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Abstract. Laboratory data show that populations of flour beetles (¹ribolium),
when grown in a periodically fluctuating volume of flour, can exhibit significant
increases in numbers above those attained when grown in a constant volume (of
the same average). To analyze and explain this phenomenon a discrete stage-
structured model of ¹ribolium dynamics with periodic environmental forcing is
introduced and studied. This model is an appropriately modified version of an
experimentally validated model for flour beetle populations growing in a con-
stant volume of flour, in which cannibalism rates are assumed inversely propor-
tional to flour volume. This modeling assumption has been confirmed by
laboratory experiments. Theorems implying the existence and stability of peri-
odic solutions of the periodically forced model are proved. The time averages of
periodic solutions of the forced model are compared with the equilibrium
levels of the unforced model (with the same average flour volume). Parameter
constraints are determined for which the average population numbers in the
periodic environment are greater than (or less than) the equilibrium popula-
tion numbers in the associated constant environment. Sample parameter
estimates taken from the literature show that these constraints are fulfilled.
These theoretical results provide an explanation for the experimentally ob-
served increase in flour beetle numbers as a result of periodically fluctuating
flour volumes. More generally, these integrated theoretical and experimental
results provide the first convincing example illustrating the possibility of
increased population numbers in a periodically fluctuating environment.

1 Introduction

In the natural world a biological organism’s physical environment is often, if
not usually, nonconstant in time. Consequently, fluctuating environments are



of particular interest to population biologists. Despite this fact, the vast
majority of mathematical models used in population dynamics and ecology
are autonomous and assume a constant environment. As a result, virtually all
fundamental principles in theoretical population dynamics are based upon the
assumption of a constant environment: monotonic logistic growth, competi-
tive exclusion and ecological niche, predator-prey oscillations, and so on. In
recent years, non-autonomous versions of classical model equations have
been investigated in order to determine the extent to which these fundamental
principles remain valid in fluctuating environments. Both stochastic model
equations (modeling stochastic fluctuations of the environment, at one ex-
treme) and periodically forced equations (modeling regular periodic fluctu-
ations of the environment, at the other extreme) have been studied; e.g. see
[1—6, 8—12, 17—22, 26, 27, 30, 31, 35, 36, 42, 43, 46, 47, 49—53, 55] and the
references cited therein.

One tenet that resulted from early investigations of nonautonomous
differential equation models for the growth of a single population was that
a fluctuating environment has a deleterious effect. This piece of biological
folklore seems to have been based primarily on the investigation of
nonautonomous versions of the famous logistic equation. In [43, 44, 48], for
example, periodically and stochastically forced logistic models of the form

x@"rxA1!
x

K
0
#c(t)B

are considered where c(t) is periodic or white noise with mean zero. It is
shown that ave SxT(K

0
, i.e. that the average population size in a fluctuating

environment is less than the equilibrium population level K
0

in the associated
constant environment. On the other hand, in [49, 22] it is shown that this
conclusion is model dependent. For example, in [22] it is shown that if the
inherent growth rate r in the periodic logistic equation is also allowed to vary
periodically, then ave SxT can be greater than the average carrying capacity
K

0
. Furthermore, in [22, 49, 7] it is shown that properties of the nonlinearity

play an important role (particularly, the concavity).
Thus, in theory, the average total biomass of a population in a periodic

environment can be greater or less than the average total biomass in the
associated constant average habitat, depending on the nonlinearities present
and the specific properties of the forcing and inherent periodicities (such as, for
example, their phase relationship). If the advent of environmental periodicity
causes an increase in the average total population number of all individuals,
we will say that the periodicity has a ‘‘positive effect’’. If a decrease in average
occurs we will say that the periodicity has a ‘‘negative effect’’. (We will also
speak, in a similar way, of positive and negative effects on the average
numbers in individual life cycle stages as well.)

Are there any population data that provide evidence of a positive effect
due to environmental periodicity? There are in fact little data, either field or
laboratory, that specifically address the effect of periodically fluctuating
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environments on population density. Furthermore, there are preciously few
rigorously validated mathematical models in population dynamics that could
be used to describe and explain such data if it existed. Consequently, while
a positive effect of environmental periodicity is a theoretical possibility, there
are little replicated and controlled experimental data and few rigorously
validated models available to support it. An exception comes from the
controlled laboratory experiments utilizing flour beetles (¹ribolium) conducted
by Jillson [40] and the stage structured model that has been recently developed
and tested for the population dynamics of flour beetles [14, 15, 25, 28, 29].

In his experiments Jillson placed flour beetles in volumes of flour that were
alternated between 32 grams and 8 grams every two weeks. The control beetle
populations were kept in a constant flour volume of 20 grams. Jillson found
that total population numbers in the periodically fluctuating environment
were more than twice those in the constant environment, even though the
average flour volume was the same in both cases. This is a striking example of
a positive effect of a periodically fluctuating environment.

The dynamical model for flour beetle dynamics used in [14, 15, 25, 28, 29]
was developed and laboratory tested for a constant habitat (i.e. flour volume).
This discrete, stage structured model, which is based upon the life cycle
characteristics of flour beetles, has been thoroughly validated in [14, 28, 29]
by means of controlled, replicated laboratory experiments and extensive
statistical tests. We will show that a periodically forced modification of this
model, derived from the assumption of a periodically varying volume of flour,
can predict increased population numbers of beetles under certain circum-
stances and decreased numbers under other circumstances. Specifically, it will
be shown that the model predicts a positive effect of environmental periodicity
when the inherent larval recruitment rate is sufficiently large and the flour
volume oscillation has small (relative) amplitude. It will also be shown that the
model predicts a negative effect of environmental periodicity for small larval
recruitment rates at any (relative) amplitude. The periodically forced modifi-
cation of the autonomous model is based on a modeling assumption recently
validated by controlled laboratory experiments [16]. This assumption is that
the environmental fluctuations affect only the nonlinear interactions between
life cycle stages (in this case cannibalism).

