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Abstract. The existence of a stable positive equilibrium state for the density 
p of a population which is internally structured by means of a single scalar 
such as age, size, etc. is studied as a bifurcation problem. Using an inherent 
birth modulus n as a bifurcation parameter it is shown for very general 
nonlinear model equations, in which vital birth and growth processes depend 
on population density, that a global unbounded continuum of nontrivial 
equilibrium pairs (n, p) bifurcates from the unique (normalized) critical point 
(1, 0). The pairs are locally positive and conditions are given under which 
the continuum is globally positive. Local stability is shown to depend on the 
direction of  bifurcation. For the important case when density dependence is 
a nonlinear expression involving a linear functional of density (such as total 
population size) it is shown how a detailed global bifurcation diagram is 
easily constructed in applications from the graph of a certain real valued 
function obtained from an invariant on the continuum. Uniqueness and 
nonuniqueness of positive equilibrium states are studied. The results are 
illustrated by several applications to models appearing in the literature. 
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I. Introduction 

Consider a population structured in the sense that its density is a function 
p=p( t ,  a)>~O of  time t and a real variable a which categorizes individuals 
according to some physical characteristic such as chronological age, physical 
size, mass, volume, concentration of some metabolically important chemical, etc. 
The number of individuals of  types between a l and a2 at time t is then S]~ p(t, a) da. 
The dynamics of p are described by the familiar equation 

O~p+Oa(vp)+6=O, t>to, a>ao (1.1) 

where da/dt  = v describes the dynamics of  the characteristic a and where 6 is 
an a-specific growth law (e.g. see [28, 36, 41, 44]). Here to is some initial time 
and ao is the characteristic for neonates which by rescaling we assume without 
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loss in generality are to = 0, ao = 0. In general 8 depends on t, a and in density 
dependent  dynamics also on p. Equations of  this type have been used in a variety 
of  disciplines including population dynamics [20, 46], cell growth dynamics 
[27, 36, 37, 44], epidemiology [13, 21] amongst others. 

Generally there are several side conditions associated with (1.1): a "bir th" 
or "recruitment" rate upla=o=/3 in which /3 can depend on t, a and p; the 
requirement that no individual has a characteristic type greater than some 
maximum p(t, a) = O, t > O, a >I A >  0; and the prescription of an initial density 
p(0, a). The well-posedness of  this problem has been considered in various 
contexts by several authors (e.g. see [9, 16, 26, 46]). 

Of special interest in applications are the asymptotic states (as t ~ +oo) of 
solutions of  (1.1). In particular if the equations are autonomous,  i.e. if/~,/3 and 
v do not depend explicitly on time t, equilibrium solutions p = p(a)>~O are of  
fundamental  importance and it is with the existence and stability of  such solutions 
with which this paper  is concerned. Specifically we will study the existence and 
stability of  solutions p = p(a) >i 0 of the equations 

8tp+Oa(vp)+8=O , t > 0 ,  0 < a < A  
(1.2) 

up[a=o=fl and p ( t , a )=O f o r t > 0 ,  a>~A 

where 8 and /3 will be allowed to depend in a very general way on a and p, 
except that it is required that both identically vanish when p-= 0. This means 
growth and birth processes cease when density drops to zero and in particular 
there is no seeding/harvesting or immigrat ion/emigrat ion (which is independent 
of  population density). Under  this assumption p -= 0 is a trivial equilibrium state. 

In this paper  the existence of equilibria will be studied as a bifurcation 
phenomenon,  namely equilibrium solutions will be sought which bifurcate from 
p =- 0 at a critical value of a selected bifurcation parameter.  In theoretical popula- 
tion dynamics mathematical  models are often studied with reference to a para- 
meter identified as a "bir th",  "fertility" or "materni ty"  modulus or a "net  
reproductive" rate. In keeping with this point of  view we normalize in a certain 
way (see (3.1) below) the linear birth l aw/3 ' (p )  obtained from the linearization 
of/3 at p ----= 0 and write fl '(p) = nm(p) where n is a real parameter  which we call 
the "inherent birth modulus".  Thus we will write/3 = nm + hl in (1.2) where h~ 
is of order greater than one in p near 0. 

With regard to the growth rate 8 we are motivated by the frequently considered 
form 6 = pD where D is a per unit density growth rate which in general depends 
on a and p. I f  D is written, without loss in generality, as D =/z  + d(p)  where 
d(0) = 0 and/.~ is independent of p then 8 = pp. + h 2 where h 2 --  pd(p)  is of  order 
greater than one in p near 0. For added generality we allow for a more general 
form for h2 so long as it is of  order higher than one at p --- 0. 

In summary we will be concerned with positive solutions p = p(a) > O, 0<~ a < 
A, of the equilibrium equations 

(a) Oa(vp)+lxp+h2(n,p)=O, 0 < a < A  

(b) u(0)p(0) = nm(p)+ hi(n, p) (1.3) 

(c) p(a)  =0, a >I A 



Equilibria in structured populations 17 

where n ~ R is a real, m is a linear functional and the hi are of order greater 
than one at p = 0. The question is: for what values of  the inherent birth modulus 
n do there exist stable positive solutions of (1.3)? 

By the change of variables a ~ 5o (1/v(s))  ds, p-~ vp one could achieve v =- 1. 
I prefer however to retain the general form (1.3) and the explicit appearance of 
v in the results below. 

A frequently occurring case is when ~,/3 have the form 

I/ = pD(p),  fl = pF(p) da (1.4) 

where /9, F are per unit growth and fertility coefficients respectively. We will 
pay close attention to this important special case. 

There are many papers which deal with the existence and stability of equilibria 
for the case (1.4) with v-= 1 using a variety of  techniques and requiring various 
restrictions on D or F such as boundedness, monotonicity, Lipschitz or differen- 
tiability conditions or special types of dependencies on p (e.g. see [10, 11, 14, 
16, 24, 25, 30-32, 34, 35, 39, 40, 47]). By contrast our most general results require 
only continuity assumptions in (1.3). Moreover they considerably generalize and 
extend the results for this special case obtained in [5, 6] using bifurcation tech- 
niques. 

