Cushing104



Hence,

P1 ¼
22ð1 2 a0Þ

d0ð0Þ
; P2 ¼

28d00ð0Þð1 2 a0Þ
2

3½d0ð0Þ�3
qðrÞ:

We now use P1 and P2 to find l1 and l2: For 0 # r , 1=2;

lðrÞ ¼
1

1 2 2r
½ð1 2 rÞdðð1 2 rÞP*Þ2 rdðrP*Þ�

¼ 1 þ ð1 2 a0Þ1þ d0ð0Þ P11þ
P2

2
12

	 

þ

d00ð0Þ

2
qðrÞ P11þ

P2

2
12

	 
2

:

Thus, 1 2 a0 þ d 0ð0ÞP1 ¼ l1 and

d 0ð0Þ

2
P2 þ

d 00ð0Þ

2
qðrÞP2

1 ¼
1

2
l2:

Consequently,

l1 ¼ 2ð1 2 a0Þ; l2 ¼
1

3
d00ð0ÞqðrÞP2

1

and

lðrÞ ¼ 1 2 ð1 2 a0Þ1þ
d00ð0Þ

6
P2

1qðrÞ

	 

12 þ Oð13Þ

for 0 # r , 1=2:

The case when r ¼ 1=2 is more straightforward. Since P * satisfies dðP=2Þ ¼ 1; using the

expansions we have

ð1 2 a0Þ1þ
d0ð0Þ

2
P11þ

d0ð0Þ

4
P21

2 þ
d00ð0Þ

8
P2

11
2 þ Oð13Þ ¼ 0:

As a result,

P1 ¼
22ð1 2 a0Þ

d 0ð0Þ
d 0ð0ÞP2 ¼ 2

2

3
q

1

2

	 

d00ð0ÞP2

1:

On the other hand,

lð1=2Þ ¼ 1 þ
1

2
d 0 P*

2

	 

P*

¼ 1 þ
1

2
d 0ð0ÞP* þ

1

4
d00ð0ÞP*2

¼ 1 þ
1

2
d 0ð0ÞP11þ

1

4
d 0ð0ÞP2 þ

1

4
d00ð0ÞP2

1

	 

12:

Therefore,

l1 ¼ 2ð1 2 a0Þ; l2 ¼
1

3
d00ð0Þq

1

2

	 

P2

1

and the proof is complete. A
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Since q0ðrÞ ¼ 2r 2 1 , 0; we see that lð0Þ . lð1=2Þ . 0 for n . 1 sufficiently close to 1.

Therefore, when n . 1 is sufficiently close to 1, scramble competition is more resilient than

contest competition. This conclusion is different from that found in the continuous time

models studied in [5,6].

4. An hierarchical model with a dynamic resource

Suppose the intra-specific competition is for a (limiting) resource. In this section, we

consider a hierarchical model that includes the dynamics of the resource. We will focus on

the case when the resource uptake rate of an individual effects its fertility rate, but not its

death rate. Thus, in equation (3.6) we have

s ðz;PÞ ¼ a0; 0 , a0 , 1:

We model the per capita birth rate of the population b (z,P) as follows. Let Rt denote the

resource abundance at time t. We assume b (z,P), is a function of the resource uptake rate for

individuals of rank z. In the absence of competition, the resource uptake rate is a function of

R that satisfies the following conditions [16]:

ðH3Þ u [ C 1ðRþ;RþÞ; uð0Þ ¼ 0; and 0 , u0ðxÞ # u0ð0Þ for x $ 0:

With intra-specific competition, the consumption rate of an individual of rank z during one

unit of time is decreased by a fraction c which depends on the rank z. Specifically, this

consumption rate is

uðRtÞcðrz þ ð1 2 rÞðPt 2 zÞÞ;

where the competition coefficient c, as a function of its argument, satisfies

ðH4Þ c [ C 2ðRþ; ½0; 1�Þ; cð0Þ ¼ 1; c0 , 0; c00 . 0 and limz!1cðzÞ ¼ 0:

Under these assumptions, we have

b ðz;PÞ ¼ b0uðRtÞcðrz þ ð1 2 rÞðPt 2 zÞÞ

where b0 . 0 is the birth rate per unit resource per individual. In equation (3.6) we substitute

ðPt

0

b0uðRtÞcðrz þ ð1 2 rÞðPt 2 zÞÞdz ¼ b0uðRtÞBðr;PtÞ

where

Bðr;PÞ z

ðP

0

cðrz þ ð1 2 rÞðP 2 zÞÞdz:

A calculation shows

Bðr;PÞ ¼

1
122r

Ð ð12rÞP

rP
cðzÞdz; 0 # r , 1=2

c 1
2

P
� �

P; r ¼ 1=2:

8<
:

For future reference, observe that there exists z* [ ðrP; ð1 2 rÞPÞ such that Bðr;PÞ ¼

Pcðz	Þ: Hence

Bðr;PÞ # P; P $ 0; 0 # r # 1=2:
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Equation (3.6) yields the difference equation

Ptþ1 ¼ b0uðRtÞBðr;PtÞ þ a0Pt;

for the dynamics of the total population size Pt. What remains for the specification of the

model is an equation for the dynamics of the resource Rt.

To model Rt we assume in the absence of the population the resource is governed by the

‘chemostat’ law Rtþ1 ¼ ð1 2 k0ÞRt þ k0R0; where 0 , k0 , 1 denotes the resource washout

and renewal rate, and R0 . 0 is the steady state of the resource. In the presence of the

population, we assume consumption occurs first, followed by washout. Since the resource

consumed by the total population P is given by u(R)B(r, P), the resource equation becomes

Rtþ1 ¼ ð1 2 k0Þ½Rt 2 uðRtÞBðr;PtÞ� þ k0R0:

In summary, the dynamics of the population and the resource are governed by the system.

Ptþ1 ¼ b0uðRtÞBðr;PtÞ þ a0Pt

Rtþ1 ¼ ð1 2 k0Þ½Rt 2 uðRtÞBðr;PtÞ� þ k0R0P0;R0 $ 0:
ð4:9Þ

Note that solutions of the system (4.9) might not remain nonnegative. This is because the

resource consumed by the population uðRtÞBðr;PtÞ during a unit of time might exceed the

available resource level Rt. To deal with this biological constraint, Xu used the positive part

of the expression Rt 2 uðRtÞBðr;PtÞ [17].

Following [12], we instead impose the following constraints [15,16].

(H5) There exists a W . b0R0 and an h [ ð0; 1 2 k0Þ such that u0ð0ÞW # h:

Let

D ¼ {ðP;RÞ [ R2
þ : ð1 2 k0ÞP þ b0R # W}:

We show that solutions starting in D remain in D for all future time, provided a0 þ k0 # 1:

Proposition 4.1 Let a0 þ k0 # 1: Then D is positively invariant for system (4.9) for

0 # r # 1=2:

Proof Let ðP0;R0Þ [ D be given arbitrarily. It is enough (by induction) to show that

ðP1;R1Þ [ D: Clearly P1 $ 0: If R0 . 0; then our assumptions imply

uðR0ÞBðr;P0Þ

R0

# u0ð0ÞBðr;P0Þ # u0ð0ÞP0 #
h

1 2 k0

, 1;

and thus R1 . k0R 0. The case when R0 ¼ 0 is trivial. Furthermore,

ð1 2 k0ÞP1 þ b0R1 ¼ ð1 2 k0Þa0P0 þ ð1 2 k0Þb0R0 þ b0k0R0

# ð1 2 k0ÞW þ ð1 2 k0ÞP0ða0 þ k0 2 1Þ þ b0k0R0

# W

as a0 þ k0 # 1: Therefore D is positively invariant for system (4.9). A

We now know that solutions of equation (4.9) remain nonnegative and bounded. We

proceed to discuss asymptotic dynamics. The system (4.9) may be regarded as a

parameterized family of difference equations, with parameter r; 0 # r # 1=2: Since
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Bðr; 0Þ ¼ 0 for 0 # r # 1=2; the system always has the trivial steady state E0 ¼ ð0;R0Þ:

Since in the absence of the population the resource level always stabilizes at R 0,

n z
b0uðR0Þ

1 2 a0

is the inherent net reproductive number.