Our results here offer a specific explanation for the unusual increased
biomass in a fluctuating environment observed in Jillson’s flour beetle experi-
ments, namely fluctuating cannibalism rates (which are inversely proportional
to flour volume). A more detailed analysis of the actual Jillson experiment
using the periodic model studied here will be given elsewhere [16]. These
results provide the first rigorous evidence, via model analysis of laboratory
data, that an environmental periodicity can have a positive effect on total
population biomass. From a broader prospective, we can say these results
provide another counterexample to the classical assertion that environmental
periodicities result in a negative effect, but one that is based firmly on
controlled and replicated laboratory experiments and a rigorously validated
model for the organism involved.
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We begin in Sect. 2 by describing the extant autonomous model along with
a few of its properties. In Sect. 3 the periodic version of the model is derived
and some fundamental facts about its dynamics proved, including persistence
with respect to the extinction state for sufficiently large larval recruitment
rates. Two existence theorems for 2-cycle solutions of the periodic model are
proved in Sect. 4 using bifurcation and perturbation methods. In Sect. 5 the
average of the 2-cycle solutions will be compared to the equilibrium levels in
the environment with the same average flour volume. These results are derived
by means of perturbation methods.

The concluding Sect. 6 contains a short discussion of some experimental
data sets for which the theory applies and predicts a positive effect due to
environmental periodicity, at least for large larval recruitment rates and small
amplitude oscillations. Numerical results show that for these estimated param-
eter values it is often (but not always) the case that the predicted positive
effects in fact occur for small larval recruitment rates and large amplitude
oscillations as well.

2 The autonomous model

Costantino et al. [14, 25, 28] have constructed and statistically validated
a discrete stage-structured model of laboratory populations of flour beetles:

¸ (t#1)"bA (t)exp(!c
el
¸ (t)!c

ea
A(t))

P(t#1)"(1!k
l
)¸ (t) (1)

A(t#1)"P (t)exp(!c
pa

A(t))#(1!k
a
)A(t)

We will refer to this model as the ‘‘LPA model’’. ¸ (t) denotes the number of
larvae (feeding larvae), P(t) denotes the number of pupae (nonfeeding larvae,
pupae, and callow adults), and A(t) denotes the number of adults. The discrete
time interval is two weeks. The coefficient b'0 denotes the average number
of larvae recruited per adult per unit time in the absence of cannibalism,
k
l
3(0, 1) and k

a
3(0, 1) are the larval and adult probabilities of dying from

causes other than cannibalism, and the exponentials represent the probabili-
ties that individuals survive cannibalism one unit of time, with ‘‘cannibalism
coefficients’’ c

el
, c

ea
, c

pa
'0. This model is based on the assumption that the

dominant mechanism driving flour beetle dynamics is that of cannibalism
between life cycle stages [13].

We now mention a few facts about the autonomous LPA model. Define

b
cr
G

k
a

1!k
l

.

Theorem 1 ¹here exists a positive equilibrium (¸
0
, P

0
, A

0
) of the ¸PA model (1)

if and only if b'b
cr
. ¼hen it exists, this equilibrium is unique and each

component is an unbounded, monotonically increasing function of b.
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Proof. There exists a positive equilibrium of the LPA model (1) if and only if
there exists a solution pair ¸'0 and A'0 of the two algebraic equations

¸"bA exp(!c
el
¸!c

ea
A)

A"

(1!k
l
)

k
a

¸ exp(!c
pa

A) .

By solving the second equation for ¸ and substituting the result into the first
equation we find that such a solution pair exists if and only if the equation

b"
k
a

(1!k
l
)
exp[A(c

ea
#c

pa
)]expCcel

k
a

(1!k
l
)
A e cpaAD (2)

has a positive solution A"A
0
'0. Since the right hand side of equation (2) is

an unbounded, monotonically increasing function of A with value b
cr

at
A"0, equation (2) has a positive solution A

0
if and only if b'b

cr
, and this

solution is unique when it exists. Moreover, A
0

is a strictly increasing,
unbounded function of b'b

cr
. From the solution A

0
of equation (2), the

equations

¸
0
"

k
a

(1!k
l
)
A

0
exp(c

pa
A

0
)

(3)
P
0
"(1!k

l
)¸

0

provide unique positive ¸
0

and P
0
. Formula (3) shows ¸

0
and P

0
are also

strictly increasing, unbounded functions of b. h

Let R3
`

G[0, R)][0, R)][0, R). The following results are shown
in [23].

Theorem 2 ¹he trivial equilibrium (¸, P, A)"(0, 0, 0) of the ¸PA model (1) is
globally asymptotically stable if b(b

cr
and unstable if b'b

cr
. If b'b

cr
,

the solution in ¹heorem 1 is locally asymptotically stable for b sufficiently
close to b

cr
. In any case, for all b'b

cr
, the system (1) is uniformly persistent

with respect to the extinction state (0, 0, 0), i.e., there exists e'0 such that
lim inf

t?=
E(¸(t), P (t), A(t))E'e for all orbits with (¸ (0), P (0), A(0))3

R3
`

!M(0, 0, 0)N.

For other results see [41].

3 The periodically forced model

A common protocol in flour beetle experiments is to replace the medium with
fresh flour at each census with volumes sufficient to insure little if any food
shortages and hence little if any intra-specific competition or density effects
(e.g. see [28, 40]). Therefore, in our model it is assumed that only the
cannibalism rates are affected by changes in flour volume. Cannibalism in
¹ribolium occurs during random encounters as larvae and adult beetles roam
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through their flour habitat. Therefore, cannibalism rates can reasonably be
assumed to be inversely related to flour volume V [13, 54]. Recent laboratory
experiments carried out by R. A. Desharnais [16] have shown, more specifi-
cally, that cannibalism rates are inversely proportional to flour volume. This
fact can be accounted for in the LPA model (1) by assuming the cannibalism
coefficients take the forms

c
el
"

i
el
»

, c
ea
"

i
ea
»

, c
pa
"

i
pa
»

.

If flour volume periodically oscillates with a period of 2 and an amplitude of
a»

ave
around an average »

ave
then »"»

ave
(1#a(!1) t) and the cannibalism

coefficients in the LPA model become, respectively,

i
el

»
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(1#a(!1) t )
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i
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»
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(1#a(!1) t )
,

i
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»
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(1#a(!1) t )
.

Let c
el
, c

ea
, and c

pa
denote the cannibalism coefficients in the average volume

of flour, i.e.

c
el
G

i
el

»
ave

, c
ea
G

i
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»
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, c
pa

G
i
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»
ave

.