After a development of the necessary linear theory in Sect. 2 it will be shown 
in Sect. 3 that the equilibrium equations (1.3) under only continuity conditions 
possess an unbounded continuum of nontrivial equilibrium pairs (n, p) which 
bifurcates from a unique trivial pair (no, 0) (when m is normalized then no = 1) 
which at least near this bifurcation point consists of positive pairs, i.e. p(a) > 0 
for 0<~ a < A. In Sect. 4 it will be seen that in general this continuum may not 
globally consist of positive equilibrium pairs, although for the important special 
case when ~ = pD this is shown to be true. Furthermore the trivial equilibrium 
p -= 0 will be shown in Sect. 5 to lose stability as n increases through no = 1 while 
the bifurcating positive equilibria are stable in the event of supercritical bifurca- 
tion and unstable in the event of subcritical bifurcation. In general stability, when 
it occurs, may not persist globally along the continuum however [4]. 

Some results concerning the "spectrum" of  n values associated with the 
continuum of  positive equilibrium pairs are derived in Sect. 6 using a certain 
invariant. In Sect. 7 the important special case when ~ and/3 depend upon an 
arbitrary linear functional of  density is studied in more detail and results concern- 
ing the spectrum, uniqueness and nonuniqueness are obtained. It is shown how 
the simple graphing of  a certain real valued function yields a bifurcation diagram 
from which specific information concerning the spectrum and the boundedness 
and uniqueness of  positive equilibria can be obtained. Some illustrative examples 
and applications are given in Sect. 8 in which detailed bifurcation results are 
obtained for many types of models found in the literature. 

2. Linear equations 

Let Co(A) be the Banach space of continuous functions v: [0, A] ~ R under the 
usual sup-norm [V[o and let L(A) be the space of Lebesgue integrable functions 
on [0, A]. Let A(A) denote the set of pairs (/z, v) where v c Co(A) is positive and 
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/~:[0, A) o R is continuous and where v(0) = 1, 

Io M(A- ) = +co where M(a):= Ox(s)/v(s)) ds. 

Let V(a) := I2 (1/v(s)) ds and vm := rain v > O. Define the continuous function 

Iv--~exp(-M(a)) ,O<~a<A 
po(a) := (2.1) 

lO, A<~a. 
The linear space B = B(/x, v) of  functions p = p(a), continuous on R + = [0, +oo) 
and satisfying p(a) = 0 for a ~> A, for which p(a)/po(a) is continuous on [0, A] 
is a Banach space under the norm IpL, := [p/polo. Let P = P(/z, v) := R • B(/~, v) 
have the norm I(n,p)[=ln[+[pl,. In later sections the sets B+~-B+(tz, v):= 
{p6B[p>O on [0, A)} and a+(A) :={ (~ ,v )~a (a )L~0  on [0, a)} will be 

needed, Note that Po ~ B +. Consider the linear nonhomogeneous equations 

(a) Oa(vp)+l~p=g2, 0 < a < A  
(2.2) 

(b) p ( 0 ) =  nm(p)+gl 
for n e R and g := (gl, g2) e P under the hypothesis 

(i,,v)c A(A) and m:B(tz, v)-~ Rislinearandbounded. (2.3) 

By a solution of  (2.2) in B is meant a function p c B for which vp is differentiable 
for 0 < a < A and the Eqs. (2.2) hold. The homogeneous version of (2.2) 

(a) Oa(vp)+tzp=O, 0 < a < A  
(2.4) 

(b) p ( 0 ) = n m ( p )  

has the solution p = Po in B as given by (2.1) if nm(po) = 1. 
The general solution in B of Eq. (2.2a) is 

p(a)= tpo(a)[ k + Io (g2(s)/po(S)V(s)) ds] , 
L0, 

O~a<A 

A~a 
(2.5) 

for arbitrary k ~ R. Equation (2.2b) is satisfied if and only if k satisfies the equation 

(1-nm(po))k=g2(g):=g,+nm(po(a) (g2/pov) ds), (2.6) 

The linear functional J2: P ~ R is easily seen to be bounded under (2.3) for each 
fixed n 6 R. 

I f  nm(p0) # 1 then k = g2(g)/(1 - nm(po)) substituted into the RHS of ('2.5) 
yields a solution operator S: P ~ B where p - S(g) is the unique solution of (2.2) 
in B. It is easy to see that S is linear and bounded. 

I f  nm(po)= 1 then (2.2) is solvable for k if and only i f / 2 ( g )  = 0, i.e. g ~ Po 
where Po = Po(p~, v) is the Banach subspace of g ~ P satisfying g2(g)= 0. When 
g ~ Po then (2.2) has a unique solution in Bo = Bo(tZ, v), the Banach subspace of  
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those p ~ B satisfying S a PPo da = 0, which is given by (2.5) with 

I/ I / /  /fo k = -  p2(a) g2(s) po(S)V(S) dsda p2(a) da. 

This k, when substituted into the RHS of (2.5), yields a solution operator 
So: Po ~ Bo where p = Sog is the unique solution of  (2.2) in Bo. The operator So 
is linear and bounded. 

Lemma. Assume (2.3). I f  the homogeneous system (2.4) has no nontrivial solutions 
in B(tz, v) (i.e. i f  nm(po) # 1) then the nonhomogeneous system (2.2) has a unique 
solution p = Sg in B for every g ~ P(t-~, v) where the operator S: P ~ B is linear and 
compact. On the other hand if  (2.4) has nontivial solutions in B ( i.e. if  nm(po) = 1) 
then (2.2) has a solution in B if and only if g ~ Po(tZ, v) in which case there is a 
unique solution p = Sog in Bo(IZ, v) where So: Po ~ So is linear and compact. 

Proof. All that remains to be shown is that the bounded linear operators S, So 
are compact. Let gJ c P be a bounded sequence IgJl ~< 1 and denote pJ --- Sg j. Then 
the sequence pJ is bounded in B. We wish to show that there is a subsequence 
convergent in B. Since S is bounded it follows that the sequence of  functions 
z J:---PJ/Po, continuous on [0, A], is uniformly bounded with respect to the 
sup-norm I'[o. Furthermore, a calculation shows that aaz j =  gJ2/pov and since 
gJ2 ~ B it follows that z j is continuously differentiable. The sequence of derivatives 
is uniformly bounded since 10azJlo ~< Ig~l./vm <-IgJl/v.,<- 1/vm and hence the 
Ascoli-Arzela theorem yields a subsequence which converges with respect to the 
sup-norm to a limit function 2 which is continuous on [0, A]. Define 13 := 2po and 
relabel, if necessary, the convergent subsequence as z J. Then Ip j - 13]~ = ]z j - 21o ~ 0. 

A similar proof  works for So. 