A straightforward calculation shows that a positive steady state (P *, R *) must satisfy the

equation

gðPÞ z u R0 2
ð1 2 a0Þð1 2 k0Þ

k0b0

P

	 

Bðr;PÞ

P
¼

uðR0Þ

n
: ð4:10Þ

Let g(P) denote the left hand side of equation (4.10) and

P̂ z
k0b0R0

ð1 2 a0Þð1 2 k0Þ
:

Then gð0Þ ¼ uðR0Þ; gðP̂Þ ¼ 0 and

g0ðPÞ ¼ 2u0ðxÞ
ð1 2 a0Þð1 2 k0Þ

k0b0

Bðr;PÞ

P
þ uðxÞ

P ›B
›P

2 Bðr;PÞ

P2
;

where

x z R0 2
ð1 2 a0Þð1 2 k0Þ

k0b0

P:

Note that

P
›B

›P
2 Bðr;PÞ ¼

1
122r

{ð1 2 rÞPcðð1 2 rÞPÞ2 rPcðrPÞ2
Ð ð12rÞP

rP
cðzÞdz}; 0 # r , 1=2

1
2

c0 P
2

� �
P2; r ¼ 1=2

8<
:

and as a result we can conclude that

P
›B

›P
2 Bðr;PÞ , 0; P . 0; 0 # r # 1=2:

Hence g0ðPÞ , 0 for P $ 0 and a positive solution P *(r) of equation (4.10) exists if and

only if n . 1: Consequently, a positive steady state E1 ¼ ðP*ðrÞ; R*ðrÞÞ exists for system

(4.9) if and only if n . 1; where

R*ðrÞ ¼ R0 2
ð1 2 a0Þð1 2 k0Þ

k0b0

P*ðrÞ , R0:

This positive steady state is unique (when it exists). A calculation shows E1 [ D: Indeed,

ð1 2 k0ÞP
*ðrÞ þ b0R*ðrÞ ¼ ð1 2 k0ÞP

*ðrÞ 1 2
1 2 a0

k0

	 

þ b0R0 # b0R0 # W

as a0 þ k0 # 1: Thus, E1 is feasible if n . 1:
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The Jacobian matrix of the system (4.9) is

J ¼

a0 þ b0uðRÞ ›B
›P

b0u0ðRÞBðr;PÞ

2ð1 2 k0ÞuðRÞ
›B
›P

ð1 2 k0Þ½1 2 u0ðRÞBðr;PÞ�

0
B@

1
CA;

where ›B=›P is evaluated at (r, P). In particular, since

›B

›P

����
P¼0

¼ 1; 0 # r # 1=2;

the Jacobian matrix at E0 ¼ ð0;R0Þ is

JðE0Þ ¼

a0 þ b0uðR0Þ 0

2ð1 2 k0ÞuðR
0Þ 1 2 k0

0
@

1
A:

Therefore, E0 is locally asymptotically stable if n , 1; and is unstable if n . 1:

In the following, we show that when the inherent net reproductive number n is less than

one, the population will inevitably become extinct.

Theorem 4.2 Let a0 þ k0 # 1: If n , 1, then E0 is globally asymptotically stable for

system (4.9) for 0 # r # 1=2:

Proof Since

Rtþ1 # ð1 2 k0ÞRt þ k0R0

for t $ 0; we have lim supt!1 Rt # R0: Hence, for any 1 . 0 there exists t0 . 0 such that

Rt # R0 þ 1 for t $ t0: We choose 1 . 0 such that

b0uðR0 þ 1Þ

1 2 a0

, 1:

As a result,

Ptþ1 # b0uðRtÞPt þ a0Pt # ½a0 þ b0uðR0 þ 1Þ�Pt

for t $ t0: Thus, limt!1Pt ¼ 0:

It remains to show that lim inft!1 Rt $ R0: Notice that for any d . 0 there exists t1 . t0

such that Rt # R0 þ d and Pt # d for t $ t1: We choose d . 0 such that

k0R0 2 ð1 2 k0ÞuðR
0 þ dÞd . 0:

Hence,

Rtþ1 $ ð1 2 k0Þ½Rt 2 uðRtÞPt� þ k0R0 $ ð1 2 k0Þ½Rt 2 uðR0 þ dÞd� þ k0R0

for t $ t1: Let

x̂ ¼ k0R0 2 ð1 2 k0ÞuðR
0 þ dÞd
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and consider the equation xtþ1 ¼ ð1 2 k0Þxt þ x̂ for t $ t1 with xt1
¼ Rt1

: Since limt!1xt ¼

x̂=k0; we have

lim inf
t!1

Rt $ R0 2
1 2 k0

k0

uðR0 þ dÞd:

Letting d! 0þ; we see that lim inft!1Rt $ R0 and the proof is complete. A

When n . 1; a unique positive steady state (P *, R *) exists and its local stability is

determined by the Jacobian matrix

JðE1Þ ¼
a0 þ b0uðR*Þ ›B

›P
b0u0ðR*ÞBðr;P*Þ

2ð1 2 k0ÞuðR*Þ ›B
›P

ð1 2 k0Þ½1 2 u0ðR*ÞBðr;P*Þ�

0
@

1
A;

where ›B=›P is evaluated at (r,P *). When r ¼ 0; ›B=›P ¼ cðPÞ . 0 for P $ 0 and in

particular

›B

›P

����
ðr;PÞ¼ð0;P *Þ

. 0: ð4:11Þ

In the following Proposition, we show that (P *, R *) is locally asymptotically stable for

system (4.9) when r ¼ 0:

Proposition 4.3 Let a0 þ k0 # 1: If n . 1 and r ¼ 0; then the steady state E1 ¼

ðP*ð0Þ;R*ð0ÞÞ of system (4.9) is locally asymptotically stable.

Proof Let the corresponding Jacobian matrix be denoted by J. We apply the Jury conditions

[1,8]. The eigenvalues l of J satisfies jlj , 1 if and only if

jdet Jj , 1 and jtr Jj , 1 þ det J:

By equation (4.11)

det J ¼ ð1 2 k0Þ
h
a0 þ b0uðR*Þ

›B

›P
2 a0u0ðR*ÞBð0;P*Þ

i

$ ð1 2 k0Þ
h
a0 þ b0uðR*Þ

›B

›P
2 a0u0ð0ÞP*

i

$ ð1 2 k0Þ

�
a0 2 a0

h

1 2 k0

þ b0uðR*Þ
›B

›P

�

. 0

since 0 , h , 1 2 k0; where h is given in (H5). On the other hand,

det J 2 1 ¼ ð1 2 k0Þ
h
a0 þ b0uðR*Þ

›B

›P
2 a0u0ðR*ÞBð0;P*Þ

i
2 1

, ð1 2 k0Þ

�
a0 þ b0uðR*Þ

Bð0;P*Þ

P*
2 a0u0ðR*ÞBð0;P*Þ2

1

1 2 k0

�

¼ ð1 2 k0Þ

�
1 2 a0u0ðR*ÞBð0;P*Þ2

1

1 2 k0

�
, 0:

Thus jdet Jj , 1:
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Furthermore,

tr J þ det J þ 1 ¼ a0 þ ð2 2 k0Þb0uðR*Þ
›B

›P
þ ð1 2 k0Þða0 þ 1Þ

2 ð1 þ a0Þð1 2 k0Þu
0ðR*ÞBð0;P*Þ þ 1

. a0 þ ð2 2 k0Þb0uðR*Þ
›B

›P
þ ð1 2 k0Þða0 þ 1Þ

2 ð1 þ a0Þð1 2 k0Þ þ 1

¼ a0 þ ð2 2 k0Þb0uðR*Þ
›B

›P
þ 1 . 0:

Also

tr J 2 1 2 det J ¼ k0

�
a0 2 1 þ b0uðR*Þ

›B

›P

�

2 ð1 2 k0Þð1 2 a0Þu
0ðR*ÞBð0;P*Þ

, k0

�
a0 2 1 þ b0uðR*Þ

Bð0;P*Þ

P*

�

2 ð1 2 k0Þð1 2 a0Þu
0ðR*ÞBð0;P*Þ

¼ 2ð1 2 k0Þð1 2 a0Þu
0ðR*ÞBð0;P*Þ , 0:

We conclude from the Jury conditions that (P*, R*) is locally asymptotically stable. A

It follows from Proposition 4.3 that ðP*ðrÞ;R*ðrÞÞ is locally asymptotically stable for

equation (4.9) when r . 0 is sufficiently small. Moreover, the computations given in the

proof of Proposition 4.3 can be applied to any ðP*ðrÞ;R*ðrÞÞ for which

›B

›P

����
ðr;P *ðrÞÞ

$ 0:

Therefore, (P *(r), R *(r)) may lose its stability only when

›B

›P

����
ðr;P *ðrÞÞ

, 0:

We also note from the proof of Proposition 4.3 that the inequalities det J , 1 and tr J 2

1 2 det J , 0 hold for any r; 0 # r # 1=2: Thus, (P*, R*) can be unstable only when either

det J . 21 or tr J þ 1 þ det J . 0 is violated. We illustrate this possibility by means of a

numerical example.

Consider

uðRÞ ¼
R

1 þ R
; cðzÞ ¼ e2z;

Dynamics of hierarchical models 111



R0 ¼ 1; k0 ¼ 0:3; a0 ¼ 0:2 and b0 ¼ 150: Then for 0 # r , 1=2; system (4.9) has the

following form

Ptþ1 ¼
150Rt

ð1 þ RtÞð1 2 2rÞ

ðð12rÞPt

rPt

e2zdz þ 0:3Pt

Rtþ1 ¼ 0:7

�
Rt 2

Rt

ð1 þ RtÞð1 2 2rÞ

ðð12rÞPt

rPt

e2zdz

�
þ 0:3 P0;R0 $ 0: ð4:12Þ

Notice our chosen parameter values imply n . 1: Numerical simulations show that the

positive steady state of equation (4.12) is unstable and there exists a periodic solution when

r ¼ 0:2: See figure 2.

Although we have not show that ðP*ð0Þ;R*ð0ÞÞ is globally asymptotically stable when

n . 1; we can prove that the population does not go extinct when n . 1:

Figure 2. Using r as a bifurcation parameter, we present successive periodic-doubling bifurcations for equation
(4.12). It is also shown numerically that the positive steady state is globally asymptotically stable when r . 0 is
very small.
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Theorem 4.4 Let a0 þ k0 # 1 and n . 1: Then for any fixed r; 0 # r # 1=2; system (4.9)

is uniformly persistent, i.e. there exists m . 0 such that lim inft!1Ptþ1 $ m and

lim inft!1Rt $ m for all solutions of equation (4.9) with ðP0;R0Þ [ D and P0 . 0:

Proof Fix any r; 0 # r # 1=2: Since Rtþ1 $ k0R0 for t $ 0; we have lim inft!1Rtþ1 $

k0R0 . 0: Let Y ¼ {ðP;RÞ [ D : P ¼ 0}: Then D\Y is positively invariant. It suffices to

show uniform persistence with respect to Y. We apply Theorem 4.1 of Hofbauer and So [11].

Note that equation (4.9) has a global attractor X, since equation (4.9) is point dissipative and

asymptotically smooth [9]. Let M be the maximal compact invariant set in Y. We need to

verify that M is isolated in X and the stable manifold of M is contained in Y.

Clearly M ¼ {E0} , X: For n . 1; we choose 1 . 0 such that

a0 þ b0uðR0 2 1Þcðð1 2 rÞ1Þ . 1

for 0 # r # 1=2: If {E0} were not isolated in X, then there would be a maximal invariant set

K in BðE0; 1Þ> X such that K – {E0}: Let P0 ¼ sup{P : ðP;RÞ [ K}: Then there exists R0

such that ðP0;R0Þ [ K and 0 , P0 # 1: As a result, we have

P1 ¼ ½b0uðR0ÞBðr;P0Þ þ a0P0� $ ½a0 þ b0uðR0 2 1Þcðð1 2 rÞ1Þ�P0 . P0

for 0 # r # 1=2; i.e. ðP1;R1Þ � K and K is not invariant, a contradiction. Therefore,

{E0} must be isolated in X.