Let N denote the nonnegative integers. We then obtain the ‘‘periodic ¸PA
model’’

¹ : N]R3
`
PR3

`

which is described componentwise by the equations

¸(t#1)"bA(t)expA!
c
el

1#a(!1) t
¸ (t)!

c
ea

1#a (!1) t
A(t)B

P (t#1)"(1!k
l
)¸(t) (4)

A(t#1)"P (t)expA!
c
pa

1#a (!1) t
A (t)B#(1!k

a
)A(t)

for relative amplitude a3[0, 1). Note that the autonomous LPA model (1) is
obtained by setting a"0 in this periodic LPA model and by interpreting the
cannibalism coefficients as those associated with a constant environment with
volume of flour fixed at »

ave
.

We now consider a few general mathematical facts about the periodic LPA
model (4) before turning our attention to the existence, uniqueness, and
stability of positive 2-cycle solutions. Define the autonomous maps

¹
1
: R3

`
PR3

`

¹
2
: R3

`
PR3

`
as the composites

x' (t#1)"¹
1
(x' (t))G¹(1, ¹(0, x' (t))) (5)

y' (t#1)"¹
2
(y' (t))G¹(2, ¹(1, y' (t))) . (6)
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Then
x' (t)"(¸(2t), P (2t), A(2t))

y' (t)"(¸(2t#1), P(2t#1), A(2t#1))
whenever

x' (0)"(¸ (0), P (0), A(0))

y' (0)"(¸ (1), P (1), A(1)) .

Theorem 3 ¹he trivial solution 0ª "(0, 0, 0) of the periodic ¸PA model (4) is
globally asymptotically stable if b(b

cr
and unstable if b'b

cr
.

Proof. Let b'b
cr
. The Jacobians of both ¹

1
and ¹

2
at 0ª have characteristic

equation

j3!(1!k
a
)2j2!2jb(1!k

a
)(1!k

l
)!(1!k

l
)2b2"0 .

Since the sum of the coefficients is negative, that is

1!(1!k
a
)2!2b (1!k

a
) (1!k

l
)!(1!k

l
)2b2

(2k
a
!k2

a
!2k

a
(1!k

a
)!k2

a
"0 ,

at least one eigenvalue is outside the unit circle. Hence the trivial solutions of
both ¹

1
and ¹

2
are unstable, and so the trivial solution of (4) is unstable.

Let b(b
cr
. For all t70,

¸ (t#1)6bA(t)

P (t#1)6(1!k
l
)¸ (t) (7)

A(t#1)6P(t)#(1!k
a
)A(t) .

Thus, by induction, the solutions of the periodic LPA model (4) are bounded
above by the solutions of the linearization of the LPA model (1) at zero, which
has characteristic equation

j3#(k
a
!1)j2#(k

l
!1)b"0 .

It is easy to show (using, for example, the Jury Conditions [45] or Theorem 3
in Cushing and Zhou [24]) that all the eigenvalues j are inside the unit circle if
and only if b(b

cr
. Thus, the solutions of model (4) are bounded above by

sequences which monotonically decrease to 0ª , and so the trivial solution of
model (4) is globally asymptotically stable. h

In order to show the uniform persistence of system (4), we need the
following lemmas.

Lemma 1 ¹, ¹
1
, and ¹

2
are point dissipative, i.e., for each of ¹, ¹

1
, and

¹
2

there exists a bounded set into which every orbit eventually enters and
remains.

Proof. Consider the periodic LPA model (4). Let

DG
b(1#a)

c
ea

.
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Then for all t72

¸ (t#1)6bA (t)expA!
c
ea

A (t)

1#a B6D
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l
)¸ (t)6(1!k

l
)D6D (8)

A(t#1)6P (t)#(1!k
a
)A(t)6D#(1!k

a
)A(t)

and so ¸ and P are forward bounded. By induction, A(t) is bounded above by
the solution x (t) of the one-dimensional map

x (t#1)"D#(1!k
a
)x (t)

x(2)"A (2)

for t72. The solution of this map is given by

x(t)"DA
1!(1!k

a
) t~2

k
a

B#(1!k
a
) t~2x (2)

"

(1!k
a
) t~2(k

a
x(2)!D)#D

k
a

.

Since 1!k
a
(1, x(t) is monotonically decreasing to D/k

a
if x (2)'D/k

a
and

monotonically increasing to D/k
a

if x (2)(D/k
a
.

All orbits (¸, P, A) of the periodic LPA model (4) therefore eventually enter
and remain in the rectangle

[0, D]][0, D]][0, 2D/k
a
] .

Thus, ¹ is point dissipative, and so clearly ¹
1

is point dissipative.
To show that ¹

2
is point dissipative, it is sufficient to note that the

phase-shifted model given componentwise by

x (t#1)"bz(t)expA
!c

el
x (t)!c

ea
z(t)

1#a(!1) t`1 B
y(t#1)"(1!k

l
)x (t)

z(t#1)"y(t)expA
!c
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z (t)

1#a (!1) t`1B#(1!k
a
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is dissipative by the same argument as above. h

Lemma 2 ¹he models defined by ¹
1

and ¹
2

have global attractors, i.e., for
each of ¹

1
and ¹

2
, there is a maximal compact invariant set A

i
such that

u
i
(º)GY

mJ0
clZ

nJm
¹ n

i
º-A

i
for every bounded set º-R3

`
.

Proof. Since ¹
1

and ¹
2

are continuous on R3
`

and point dissipative
(and hence orbits of bounded sets are bounded), ¹

1
and ¹

2
have global

attractors [34]. h
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Lemma 3 ¸et b'b
cr
. ¹here exists an e'0 such that if x' (t) is any solution of

(5) or (6) with 0(Ex' (0)E(e, then there is a q71 for which Ex' (q)E'e.

Proof. The Jacobian J2 of both the composites ¹
1

and ¹
2

is

J2"A
0 b b(1!k

a
)

0 0 b (1!k
l
)

1!k
l

1!k
a

(1!k
a
)2 B .

Since J4'0, J2 is primitive and irreducible and thus has a strictly dominant
eigenvalue j which is simple and positive. Its corresponding eigenvector can
be written with positive coordinates (see e.g. [32], pp. 53, 80). In the proof of
Theorem 3 we saw that Dj D'1.