3. Bifurcating branches of nontrivial equilibria 

By an equilibrium pair (n, p) of (1.2) is meant a pair (n, p) ~ P for which vp is 
differentiable on (0, A) and the equilibrium equations (1.3) are satisfied with the 
value n. A positive equilibrium pair is an equilibrium pair in P + =  P+(/~, v):= 
R x B+(tz, v) and a nontrivial pair is one for which p H 0. 

In addition to (2.3) it will be assumed that m(po) # O. The linear term m can 
be referred to as the inherent (normalized) birth law in that it describes births 
in the absence of  density effects. This assumption means that this inherent birth 
law is not zero, at least at density po, i.e. that births do occur when density effects 
on birth processes are absent. In most applications m is a positive functional, 
i.e. r e ( p ) > 0  for p~>0 (H0) ,  in which case this condition holds. By rescaling n 
and a if necessary we can assume without loss in generality that 

m(po) = 1 and v(0) = 1. (3.1) 

With regard to the higher order terms hi in the equilibrium equations (1.3) 
the following hypotheses will be assumed throughout. 

HI. 6 = t z p + h 2 ( n , p ) ,  f l = n m ( p ) + h l ( n , p )  where v, tz and m satisfy (2.3) and 
(3.1) and where hi: P(l~, v ) ~ R ,  h2: P(Iz, v ) ~ B ( # ,  v) are continuous, take 
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bounded sets to bounded sets and are of order o(]pl,) near p - - 0  uniformly on 
bounded n c R sets. 

Under HI, (n, 0) is an equilibrium pair for all n e R. We will also need 

1-12. In hypothesis HI the hi are q/> 2 times continuously Fr6chet differentiable 
near (n, p) = (1, 0). 

it is well known in bifurcation theory that the only possible bifurcation points 
(n, 0) of the equilibrium equations (1.3) are those for which n yields a linearized 
problem (2.4) which has a nontrivial solution. The linear theory of Sect. 2 shows 
that the only possible such bifurcation point is (1, 0). The following theorem 
asserts that bifurcation indeed occurs at (1, 0). 

Let E denote the set of nontrivial equilibrium pairs of (1.3) and let cl(E) 
denote its closure in P. A subcontinuum of cl(E) is a subset which is closed and 
connected in P. 

Theorem 1 (Existence). (i) Assume H1. Then c l (E)= E U {(1, 0)} contains two 
unbounded subcontinua C + and C- ,  (1, 0)~ C • which in a sufficiently small 
neighbourhood of  (1, 0) consist,for e > 0 and e < 0 respectively, of equilibrium pairs 
of  the form 

p = p ( e ) = e p o + e w ( e ) ,  n = n ( e ) = l + 7 ( e ) ,  0 ~ < H < e o  (3.2) 

for some eo> 0 where w ~ Bo, Iwl, = 0(lel) a n d  = 0(lel) near e = O. 
(ii) Assume H2. Then w: (-eo,  eo)~ Bo, y: (-Co, e o ) ~ R  are q ~ l  times con- 

tinuously differentiable and 

( L  �9 / )  T,:=a~T(0.)=�89 po(a) a2 h2(1, O)(po, po) pot)as -�89 O)(Oo, po). 

(3.3) 

In the formula (3.3), 0~hi(1, 0)(.,  �9 ) denotes the second order Fr6chet deriva- 
tive of hi(n, p) with respect to p at (n, p) = (1, 0). The proof  of this theorem is 
given in the Appendix. 

Remarks. (1) If  the hi are not globally defined on P but satisfy H1 only on a 
bounded domain D c  p containing (1, 0) then both C § and C-  in Theorem 1, 
rather than being unbounded in P, instead meet the boundary of D [33]. 

(2) Theorem 1 does not exclude the possible existence of other nontrivial 
equilibrium pairs which do not lie on a continuum bifurcating from (1, 0). For 
an example see [5]. 

(3) The number Yl, when nonzero, determines the direction of  bifurcation as 
e increases through 0 in that Yl > 0 (resp. <0) implies that n = n(e) is increasing 
(resp. decreasing) near e = 0. 

(4) If  3, /3 have the form (1.4) and D ( p ) = l z p + d ( p ) ,  f = d p + r ( p ) ,  where 
(b ~ L(A) ,  S~ t 4'po da --- 1 and where d: B ~  Co(A), r: B ~  L(A)  are continuous, 
then H1 holds with h2 = pd(p),  hi = n sA pr(p) da. Theorem l(ii) applies when 
d and r have two or more continuous derivatives near p ~ 0. A careful reading 
of  the proof  shows however that in this case Theorem l(ii) remains valid if d 
and r are only once continuously ditierentiable near p ---- 0. 
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Theorem 1 shows that under very general conditions the equations (1.2) for 
structured populat ion growth always possess a "global"  continuum of  nontrivial 
equilibria which bifurcates from a unique value of the inherent birth modulus n. 
Next we consider the important problems of the positivity and stability of  the 
equilibria from the continua in Theorem 1. 

4. Positive equilibrium pairs 

It is not difficult to see from the definition of the norm [. [~ that any p ~ B close 
to Po is positive on [0, A). In fact [Po-P[ ,  = [ 1 - p / p o ] o < l  implies p ( a ) > 0  on 
[0, A). Thus the nontrivial equilibrium pairs (n, p ) e  C + are positive for e > 0  
small enough. (Similarly those on C -  are negative.) The continuum C § exists 
globally and it is natural to ask whether all nontrivial equilibrium pairs from C § 
are positive. That the answer to this question is in general "no"  can be seen from 
the following example. 

Example. Take v ~  1, A =  1 and /~= 1 / ( l - a ) .  Let m(p)=p(O),  hl=-nKp2(O), 
0 < K e R, and h2 = (1 - a)I2(1)I(a) where I (a)  = So p(s)/(1 - s) ds. Then po(a) = 
1 -  a and 1-12 holds (for any integer q). Theorem 1 implies that an unbounded 
continuum C § of equilibrium pairs solving (1.3) and containing (1, 0) exists 
which near (1, 0) consists of  positive equilibria. This example can however be 
solved explicitly. 