We next show that the stable manifold of E0 lies in the R-axis. Suppose there exists

ðP0;R0Þ [ D with P0 . 0 such that limt!1Pt ¼ 0 and limt!1Rt ¼ R0: Let 1 . 0 be chosen

arbitrarily as above. Then there exists t0 . 0 such that Rt . R0 2 1 and Pt , 1 for t $ t0:

Hence,

Ptþ1 .
h
b0uðR0 2 1Þcðð1 2 rÞ1Þ þ a0

i
Pt

for t $ t0 shows that limt!1Pt ¼ �P . 0 exists, a contradiction. Therefore equation (4.9) is

uniformly persistent if n . 1 A.

Using an analysis similar to that of ›f=›r in the previous section, we can show that

›B=›r , 0 for 0 # r , 1=2; P . 0: Since ›B=›r is continuous, it follows from equation

(4.10) that P*ðr1Þ . P*ðr2Þ and consequently R*ðr1Þ , R*ðr2Þ if 0 # r1 # r2 # 1=2:

Therefore, contest competition yields a larger equilibrium size.

Theorem 4.5 Let s0 þ k0 # 1 and n . 1: Then 0 # r1 , r2 # 1=2 implies P*ðr1Þ .

P*ðr2Þ and R*ðr1Þ , R*ðr2Þ:

5. Discussion

We investigated the relationship between two forms of intra-specific competition (scramble

and contest) by means of a discrete time, discrete class structured model. The model is based

on a hierarchy of classes that determines an individual ’s vital birth and death rates. The

resulting high dimensional matrix model becomes tractable through a reduction in dimension

that results in an uncoupled equation for the total population size. (For other hierarchical

models of intra-specific competition see [3,5–7,10,12,17,18]) Using this model, we study

two cases: when the limiting resource is constant and when it varies dynamically. In both

cases we determine a quantity n (the inherent net reproductive rate) which determines the
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survival of the population. If n . 1 the population goes asymptotically extinct. If n . 1 there

is a positive steady state. We determined conditions under which this steady state is stable. In

any case, we showed that contest competition results in a larger steady state. This result is

consistent with the main conclusion of Lomnicki [13] that contest competition is more

advantageous. However, we also showed (in the case of a constant resource) that the

scramble steady state is more resilient.

The models derived in this study contain a parameter r used to connect two extreme forms of

intra-specific competition. Consequently, mixed forms of intra-specific competition are also

included in the models. For the constant resource model, both per capita birth rate and survival

probability are functions of a linear combination of total population size and individual’s rank.

For the dynamic resource model, the per capita survival rate is assumed to be a constant while

the per capita birth rate is a product of resource uptake rate and competition coefficient. In [12]

the two forms of competition are characterized by means of two equations and analyses are

performed separately. In particular, the per capita survival probability is assumed to be a

constant for both the constant and dynamic resource models while the per capita birth rate

depends on resource uptake function. It was demonstrated in [12] that population persistence

also depends on the inherent net reproductive number. However, it was showed there that

concavity of the resource uptake rate as a function of the resource availability is the deciding

factor for comparison. Contest competition has a larger equilibrium size than scramble

competition if the resource uptake rate is concave down and an opposite conclusion is reached

if the resource uptake rate is concave up. The above competition outcome is reversed if

equilibrium resilience is used as a mean of comparison.

We therefore conclude from these studies that which form of competition is more

advantageous depends not only on how ‘advantageous’ is defined but also on sub-models

proposed, and we suggest Lomnicki’s tenet needs a more careful statement. (Also see

[5–7,10,12,17].) Moreover, the question concerning the relationship of contest and scramble

competition has not been addressed when the steady state is unstable and there is a non-

equilibrium attractor.
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