Since an irreducible matrix cannot have two linearly independent non-
negative eigenvectors (see [32], p. 63), all of the other eigenvectors must have
a negative component. Thus, the stable eigenspace of the linearization does
not intersect the nonnegative cone R3

`
. By the Stable Manifold Theorem for

maps [33], the same holds true for the stable manifolds of ¹
1

and ¹
2

in some
open neighborhood of 0ª . The lemma follows from the Hartman-Grobman
Theorem for maps [33]. h

The following two lemmas follow directly from Lemma 3 and the fact that
the only point mapped to 0ª is 0ª .

Lemma 4 ¸et b'b
cr
. For both ¹

1
and ¹

2
, the set M"M0ª N is an isolated

compact invariant set, i.e., M is a compact forward invariant set and there exists
a closed neighborhood ºMM in R3

`
such that M is the largest forward

invariant set contained in º.

Lemma 5 ¸et b'b
cr
. For both ¹

1
and ¹

2
, the stable set of M"M0ª N is

contained in M, i.e.,

¼s(M)GGx' (0)3R3
`

D lim
t?=

x' (t)"0ª H-M.

Lemmas 2, 4, and 5 imply the uniform persistence of ¹
1

and ¹
2

with
respect to M by the results in [39]:

Lemma 6 ¸et b'b
cr
. ¹hen ¹

1
and ¹

2
are uniformly persistent with respect to

M, i.e., for each of ¹
1

and ¹
2

there exists an e'0 such that
lim inf

t?=
Ex' (t)E'e for all orbits with x' (0)3R3

`
!M.

Theorem 4 If b'b
cr
, then the periodic ¸PA model (4) is uniformly persistent

with respect to the extinction state M.

Proof. Let b'b
cr
. Choose e'0 as the smallest of the two e’s in Lemma 6 and

let x' (0)3R3
`
!M. Suppose lim inf

t?=
Ex' (t)E6e, where x' (t) is the orbit of x' (0)

under ¹. Then there exists a subsequence of points Mx' (t
j
)N=

j/1
on the orbit with

lim
j?=

Ex' (t
j
)E6e. Now, infinitely many of the indices t

j
are even, or infinitely

many are odd. Thus, there is a subsequence Mx'
i
N=
i/1

of the orbit of x' (0) under
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¹
1

with lim
i?=

Ex'
i
E6e, or there is a subsequence My'

i
N=
i/1

of the orbit of
y' (0)"¹ (0, x' (0)) under ¹

2
with lim

i?=
Ey'

i
E6e. This violates Lemma 6. h

4 Existence of 2-cycle solutions

In this section we show the existence, uniqueness, and stability of positive
2-cycle solutions of the periodic LPA model (4), first for b near b

cr
(with fixed

a), and then for small amplitude a (with fixed b).

4.1 2-cycle solutions near b"b
cr

Liapunov-Schmidt singular perturbation methods can be used to verify the
existence and uniqueness of 2-periodic solutions of the periodic LPA model (4)
for values of b near b

cr
. Henson [37] has shown existence, uniqueness, and

stability properties of bifurcating periodic solutions of periodically-forced
discrete dynamical systems. We will appeal to these results in the proof of the
follow theorem.

Theorem 5 ¸et 0(a(1. For each b'b
cr

sufficiently close to b
cr
, there exists

a unique nontrivial 2-periodic solution x'
b
(t)"(¸ (t), P (t), A(t)) of model (4) such

that lim
b?bcr

x'
b
(t)"0ª .

Proof. This theorem follows from Theorem 2 in [37] once we have verified the
hypotheses A1–A4 of that theorem.

A1: The equations in (4) can be expressed, in a straightforward way, as
a single vector equation of the form

xL (t#1)"bF(t, xL (t))#G(t, xL (t)) (9)

where F, G: N]R3PR3, and both F and G are 2-periodic in t and vanish at
xL "0ª . Here xL "(¸, P, A).

A2: For all t3N, F and G are continuous functions of xL on R3 and are
continuously Fréchet differentiable on R3 with respect to xL .

A3–A4: Define U
b, x̂

to be the product of the Jacobians

U
b, x̂

G
2
<
m/1

[bF @ (2!m, xL (2!m))#G @ (2!m, xL (2!m))] .

Then

U
b,0

"A
0 b b (1!k

a
)

0 0 b (1!k
l
)

1!k
l

1!k
a

(1!k
a
)2B .

It is easy to verify that U
bcr,0

has a real eigenvalue of 1 and a nontrivial
complex pair of eigenvalues lying inside the unit circle. Thus,
dim[ker(I!U

bcr,0
)]"1. h
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Since model (4) cannot have a nontrivial equilibrium solution, Theorem 5
refers to a 2-cycle of minimal period two. From the perspective of bifurcation
theory, Theorem 5 says there is a transcritical bifurcation of nontrivial 2-cycle
solutions at b"b

cr
.

According to Theorem 3, the trivial solution 0ª of model (4) is globally
asymptotically stable if b(b

cr
and unstable if b'b

cr
. The next theorem

demonstrates a typical exchange of stability between the trivial solution and
the bifurcating branch of 2-cycles at b"b

cr
.

Theorem 6 If b'b
cr
, then the nontrivial 2-periodic solution guaranteed by

¹heorem 5 is positive and (locally asymptotically) stable for b sufficiently
close to b

cr
.

Proof. To prove this result we invoke Theorem 4 of [37], which first requires
the verification of three hypotheses A5–A7.

A5: The second composite map of model (4) is a diffeomorphism in
a neighborhood of b

cr
since U

bcr,0
has nonzero eigenvalues.

A6: We must show:

d

db
[lK U

b,0
v' ]

b/bcr
90

where lK and v' are left and right eigenvectors of U
bcr,0

belonging to eigenvalue
one such that lK v'"1. Straightforward calculations yield

vL"col(b
cr
, k

a
, 1)GA

b
cr

k
a

1 B , lK"A
1!k

l
1#2k

a

1

1#2k
a

1

1#2k
a
B

and so

d

db
[lK U

b,0
vL ]

b/bcr
"

d

db C
2b(1!k

l
)#1

1#2k
a

D
b/bcr

"

2(1!k
l
)

1#2k
a

90 .

A7: For all t3N, F and G in (9) are twice continuously Fréchet differenti-
able in xL .