Substitute I e R for I (1)  and set z = p / ( 1 - a ) .  A differentiation of  (1.3a) by 
a yields the equation z"+I2z=O. Since z ( 0 ) = p ( 0 ) ,  0az(0)=0 it follows that 
z = p(0) cos Ia or p = p(0)(1 - a) cos Ia. But (1.3b) in this example implies p(0) = 
( n - 1 ) / n K  so that p ( a ) = ( n - 1 ) ( 1 - a ) ( n K ) - ~ c o s  Ia. This is a solution of the 
equilibrium equations (1.3) if and only if I ( 1 ) = / ,  i.e. if and only if 0 <  I ~  R 
solves the equation (n - 1) sin I = nK[ 2. A straightforward graphical investigation 
of this equation shows that there exists a smallest solution I = I (n)  > 0 for all 
n > 1 with the following properties: 

I(n) is strictly increasing, / (1)  = 0, 1(+oo) = lo < +m. (4.1) 

Moreover Io > ~-/2 if  and only if 

K < (2/rr) 2 (4.2) 

and in fact I ( n ) =  rr/2 if n = n ' :=  1 / ( 1 - K ( c r / 2 ) 2 ) >  1. 
In summary  the equilibrium equations in this example have the equilibrium 

pairs (n, p) e B given by p(a) = (n - 1)(1 - a)(nK) -q cos l (n)a,  1 < n, where I (n)  
satisfies (4.1) with Io>  ~-/2 when K satisfies (4.2). This set of  equilibrium pairs 
is C + in Theorem 1. But note that while (n, p) is positive for 1 < n < n', p(a) 
assumes negative values on [0, A) for n > n'. 

Although the global positivity of  the unbounded continuum C § cannot in 
general be guaranteed there is an important special case when it can, namely the 
case when the growth rate 6 in (1.2) has the form 6 = pD(p). The reason for this 
is that in this case all nontrivial solutions of  (1.3a) are then necessarily of  one sign. 
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Theorem 2 (Positivity). Assume HI. (i) The equilibrium pairs from C + lying 
sufficiently close to (1, 0) are positive. 

(ii) I f  h2 = pd(n, p) where d: P ~ Co(A) in H1, then all nontrivial equilibrium 
pairs from C + are positive, i.e. C + = C++u {(1, 0)}, C~_c P+. 

Proof. We need only prove (ii). Let C+ + c p+ denote the subset of  all positive 
equilibrium pairs on C § and let C+_ " denote the subset of  all negative pairs. Any 
solution of  (1.3a) must satisfy 

(Io / )  p(a)=p(O)po(a)exp - d(p ,n)  vds , O<~a<~A 

and consequently any nontrivial solution has one sign on [0, A). It follows that 
the only pairs lying in cl(C +) or in el(C +) which do not also lie in C + or in C + 
respectively are trivial. But the only trivial pair in C + is (1, O) and by Theorem 
1 it lies in cl(C~_) and not in cl(C+_). It  follows that cl(C-~)=C+u{(1,  O)}, 
cl(C+_) = C + _ and hence cl(C++) c7 cl(C+_) = O.  But clearly C + being closed implies 
cl(C~) u cl(C+_) c_ C § On the other hand if (n, p) ~ C § then either p -= 0 or p has 
one sign so that either (n, p) = (1, 0) or (n,/9) lies in C~ u C+_, i.e. (n, p) ~ cl(C~_) u 
C+_. Thus C §  cl(C +) u cl(C+_). But C § is connected and cannot be written as 
the union of disjoint, nonempty closed sets. Since cl(C~_) contains (1, 0), it follows 
that cl(C+_) = O and C + = cl(C +) = C~u{(1 ,0 )} .  

5. Stability 

In this section the stability of  the equilibrium pairs near the bifurcation point 
(1, 0) will be investigated by means of the familiar principle of  linearized stability. 
Solutions of  the equations linearized at (n, p) of  the form y(a) exp(zt),  0 ~s y ~ B 
and z = complex, will be sought. I f  such a solution exists for a z with Re z > 0 
then p will be called unstable while if no such solution exists with Re z i> 0 then 
p will be called stable. See [32, 46] for a general treatment of  this method for 
some equations of  type (1.2). 

I f  Eqs. (1.2) with 6 = I~p + h2(n, p), fl = nm(p) + hi(n, p) are linearized at a 
positive equilibrium pair (n(e),  p(e)) ~ C + from Theorem 1 and p = y(a)  exp(zt) 
is substituted into the result, the linear equations 

Oa(vy) + (Ix + z)y + h~(e)(y) = 0 
(5.1) 

y(O) = n(e)m(y)  + h~(e)(y) 

for 0 # y ~ B are obtained where 

hl(e)(y) := Ooh,(n(e), p(e))(y) .  (5.2) 

A linearization at a trivial pair (n, 0) results in the equations 

Oa(vy) + (l~ + z)y=O 

y(O) = nm(y). (5.3) 

We are interested in those complex z for which (5.1) and (5.3) have nontrivial 
solutions 0 ~ y ~ B. 
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Consider first Eqs. (5.3) associated with the trivial pair (n, 0). By the theory 
in Sect. 2, (5.3) has a nontrivial solution if and only if z solves the characteristic 
equation 

nc(z) = 1 where c(z) := m(po(a) e-ZV(a~). (5.4) 

By (3.1), c(0) = 1 and if 

H3. m(po(a) V(a)) > O. 

holds then a simple application of the implicit function theorem implies the 
existence of a unique (real) solution z = z ( n ) ,  z (1 )=0 ,  of  (5.4) for I n - l l  
sufficiently small. An implicit differentiation of  nc(z(n))= 1 shows O,z(0)= 
1/m(poV) > 0 and 

z(n) > 0 when n > 1, z(n) < 0 when n < 1 for n - 1. (5.5) 

Thus p -= 0 is unstable for n > 1 and n - 1. Also p -= 0 is stable for n < 1 and n - 1 
provided the existence of  any other roots satisfying Re z I> 0 (i.e. other than those 
on the branch z(n) near z = 0 )  can be ruled out. As we shall see below this will 
require a further hypothesis on m. 

The next Lemma shows that H3 similarly guarantees the existence of  a locally 
unique branch of  eigenvalues z = z(e) of the linearization (5.1)-(5.2) associated 
with the nontrivial solutions (n (e ) ,p (e ) )  near z = 0  for [e I small. In the age 
structure case v--- 1 under  (1.4) the number  m(poV) is sometimes referred to as 
the "mean  age of reproduct ion" [20] and H3 is the reasonable assumption that 
this mean is positive. The next Lemma also shows how this hypothesis allows us 
to obtain a relationship between stability and the direction of bifurcation as 
determined by the constant yl in Theorem 1. 