In order to determine the stability properties of the bifurcating 2-cycle
solutions we consider the Liapunov-Schmidt expansions of b, the solution xL ,
and the dominant eigenvalue g of U

b, x̂
as given by

b"b
cr
#eb

1
#O(e2)

xL "evL#O(e2) (10)

g"1#eg
1
#O(e2) .
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The 2-cycle solutions are positive and stable for b'b
cr

sufficiently close to
b
cr

if b
1
'0 and g

1
(0. From Theorem 4 of [37] we can calculate

g
1
"

1

2
lK A

0 0 b
cr

(1!k
l
) 0 0

0 1 (1!k
a
)B A

!c
el
b
cr

1#a
0

!b
cr
(b

cr
c
el
#2c

ea
)

1#a
0 0 0

0
!c

pa
1#a

!c
pa

k
a

1#a B vL

#

1

2
lK A

!c
el
b
cr

1!a
0

!b
cr
(b

cr
c
el
#2c

ea
)

1!a
0 0 0

0
!c

pa
1!a

!c
pa

k
a

1!a B vL

"

!2k
a

(1!a2) (1#2k
a
)
(c

ea
#b

cr
c
el
#c

pa
)(0

and

b
1
"!

g
1

d

db
[lKU

b,0
vL ]

b/bcr

"

b
cr

(1!a2)
(c

ea
#b

cr
c
el
#c

pa
)'0 . h (11)

4.2 Small amplitude 2-cycles

We now show the existence of small amplitude solutions for ‘‘generic’’ values
of b. Let J be the Jacobian of ¹.

Theorem 7 ¸et b'b
cr

and xL
0
"(¸

0
, P

0
, A

0
) be the unique positive equilibrium

solution of the ¸PA model (1). Assume the matrix I!J2(xL
0
) is nonsingular.

¹hen for each sufficiently small a'0 there exists a unique 2-cycle solution xL a(t)
of the periodic ¸PA model (4) which is positive and for which lima?0

xL a(t)"xL
0
.

For sufficiently small a'0, this 2-cycle is (locally asymptotically) stable or
unstable if the corresponding equilibrium xL

0
is (locally asymptotically) stable or

unstable respectively. ¹he components of xL a (t) are infinitely differentiable in
a for each t70.

Proof. Denote the periodic LPA model (4) by

xL (t#1)"K (t, a, xL (t))

where xL "(¸, P, A). We look for 2-cycle solutions of the form

xL a (t)"xL
0
#y' (t, a) (12)

where xL
0
"(¸

0
, P

0
, A

0
), and y' is 2-periodic in t and vanishes at a"0. Model

(4) can then be equivalently expressed as

y' (t#1, a)"J (xL
0
)y' (t, a)#H(t, a, y' (t, a))#K (t, a, xL

0
)!xL

0
(13)
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where J is the Jacobian, H is O (Ey' E2 ), and K (t, 0, xL
0
)"xL

0
for all t70. Note

that for a'0, equation (13) does not admit the trivial solution y',0ª since
xL
0

cannot be an equilibrium solution of the periodic model (4).
There exists a 2-cycle solution y' (t, a) of equation (13) if and only if there

exists a solution z'3R3 of

X (z' , a)Gz'!W(z' , a)"0ª

where

W (z' , a)G(I!J2(xL
0
))~1 MJ (xL

0
)[H(0, a, z' )#K(0, a, xL

0
)!xL

0
]

#H (1,a,[J(xL
0
)z'#H(0, a, z' )#K (0, a, xL

0
)!xL

0
])#K (1, a, xL

0
)!xL

0
N.

Now,

X(0ª , 0)"0ª and
LX
Lz' K

z/a/0

"I

since H is O(Ez' E2 ). By the Implicit Function Theorem, for sufficiently small
a there exists a unique z' (a) such that X(z' (a), a)"0ª , z' (0)"0ª , and the compo-
nents of z' are infinitely differentiable in a. Therefore, for each sufficiently small
a there exists a unique nontrivial 2-cycle solution xL a (t)"xL

0
#y' (t, a) of model

(4) which is defined by y' (0, a)Gz' (a) and whose components are infinitely
differentiable in a for each t70.

If xL
0

is a stable (unstable) equilibrium of the LPA model (1), then it is also
a stable (unstable) 2-cycle solution of the periodic LPA model (4) for a"0;
thus the 2-cycle solution xL (t)"xL

0
#yL (t, a) of model (4) is stable (unstable) for

small a by a continuity argument. h

In Theorem 7, the generic hypotheses that I!J2(xL
0
) be nonsingular is

satisfied at all hyperbolic equilibria xL
0
.

5 The effect of environmental periodicity

Let (¸ (t), P(t), A(t)) be a 2-cycle solution of the periodic LPA model (4). Define
the time average

qGS¸#P#ATG
1

2

1
+
t/o

(¸ (t)#P (t)#A(t))

and consider the ‘‘average solution surface’’ R defined by q"q(a, b). Figure 1
shows this surface for the parameter estimates obtained from Jillson’s data
[40]. The surface R bifurcates from the a-b plane along the line b"b

cr
, and the

equilibria of the LPA model (1) lie in the a"0 coordinate plane. Graphically,
we see from Fig. 1 that a positive (negative) effect of environmental periodicity
occurs at points (a, b) in the plane above which the surface R is higher (lower)
than at the corresponding equilibrium value on the surface above the point
(0, b). For example, in Fig. 1 a positive effect is clearly present at a"0.5,
b"1.0 and a negative effect is present at a"0.5, b"0.4.
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Fig. 1a. The surface R defined by the average total population size q"q (b, a) as a function
of the amplitude a of environmental periodicity and the inherent larval recruitment rate b is
shown for the periodic LPA model (4). This surface was drawn using parameter set 1 in
Table 1 (obtained from Jillson’s data [40]). On the surface are drawn the a-b coordinate
lines (finer lines) which can be seen crossing the q darker level surface contour lines (shown
for q"15 to 60 in increments of 5). The path from point A to point B with fixed b crosses
level surface curves corresponding to increasing values of q (from under 50 to nearly 60).
This illustrates a positive effect of environmental periodicity as the amplitude increases from
a"0.0 to 0.5. The path from point C to point D with fixed b crosses level surface curves
corresponding to decreasing values of q (from over 25 to under 20). This illustrates a negative
effect of environmental periodicity as the amplitude increases from a"0.0 to 0.5

Simulations (such as Figs. 1 and 2) suggest the periodic LPA model (4)
can exhibit both positive and negative effects; however, analytic verification is
nontrivial. We now turn our attention to this problem.

5.1 Near the primary bifurcation line b"b
cr

We first show that a negative effect of environmental periodicity always
occurs near the primary bifurcation point b"b

cr
for any amplitude a.

Theorem 8 ¸et b'b
cr
, a3(0, 1), and let (¸

0
, P

0
, A

0
) be the unique positive

equilibrium solution of the ¸PA model (1). ¸et (¸a(t), Pa(t), Aa(t)) be the non-
trivial 2-cycle solution of the periodic ¸PA model (4) guaranteed by ¹heorem 5.
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Fig. 1b. The contour map of the surface R in (a) is shown in the a-b plane. The (dotted)
straight line paths from points A to B and from points C to D are the projections of the
corresponding paths shown on the surface R in Fig. 1a. The path from A to B crosses
contours of increasing values of the average total population q while that from C to D
crosses contours of decreasing values

¹hen for b sufficiently close to b
cr

and all a3(0, 1) we have the inequalities

S¸a (t)T(¸
0

SPa (t)T(P
0

SAa (t)T(A
0

.

Proof. By equation (11), the Liapunov-Schmidt expansion for the 2-cycle
solution of the periodic LPA model is, for small e

p
'0,

¸a(t)"e
p
b
cr
#O(e2

p
) (t)

Pa(t)"e
p
k
cr
#O (e2

p
) (t)

Aa(t)"e
p
#O(e2

p
) (t)

and

b"b
cr
#e

p A
b
cr
(c

ea
#b

cr
c
el
#c

pa
)

(1!a2) B#O(e2
p
) .

The Liapunov-Schmidt methods of [37] can also be used to find expan-
sions for the equilibrium solutions of the autonomous LPA model as a
periodically-forced model with forcing of period one. Straightforward
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Fig. 2. The asymptotic states of both the autonomous LPA model (1) and the periodic LPA
model (4) are shown plotted against the parameter b for the parameter set 1 in Table 1
(obtained from Jillson’s data [40]). All three life cycle stages ¸, P and A are shown as well as
the total population size ¸#P#A. In the periodic case the relative amplitude a"0.6 is
used (the same as used by Jillson [40] ). The solid line shows, for the autonomous model, the
bifurcation of positive equilibria from the trivial (extinction) equilibrium at a critical value
of b

cr
"k

a
/(1!k

l
)+0.293. The dotted line shows, for the periodic model, the bifurcation

of positive 2-cycles at the same critical value of b. The dashed line is the (time) average of the
bifurcating positive 2-cycles. (The total population cycle average q is the same as that used
to construct the surface R in Fig. 1a.) These averages (indeed, even the maxima of the
2-cycles) are clearly seen to be less than the equilibrium level of the autonomous model for
smaller values of b'b

cr
, as predicted by Theorem 8. For larger values of b, however, the

cycle averages cross over and exceed the equilibrium level of the autonomous model, as
predicted by Theorem 9
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calculations show, for small e
a
'0, that

¸
0
"e

a
b
cr
#O(e2

a
)

P
0
"e

a
k
a
#O(e2

a
)

A
0
"e

a
#O(e2

a
)

b"b
cr
#e

a
b
cr
(c

ea
#b

cr
c
el
#c

pa
)#O(e2

a
) .

In order to compare the solutions to first order at the same values of b, we
require

e
p
"e

a
(1!a2) .

Then

¸
0
!S¸a(t)T"e

a
a2b

cr
#O(e2

a
)'0

P
0
!SPa (t)T"e

a
a2k

a
#O(e2

a
)'0

A
0
!SAa (t)T"e

a
a2#O(e2

a
)'0

for e
a
'0 sufficiently small. h

Theorem 8 implies that for small larval recruitment rates b'b
cr

the effect
of environmental periodicity is negative on all three life cycle stages. It follows
then that the effect of environmental periodicity is negative for total popula-
tion numbers. This result implies that if positive effects are to occur it must be
for ‘‘large’’ larval recruitment values b. In the next section we turn our
attention to large values of b.

5.2 Near the equilibrium branch

In this section we consider the periodic LPA model for large values of the
larval recruitment rate b. We do this, however, only for small values of the
relative amplitude a.

Let I-(b
cr
, R) be a ‘‘hyperbolic interval’’, i.e. an interval such that the

equilibrium (¸
0
, P

0
, A

0
) is hyperbolic whenever b3I. Then by Theorem 7 we

can write the small amplitude 2-cycle solutions of the periodic LPA model as:

¸ (t#1)"¸
0
#¸

1
(t)a#¸

2
(t)a2#O(a3) (t)

P(t#1)"P
0
#P

1
(t)a#P

2
(t)a2#O(a3) (t) (14)

A(t#1)"A
0
#A

1
(t)a#A

2
(t)a2#O(a3) (t)

where the a-coefficients are 2-periodic in t.
Equations for the first and second order terms ¸

1
(t), ¸

2
(t), etc. can be

found by a substitution of these expansions into the periodic LPA model
equations (4) and equating coefficients of like powers of a from both sides of
the resulting equations. From the first order terms we obtain equations for
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¸
1
(t) and A

1
(t) that can be written in the form

¸
1
(t#1)

¸
0

"

A
1
(t)

A
0

#c
ea

[(!1) tA
0
!A

1
(t)]#c

el
[(!1) t¸

0
!¸

1
(t)] (15)

A
1
(t#1)

A
0

"k
a

¸
1
(t#1)

¸
0

#k
a
c
pa

[(!1) tA
0
!A

1
(t)]#(1!k

a
)
A

1
(t)

A
0

. (16)

By averaging both sides of these equations we obtain the linear, homogeneous
system of algebraic equations

Acea!
1

A
0
BSA

1
T#Acel#

1

¸
0
B S¸

1
T"0

Aka
c
pa
#

k
a

A
0
BSA

1
T!A

k
a

¸
0
BS¸

1
T"0

for the averages SA
1
T and S¸

1
T. Hence SA

1
T"S¸

1
T"0 as long as the

coefficient matrix

A
c
ea
!