Lemma. Assume H2 and H3. There exist positive reals r > O, g > 0 such that for 
[e I< ~ there exists a unique "eigenvalue" z satisfying [z[ < r for which the equations 
(5.1)-(5.2) have a nontrivial "eigensolution" y ~ B. This eigenpair has the form 
z = z ( e ) ,  y = p o + u ( e )  where z: (-~,  g ) ~  R, u: (-~,  g )~  Bo are q - 1  times con- 
tinuously differentiable and z(O) = O, u(O) = O. Moreover 

Zl := O~z( O ) = - y l /  m(po( a ) V( a ) ). (5.6) 

The proof  of  this Lemma appears in the Appendix. 

Remark. As observed in Remark (4) of  Sect. 3 in the case (1.4) only one continuous 
derivative of  d and r are needed near p---- 0 for this Lemma (instead of  two or 
more as implied by H2). 

Similar to (5.5) for the trivial equilibria we have from this Lemma that 

z ( e ) > 0  w h e n y ~ < 0 ,  z ( e ) < 0  w h e n y l > 0  f o r e - 0 ,  e > 0 .  

The positive equilibrium p(e) is consequently unstable when y~<0  and e is 
small. Also p(e) is stable when yl > 0 and e is small provided once again the 
existence of  eigenvalues z satisfying Re z ~> 0 other than those near z = 0 in the 
Lemma can be ruled out. For this purpose we assume 

H4. 1 ~ cl{c(z)lRe z >! O, [z[ i> ~'} for all ~" c R, ~" > 0. 
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Theorem 3 (Stability). Assume H2, H3 and Yl ~ O. 
(i) For n > l ,  n ~ l  the trivial equilibrium p=-O is unstable. I f  the positive 

equilibria in Theorem 1 bifurcate subcritically (i.e. Yl < O) then they are unstable 
f o r e ~ O ,  e > 0 ( i . e ,  f o r n < l , n ~ l ) .  

(ii) Assume in addition that H4 holds. Then for n < 1, n ~ 1 the trivial equilibrium 
p =- 0 is stable. I f  the positive equilibria in Theorem 1 bifurcate supercritically (i.e. 
3/1 > O) then they are stable for e ~ O, e > 0 (i.e. for n > 1, n ~ 1). 

The proof  appears in the Appendix. 

Remark. Again only one continuous derivative is needed for r and d in the case 
(1.4) (instead of two or more as implied by H2). 

In most applications the linear functional m has an integral form 

re(p) = 4~(a)p(a) da, 0 ~ ~ ~ L(A) .  (5.7) 

The condition (3.1) is satisfied in this case if 

For this case 

f ao d~(a)po(a) da = 1. (5.8) 

c(z)  = (a(a)po(a) e -zv(a~ da 

satisfies [c(z)[ < 1 for Re z >  0 and e(iO) r 1, 0 ~ 0, by (5.8). These facts together 
with [c(z) [~0 as I z [ ~ + ~ ,  Re z~>0 (which can be shown with the help of  the 
Riemann-Lebesque theorem) show that H4 always holds forfunctionals m given 
by (5.7). 

In fact for the case (5.7) the stability and instability assertions for the trivial 
equilibrium in Theorem 3 when n is near 1 can be shown to hold globally, i.e. 
p---0 is stable for all n < 1 and unstable for all n > 1. Indeed, for n > 1 the 
expression nc(z) for real z is strictly monotonically decreasing in z from the 
value n at z = 0 to 0 at z = +oo and hence must equal 1 for some positive real z, 
i.e. the characteristic equation (5.4) has a positive real root whenever n > 1. On 
the other hand, when n < 1, [ne(z)] ~ n < 1 for Re z/> 0 and (5.4) can have no 
roots with Re z/> 0 for any n < 1. 

Theorem 3 shows that the number Yl given by (3.3) is important in determining 
the stability of  the positive bifurcating equilibria, at least near the bifurcation 
point (1, 0). Formula (3.3) relates the stability properties near bifurcation to the 
second order derivatives of  the nonlinearities in the equilibrium equations (1.3). 
In the important  case when the vital rates 8 and fl have the form (1.4) given by 
per unit rates D and F = nf  the formula (3.3) for Yl reduces to 

Io" Io Io Yl = &(a)po(a) OoD(O)(po)/V ds da - po(a)Oj(O)(po) da. 

Here m has the form (5.7) with ~b = f (0 )  and /z  = D(0). This is the formula given 
in [5] when v-= 1. It shows how the direction of bifurcation and hence stability 
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properties of  the positive bifurcating equilibria depend on the (lowest order) 
density effects on the per unit vital rates D and f as measured by the Fr6chet 
derivatives at p ~ 0. 

6. The spectrum of C+ + 

By Theorem 1 either the spectrum 

cr={neRl(n,p)eC~ for some p ~ B} 

associated with the positive equilibrium pairs from the continuum C + is 
unbounded or the set of  positive equilibria 

E={P�9 + for s o m e n e ~ r }  

is unbounded or both. The closure el(o-) of ~ is a closed interval of  reals which 
we denote by cl(o') = [o-i, o's]. Since (1, 0) e C +, o'i ~< 1 ~< o7 

In this section some results concerning o-i and o-s will be obtained for the 
case (1.4). Specifically we assume 

H5. 3, ~ satisfy H1 and have the form (1.4) with D(p)=/~+d(p) where d: B ~  
Co(A) is continuous with d ( 0 ) =  0 and F =  nf where f(p)= ok+ r(p), q$ e L(A), 
r: B ~ L(A) is continuous with r (0 )=  0. 

Theorems l(i) and 2(ii) imply the existence of an unbounded continuum of 
equilibrium pairs C +. Equation (1.3a) implies for (n, p) e C + that 

p(a) =p(O)po(a)exp(-I; d(p)/vds), p(0) > 0 

while (1.3b) in turns implies that 

1 = nN(p) (6.1) 

where 

N(p):= f ; f (p)po(a)exp(-I f  d(p) /vds)  da. (6.2) 

Thus nN(p) is an invariant along C +. The identity (6.1), which in fact holds for 
any nontrivial equilibrium pair, expresses the fact that the birth processes yield 
exact replacement when the population is held at equilibrium. 

The identity (6.1) implies h e 0  for n e a r  and hence ~ri~>0. In general the 
endpoints o-i, o-s can assume any values in the range 

Properties of  N as a functional of  p (which depend on the properties of  the 
vital rates D and f as operators acting on p) together with (6.1) can be used to 
obtain information about the spectral interval. Define 

N~ := inf~ N(p), Ns := sup~ N(p). 