1

A
0

k
a
c
pa
#

k
a

A
0

c
el
#

1

¸
0

k
a

¸
0

B
is nonsingular, which is true for large b since its determinant approaches the
nonzero value !k

a
c
pa

c
el

as bPR. It follows that in order to determine the
relationship of the 2-cycle averages

S¸T"¸
0
#S¸

2
Ta2#O(a3)

SPT"P
0
#SP

2
Ta2#O(a3)

SAT"A
0
#SA

2
Ta2#O(a3)

to the corresponding equilibrium values ¸
0
, P

0
, A

0
for large values of b, it is

necessary to calculate the averages S¸
2
T, SP

2
T, SA

2
T of the second order

coefficients ¸
2
(t), P

2
(t), and A

2
(t). To do this we will need some further facts

about the first order coefficients for large values of b.
Since the averages SA

1
T and S¸

1
T both equal 0, it follows that

A
1
(1)"!A

1
(0)

¸
1
(1)"!¸

1
(0) .

From these facts and from equations (15) and (16) we can calculate the
formula

A
1
(0)"

k
a
A

0
(c

ea
A

0
#c

el
¸

0
)!c

pa
k
a
A2

0
(c

el
¸

0
!1)

(2!c
pa

k
a
A

0
!k

a
) (c

el
¸
0
!1)#k

a
(c

ea
A

0
!1)

. (17)
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Recall that the equilibria are unbounded, strictly increasing functions
of b (Theorem 1), and that

lim
b?=

A
0

¸
0

"0

by equation (3). From equation (17) we see that

lim
b?=

A
1
(0)

A
0

"1

and hence

lim
b?=

A
1
(t)

A
0

"(!1) t

From equation (15) we obtain (after setting t"0, dividing both sides by
¸
0
, and rearranging terms)

¸
1
(0)

¸
0

"A
¸
0

c
el
¸
0
!1BC

A
1
(0)

A
0
¸
0

#c
eaA

A
0

¸
0

!

A
1
(0)

A
0

A
0

¸
0
B#c

elD
and so

lim
b?=

¸
1
(t)

¸
0

"(!1) t .

Finally, from equation (16) we can therefore calculate the limit

lim
b?=

[(!1) tA
0
!A

1
(t)]"

!2(1!k
a
)(!1) t

k
a
c
pa

and, using this in equation (15), the limit

lim
b?=

[(!1) t¸
0
!¸

1
(t)]"C

2c
ea

(1!k
a
) (!1) t

k
a
c
pa

c
el

D!
2(!1) t

c
el

.

We are now ready to calculate the second order averages S¸
2
T, SP

2
T, and

SA
2
T for large values of b. From the equations for the second order coeffi-

cients obtained by the substitution of the expansions (14) into the periodic
LPA model we obtain the two equations

¸
2
(t#1)

¸
0

!

A
2
(t)

A
0

#c
ea

A
2
(t)#c

el
¸
2
(t)

"C
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(t)

A
0

!(!1) tD Mc
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0
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(t)]N

#

1

2
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0
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1
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0
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1
(t)]N2 (18)
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A
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(t#1)

A
0

!k
a
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2
(t#1)

¸
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#k
a
c
pa
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2
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a
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a
c2
pa

[(!1) tA
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for ¸
2
(t) and A

2
(t). From the first equation (18) we obtain the limit

lim
b?= C

¸
2
(t#1)

¸
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!

A
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(t)

A
0

#c
ea

A
2
(t)#c

el
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(t)D"
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2
[!2(!1) t]2"2 . (20)

From the second equation (19) we obtain the limit
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An averaging of equations (20) and (21) yields the limits

lim
b?=CAcea!

1

A
0
BSA

2
T#Acel#
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¸
0
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2
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a

Thus, the pair (SA
2
T, S¸

2
T) can be made arbitrarily close to the solution (x, y)

of the linear system of equations

c
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x#c
el
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k
a
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x"
4(1!k

a
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k
a

given sufficiently large b. That is,
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c
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Now, lim
b?=

SA
2
T is clearly positive, but the sign of lim

b?=
S¸

2
T is

positive if and only if
4c

ea
(1!k

a
)

k2
a
c
pa

(2

Finally, from these formulas for the 2-cycle averages of each life cycle stage
we can obtain a formula for the average q of the total population numbers
¹(t)"¸ (t)#P(t)#A (t), namely

q"¸
0
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0
#A

0
#S¸

2
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2
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2
Ta2#O(a3)
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From the above calculations, after some algebraic manipulations, we
deduce the following theorem.

Theorem 9 ¸et b3I-(b
cr
,#R) where I is a hyperbolic interval, and let

(¸(t), P (t), A(t)) be the 2-cycle solution of the periodic ¸PA model guaranteed
by ¹heorem 7 for sufficiently small a. ¹hen the following statements hold
for sufficiently large larval recruitment rates b and sufficiently small relative
amplitudes a'0.

SA(t)T'A
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0
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c
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c
el
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where q"S¸(t)#P (t)#A(t)T and q
0
"¸

0
#P

0
#A

0
.

The first conclusion to be drawn from this theorem is that positive effects
on total population numbers due to environmental periodicities are possible
in the periodic LPA model. For example, the inequality

k2
a

1!k
a

'2
c
ea

c
pa

!A
2

2!k
l
B

c
el

c
pa

(22)
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holds for adult death rates k
a
sufficiently close to 1 (or for all k

a
3(0, 1) if the

right hand side is negative). Another conclusion is the possibility for different
life cycle stages to be affected differently. The inequality

k2
a

1!k
a

'2
c
ea

c
pa

(23)

implies the inequality (22), but not conversely. Thus, it is possible for the larval
and pupal stages to be negatively effected by environmental periodicity while
the adult stage and the total population numbers are positively effected.

6 Concluding remarks

Motivated by experimental results reported by Jillson [40] in which cultures
of flour beetles (¹ribolium) showed striking increases in population numbers
when their flour habitat was periodically oscillated in volume, we have
introduced the periodically forced version (4) of a three stage model for flour
beetle dynamics that takes into account periodically fluctuating volumes of
flour. This model is a modification of a autonomous model (1) for flour beetle
dynamics that has been statistically validated by means of controlled and
replicated laboratory experiments [14, 25]. The success of the autonomous
model equations (1) in predicting flour beetle dynamics and their bifurcations
in a constant habitat [28, 14] suggests an appropriate modification might
predict the effects of a periodically fluctuating habitat on beetle dynamics,
including the observations of Jillson. The periodic version of the model is
derived under the assumption that habitat fluctuations effect only the canni-
balism rates [13, 54]. This assumption has been recently validated by labora-
tory experiments [16].