Since n > 0 for n e o- and since N(0)  = 1 by (3.1) it follows that 

O~ N ~  1~  N ~ + o o .  
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I f  p J ~ X  is a sequence for which N ( p J ) ~ N i  then from (6.1) it follows that 
n j ~ 1 / Ni ( + ~  if N~ = 0) where n j ~ o- is such that (n j, p~) ~ C-~. Thus 1 / N~ <~ try. 
On the other hand if n j ~ o- is a sequence for which n j ~ o'~ then N (p j) ~ 1~o's ( +oo 
if trs = 0) and hence 1/o'~ >/N~. As a result we conclude that o-s = 1/N~. Similarly 
it can be shown that o-~ = 1 / N , .  

Theorem 4. Assume  H5. Then 0 <~ cr~ = 1/N~ <~ 1 ~ trs = 1 /N i  <~ + ~ .  

In most model equations the coefficient D is nonnegative, i.e. 8 is purely a 
death rate. Also f, representing a per unit fertility coefficient, is also usually 
nonnegative. A common modeling assumption is that the effects of  population 
density cannot increase fertility nor decrease the death rate: 

O<~f(p)<~f(O), O < ~ = D ( O ) < ~ D ( p )  o n [ O , A ] f o r p ~ B  § (6.3) 

Then 0 ~  < N ( p )  <~ N(O) = 1, p ~ B § which implies N~ <~ 1. Theorem 4 then implies 
or, = 1 which means the spectral interval for C++ has the form o- = (1, o-~], tr~ <~ +oo. 
In particular, supercritical stable bifurcation always occurs in this case. 

It is also often assumed that either the fertility coefficient f drops to 0 or that 
the death rate D (or equivalently d) increases without bound with unbounded 
increases in density. In these cases it can usually be shown that N ( p )  decreases 
to 0 as density increases without bound;  hence N~=0 and t r ~ = + ~  by 
Theorem 4. 

Thus for models with the types of density dependent properties described 
above it is usually the case that the spectral interval for the branch of positive 
equilibrium pairs C~ is cr = (1, + ~ ) ,  i.e. at least one positive equilibrium exists 
for each n > 1 and those pairs (n, p) near (1, 0) are stable. One cannot necessarily 
assert however that no other positive equilibria exist, or even that the branch 
equilibria are unique for a given n > 1, nor that stability persists globally along 
the branch. 

More detailed information about the spectrum and the question of uniqueness 
can be obtained from Theorem 4 when the density dependence in the vital rates 
~, fl is through a dependence on a common linear functional of  density. This 
important special case is considered in the next section. 

Remark.  Theorem 4 remains valid in the more general case when 

fl = l (p f (p )  ) (6.4) 

provided l is a bounded linear functional on a suitable Banach space so that/3 
satisfies H1. The comments following Theorem 4 also hold if l is monotone. An 
example is the case when fertility is concentrated in one class of  type a = T and 
/3 = npf(p)l~=-c in which case l(p) = p( T).  

7. Models utilizing linear functionals of density 

For n ~ or there exists at least one positive solution of the equilibrium equations 
(1.3). The invariance principle (6.1) can often be used to prove uniqueness. For 
example, if N ( p )  has the property that N(p~)  = N(p2), pi ~ B +, implies Pl = P2 
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then exactly one positive equilibrium exists in B § for each n ~ o-. This is essentially 
the method of proving uniqueness in many papers in the literature. 

Most models of population growth which appear in the literature assume that 
D and F =  nf  depend on a linear functional of density p. Examples of such 
functionals are total population size S A p(a) da [8, 16, 17, 20, 25, 26, 45], more 
general weighted integrals So a w(a)p(a) da [10, 11, 14, 34, 35, 45, 47] and point 
evaluations p(T) [3, 20, 29, 43]. In this section we study the unbounded branch~ 
of positive equilibrium pairs from Theorem 1 in more detail using the invariance 
principle (6.1) for this important special case. Specifically we assume that 

H6. Hypothesis H5 holds with (Ix, v) ~ A + ( A ), 0 <~ 05 E L( A ) and 
(a) d ( p ) = d ( p ( p ) )  where d: R ~ C o ( A )  is continuous with at(0)=0 and 

tl(x) ~>0 for x~>0 
(b) r(p) = ?(p(p)) where ~: R -~ L(A) is continuous with ?(0) = 0 and ?(x)/> 0 

a.e. for x~>0 
where p: B(/~, v) ~ R is linear and bounded and satisfies p(p) > 0 for p ~ B+(/z, v). 

The normalization (3.1) implies So n 05(a)po(a) da = 1 and hence 05 ~ 0. Thus H6 
implies H3. 

S e t / )  = tt + d, f =  05 + P. Theorems l(i) and 2(ii) can be applied to the equili- 
brium equations 

(a) aa(vp)+ D(p(p ) )p=O 

(b) p(O)=n f (p (p ) )p (a )  da 
(7.1) 

where 

1 = n~l(p(p)) (7.2) 

N(x):= f :  f ( X ) p o e x p ( -  f f  d ( x ) / v d s )  da 

defines a continuous real valued function ~r: R ~ R + which by the normalization 
(3.1) satisfies iV(0)= 1. 

In bifurcation problems diagrams depicting the equilibria as functions of n 
are usually drawn by plotting some measure of the "size" of p, say IPI~,, against 
n. Given the identity (7.2) it is convenient for the equations (7.1) to plot p(p) 
against n. The following Lemma shows that the resulting graph accurately displays 
the uniqueness and boundedness properties of the continuum C +. Note that the 
nonnegativity condition /)~>0 in 1-15 implies that p(a)/po(a) is noninceasing 
and hence that [PI~ = p(0) for positive equilibria. 

Lemma. Assume H6(a). I f  pl, p2 E B satisfy (7.1a) and p(pl) =P(P2) then Pl ~ P2. 
Assume H6. ~, is unbounded if and only if the set 1I = {P(P )IP c ~ } is unbounded. 

Thus the graph G = { ( n, p(p ) )l( n, p) E C +} is an unbounded continuum in R + x R + 
containing (1, 0) for which ( n, p) ~ G/{(1, 0)} implies p > O. 

to obtain an unbounded continuum C + + = C+u{(1,0)} where C + consists of 
positive equilibrium pairs. The identity (6.1) for (n, p) ~ C+ + becomes 
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a A 

Proof Assume p(pl)=p(oz)  and set e ( a ) = e x p ( - ~ o D / v d s )  where / ) =  
1)(p(pl)) = L)(P(Pz)). Then by (7.1a), pi(a)= pi(O)e(a) and hence p~(O)p(e)= 
p2(O)p(e). Since p ( e ) > 0  by H6 it follows that pl(0)=p2(0) and hence 
pl(a) =-- p2(a). 