Several fundamental mathematical facts about the periodically forced
system of difference equations (4) are given. First of all, the uniform persistence
result in Theorem 4 shows that environmental periodicities do not lead to
extinctions when the larval recruitment rate b exceeds a critical value b

cr
.

Second, Theorems 6 and 7 provide two situations in which it can be
proved mathematically that period 2 forcing gives rise to 2-cycle solutions (i.e.
to period 2 oscillations in all life cycle stages) :

(1) all values of the relative amplitude a3(0, 1), but larval recruitment
rates b close to (but larger than) the critical value b

cr
;

(2) all (‘‘generic’’) values of b'b
cr
, but small values of the relative ampli-

tude a.
Third, Theorems 8 and 9 address the effect of periodic forcing by compar-

ing the averages of the 2-cycle solution of the periodically forced model (4) to
the equilibrium levels of the autonomous model (1). These theorems show that
environmental periodicity in the periodic LPA model can have either negative
or positive effects, depending upon parameters values. In case (1), for small
larval recruitment rates b, the effect is always negative ; the averages of all three
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Table 1. Five sets of model parameter estimates are presented. Parameter set 1 was
obtained from Jillson’s experimental data (¹. castenum, sensitive strain) [40]. Parameter sets
2 and 3 (¹. castenum, RR strain) and sets 4 and 5 (¹. castenum, SS strain) were obtained from
[16] (also see [14] ). All five sets satisfy the inequality (22). Nontrivial positive equilibria of
the autonomous LPA model equations (1) exist for b'b

cr
"k

a
/ (1!k

l
). For relative

amplitude a a periodic volume of flour has a negative effect for larval recruitment rates
b(b

a
and a positive effect for b'b

a
. A ‘‘*’’ indicates that the ‘‘cross over’’ point b

a
is greater

than the equilibrium destabilization point

k
a

k
l

c
el

c
ea

c
pa

b b
cr

b
0.1

b
0.6

1 0.1524 0.4794 0.0584 0.0058 0.0105 4.445 0.293 0.876 0.828
2 0.7300 0.1612 0.0138 0.0111 0.0043 7.876 0.870 5.285 5.365
3 0.9600 0.1612 0.0138 0.0111 0.0043 7.876 1.145 * *
4 0.7300 0.2670 0.0109 0.0090 0.0040 7.880 0.996 6.055 6.075
5 0.9600 0.2670 0.0109 0.0090 0.0040 7.880 1.310 * *

—————
1Data provided by Professor R. F. Costantino and statistical parameter estimates provided
by Professor Brian Dennis.

life cycle stages, and hence that of the total population numbers, are reduced
in the periodic habitat. (See Fig. 2.) In case (2) however, for large larval
recruitment rates b'b

cr
, small amplitude environmental periodicities always

have a positive effect on the adult stage in the periodic LPA model. Larval and
pupal numbers and total population numbers (the sum of all larvae, pupae
and adults) may or may not be positively effected, however, depending upon
model parameter values as described in Theorem 9. For example, it can be
seen from the inequalities (22) and (23) that large adult death rates k

a
will

always lead to positive effects in all life cycle stages and the total population
numbers, but that small values of k

a
will always lead to negative effects on the

larval (and hence) pupal stages. (There is even the theoretical possibility of
mixed results in which adults and total population numbers are positively
effected while larval and pupal numbers are negatively effected.)

We have shown that the periodic LPA model (4) theoretically can predict
positive effects of environmental periodicity under certain circumstances. This
prediction depends upon model parameter constraints as described in
Theorem 9. Are these constraints biologically realistic? That is, can the
inequality (22) hold for known estimates of the model parameters for flour
beetle cultures?

Table 1 contains five sets of parameter estimates for the LPA model taken
from the literature. Parameter set 1 is obtained from Jillson’s actual experi-
mental data1. All of these parameter sets satisfy the inequality (22). Therefore,
for these parameter values the periodic LPA model (4) predicts, at least for
large values of b, a positive effect on total population numbers due to small
amplitude environmental periodicities. While Theorem 9 applies only asymp-
totically as bP#R, we see from Table 1 that the model predicted positive
effect can in fact occur for relatively small values of b (i.e. for b'ba in Table 1);
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in particular, see parameter sets 1, 2, and 4. Fig. 2 provides a graphical
illustration of this fact for the Jillson parameter set 1. In parameter sets 3 and
5, however, the predicted positive effect is not seen prior to the destabilization
of the constant environment equilibria.

Theorem 9 implies that a positive effect can be the result of environmental
periodicity of small amplitude a in the sense that small amplitude 2-cycle
solutions near the equilibrium solution of the autonomous model have in-
creased averages for sufficiently large values of b. This result is independent of
the stability properties of the unperturbed equilibrium or the 2-cycle solutions
of the periodically perturbed system (which may be stable or unstable). The
equilibrium of the unperturbed LPA model generally losses stability as b in-
creases [14, 16, 28]. Our analytical results do not address the question of
whether this loss of stability occurs before or after the onset of the positive
effect (i.e. for b less than or greater than the quantity ba in Table 1). This
remains an open general question. In Table 1 the ‘‘cross over’’ from negative to
positive effects as b increases through ba occurs before the equilibria lose
stability for parameter sets 1, 2, and 4, but not for parameter sets 3 and 5.

Our results show that one particular model, designed specifically for the
dynamics of a particular animal (flour beetles), predicts a positive effect due to
periodic habitat fluctuations for realistic parameter values. These mathematical
results provide an explanation of the increased biomass observed by Jillson
[40] by means of a specific biological mechanism, namely the effect of periodic
fluctuations of flour volume on cannibalism rates. The Jillson flour beetle
experiment is studied in more detail using the periodic LPA model in [16].
These theoretical and experimental results together provide the first clear
demonstration that increased population biomass is a possible consequence of
environmental fluctuations. Such a possibility raises many other interesting
biological and mathematical questions. For example, what role does such
a possibility play in adaptation strategies for a species in a periodic environ-
ment, or how might a resource manager take advantage of such a possibility in
order to increase biomass production without having to increase (the average
amount) of environmental resources? Finally, how ubiquitous are positive
effects of periodic forcing in mathematical models of population dynamics?
This mathematical question is addressed for scalar maps and discrete systems
of a particular form in [38].
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