If H is unbounded then the boundedness of p implies 2 is unbounded. 
Conversely suppose 2; is unbounded. For purposes of contradiction assume II 
is bounded. Pick a sequence pJr ~ for which ]pJ]~ = pJ(0)+ +oo and let p ' =  
lira sup p(pJ) > 0. S i n c e / I  is bounded, p' < +oo and by extracting a subsequence 
if necessary p(pJ)op ' .  Equation (7.1a) implies pJ(a)=pJ(O)po(a)ei(a) where 
eJ=exp( -~od(p (pJ ) ) / vds ) .  Now po(a)eJ(a)~po(a)e'(a)  in B where e ' -  
exp(- Io  d(p ' ) / vds )  and consequently we get p(poe')=limp(poe j )= 
lira p(pJ)/pJ(O) = 0, which contradicts p(poe') > 0 from H6. 

By (7.2) the graph G must lie on the graph G = {(n, x) ~ R + • R+[nN(x) ~ 1}. 
By plotting this planar graph G associated with the real valued function N ( x )  
one can get detailed results concerning the spectrum and the uniqueness of 
positive equilibria. The following theorem contains some simple, but useful results 
obtained in this way. 

Theorem 5. Assume H6 and let C += C + • {(1, 0)} be the unbounded continuum 
of equilibrium pairs from Theorems 1(i) and 2(ii). Let tri, o's be the endpoints of 
the closureof the spectral interval associated with C~_. 

(i) I f  N ( x )  is strictly monotone then the equilibrium equations (7.1) have at 
most one positive equilibrium for any n ~ R. 

(ii) I f  N ( x )  < 1 for x >~ 0 then C + bifurcates supercritically. I f  lQ(x) <~ 1 for all 
x >I 0 then tr~ = 1. 

(iii) I f  N ( x )  > 1 for x ~ 0 then C + bifurcates subcritically and 0 <- tri < 1. I f  
iV(x) is bounded for x>~O then tri> 0. 

(iv) N ( + ~ )  = 0 implies o's = + 00. 
(v) I f  there exist two constants 0 < x a < x 2  ~<+oo such that IQ(x) is strictly 

increasing for 0 < x < xa and strictly decreasing for x~ < x < x2 with N (  x2 - ) = 0 
then (7.1) has exactly two positive equilibria for cr~ < n < 1 where ~ = 1 / N (xa) and 
exactly one positive equilibrium for all n > 1. Moreover C~ bifurcates subcritically 
and p(p)-> x2 as n-->+oo, (n ,p)~  C~. 

These results follow easily from the preceding Lemma, the identity (7.2) and 
the unboundedness of C + (which means either cr~ = +0o or 2; is unbounded).  We 
omit the details except to point out that (v), which is a case of nonuniqueness 
and a possible hysteresis phenomenon, follows from the plot of the graph G as 
shown in Fig. 1. In this case the "lower" subcritically bifurcating branch is 
unstable, at least near n = 1. It is frequently the case in such cases when the 
bifurcating branch "turns back" that the "upper"  branch consists of stable positive 
equilibria, although we have no such stability results here. When this occurs then 
there exist stable positive equilibria for values of the inherent birth modulus n 
less than 1 (representing per unit replacement at low densities) but the population 
is subject to a sudden collapse as n is decreased below the critical value ~r~. This 
hysteresis phenomenon plays an important role in the dynamics of fisheries in 
the form of so-called "depensation" [1]. We give an example in the next section. 
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Fig. 1. The graph G is shown under the assumptions of 
Theorem 5(v) 

x 2 - 

x 1 

1 / N ( x ~ )  1 

In part (v) the graph of ~r(x) has one "hump".  It is graphically clear that 
the same methods show that when N has more humps and depressions then the 
bifurcating branch turns back several times with the result that possibly more 
than two positive equilibria exist for certain values of n ~ or. One expects a change 
of stability properties with each turn. 

Note that the commonly occurring case (6.3) implies by part (ii) that o-i = 1. 
For this case superctitical bifurcation always occurs and in particular the type 
of hysteresis described in (v) cannot occur. 

As in Sect. 6 the results in Theorem 5 can straightforwardly be extended to 
the more general case (6.4). 

8. Some examples and applications 

In this section some applications of Theorems 1-5 will be made to model equations 
which have appeared in the literature and to some generalizations. In these 
examples v-= 1 and 6, fl have the form (1.4) with F - -  nf  In all cases Theorems 
1 and 3 will imply the existence of an unbounded continuum C + + = c +  u {(1, 0)} 
in which C+ + consists of positive equilibrium pairs (n, p) c P+. In all but a single 
exception Theorem 2 will yield local stability or instability near the bifurcation 
point (1, 0). In some examples Theorem 4 will be used to obtain the direction 
of bifurcation and the unboundedness of the spectrum. Examples will be given 
which illustrate all cases of  Theorem 5, as well as the use of the graph t~ in cases 
not covered by Theorem 5. 

L Death rates involving functionals of  density 

(1) Model equations (7.1) with 

/~ =/~(a)  + d(p) ,  f =  ~b(a), p = p da (8.1) 

in which the density dependent contribution d to the per unit death rate /~ is 
A 

independent of a and in which per unit fertility f is not density dependent are 
sometimes referred to as "logistic type" models and have been studied by several 
authors [20, 24, 25, 46]. This assumption on /~ is thought to be appropriate in a 
so-called "harsh environment" in which an increase in the death rate due to 
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density effects has an equal effect on all age classes [20]. Under  the assumptions 

(a) (/x, 1) e A+(A), 0 <~ th e L(A), So A qbpo da = 1, po=exp( -  fo  tZds ) 

(8.2) 
3'(0) = 0  

A 

(b) d(p)=3"(p)with3":RoR, 3'(x) ~>0 for x ~ 0 ,  

Theorem 5 applies with 

N(x)  = 4)(a)po(a) e x p ( - 3 ' ( x ) a )  da. 

Since N(x)  ~ 1 for x 1> 0, Theorem 5(ii) implies o-~ = 1 and hence that supercritical 
bifurcation occurs. I f  in addition OxT(x) is continuous near x = 0 then the bifurcation 
is stable and an exchange of stability occurs at n = 1. In particular, hysteresis of  
the type described in Theorem 5(v) cannot occur. 

The conditions (8.2) are minimal for models of  this type. I f  further assumptions 
are made concerning the dependence of the death rate on total population size 
then Theorem 5 can be used to obtain further results concerning the spectrum. 
For example if 

3'(+00) = +oo (8.3) 

then o-~ = +oo by Theorem 5(iv) and consequently there exists at least one positive 
equilibrium p for each n > 1 with p(p)+ +oo as n ~ +oo. By Theorem 5(i) the 
assumption that 3'(x) is strictly increasing for x>~0 implies that at most one 
positive equilibrium exists for any n. 

When all these requirements are met then there exists exactly one positive 
equilibrium for each n > 1 which is stable at least for n -  1. An example is the 
linear case y(x)  = 3'oX, 3'0 > 0 studied by Marcati [25] (who showed global stability 
in this case). 

The results in Theorem 5 are selected results obtainable from an investigation 
of the graph G. Other results can often be obtain using this graph. For example 
suppose 3': R ~ R in (8.2b) is replaced by 

3': (-Po, Po)+ tL Po > 0  

and (8.3) is replaced by 3 ' ( P o - ) - - + ~ .  Then N(po-)= 0 and the set H c [0, Po) 
in the Lemma of Sect. 7. This implies tr is unbounded,  i.e. o's = + ~ .  Thus in this 
case there exists at least one positive equilibrium p for each n > 1 and p(p)+Po 
as n ~+oo.  

(2) Because the results in Sect. 7 apply for any positive functional p(p), all 
of the assertions in part (1) above for models involving total population size remain 
valid for models involving any such functional of density. For example this is true 
for functionals of  the integral form 

p(p )=Iaw(a)p (a )da ,  O<~w~L(A), w~O. (8.4) 

The weighting function w is often of a specialized form, such as a gamma 
distribution. For examples of  this case see [3, 8, 17, 19, 20, 22, 38]. 
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The results in part (1) also remain valid if 

p(p )=p(T)  f o r a f i x e d T c [ 0 ,  A) (8.5) 

i.e. when the density effects on the death rate are due to the density of a single 
age class T alone. 

(3) By means of  the results in Sect. 7 and Theorem 5 it is not difficult to 
extend the results in (1)-(2) above to models in which the density term d also 
depends on a. For example suppose (8.2b) is replaced by 

d(p )=y(a ,p ) ,  y : [ O , A ] x R ~ R  is continuous 

Then 

y(a, x) ~>0 for x~>O, y(a,  0)-= O. 

fo' ( f o )  N(x)  = r exp - y(s, x) ds da 

and again N(x)  ~ 1 so that supercritical bifurcation occurs. If Oxy(a, x) is con- 
tinuous near x = 0 then this bifurcation is stable. Straightforward extensions of  
the various conditions on y above yield corresponding results for this case. For 
example, if y(a,  x) ~ +0o as x ~ +oe uniformly for a ~ [0, A] then o-s = +o0 and 
positive equilibria exist for all n > 1 and p (p )  ~ +eo as n ~ +oe. 

II. Fertility rates involving functionals of density 

In the examples considered in I the fertility rate f was independent of  density. 
That fertility can be significantly effected by population density is widely docu- 
mented in the biological literature and many mathematical models have been 
proposed and studied with density dependent fertility rates. Suppose that in place 
of (8.1) we consider the more general case of model equilibrium equations (7.1) 
with 

/~ = /x(a )  + d(p) ,  f = f ( p )  (8.6) 

where 

(/x, 1) e A+(A), d = y(a, p), f =  0(a,  p) 

y: [0, A] x R * R is continuous, y(a, x)/> 0 for x~>0, 

~(a ,  0) --- 0 

for x>~O, 

(8.7) 

O(a, "): R ~ L ( A )  iscontinuous, O(a,x)>~O 

r := ~p(a, O) >~O, Cpo da = l. 

Models of  this type with functionals of types (8.4) and (8.5) have been studied 
by many authors [3, 8, 10, 11, 14, 16, 26, 29, 34, 35, 43, 45]. 

Theorem 5 applies to this general class of  models with an arbitrary positive 
linear functional p of density with 

~(x)=f: O(a,x)po(a)exp(-foY(S,x)ds)da. 
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It is rather easy to list simple properties of the vital rates D and f (i.e. of 3' and 
48 as functions of x) which imply the various properties on N required for the 
conclusions in Theorem 5, For example if density effects cannot cause an increase 
in fertility so that qs(a, x)~< ~0(a, 0)= ~b(a) for x~>0, then N(x)<~ 1 and super- 
critical bifurcation occurs. Rather than make such a list, however, we shall 
consider some specific models in order to illustrate the results and techniques of 
Sect. 7. 

Some models with density dependent fertility which have appeared in the 
literature are given by F =/3(p)  with/3(x) given by 

Hoppenstaedt: / 3=k(a ) [1 -x /K]+ ,  K > 0 ,  [x]+~>0 forx~>0, 

[x ]+=0 f o r x < 0  

Chapman: /3=b/c  f o r x = 0  and b ( 1 - e x p ( - x / c ) ) / x  f o r x # 0  

Beverton-Holt: /3= b/(c+xO), 0 <  0<~ 1 

Ricker: /3 = (b/c) exp(1 - x / c )  

Depensation: F =  b(e+ x) / (e+ x 2) 

where all constants b, c and e arepositive. We rewrite these birth or recruitment 
laws in the form /3= nf  where f =  ~0(a, p) has the proper normalization (3.1) 
which in this ease is ~A ~0(0)p0 da = 1. This gives respectively the model equations 
(7.1) with 

/Io' qs=ch(a)[1-x/K]+, th = k(a) kda, n:= kda 

~0=l/po f o r x = 0  and ( e / p o ) ( 1 - e x p ( - x / e ) ) / x  f o r x # 0 ,  n:=bpo/e 

~O=(c/po)/(c+x~ 0<0~<1, n:=bpo/c 

~b = (1/po) exp(1 - x / c ) ,  n := bpo/c 

~O = (c/epo)(e+x)/(e+x2),  n := bepo/e 

where Po = ~A Po da. Assume first for simplicity (as is often done in these models) 
that the death rate is density independent 7 - 0 .  Theorem 5 applies with the 
respective functions 

~ ( x )  = [ 1 - x / K ] +  

N ( x ) = l  f o r x = 0  and c ( 1 - e x p ( - x / c ) ) / x  f o r x r  

~ ( x )  = c/ ( c+ x ~ (8.8) 

7Q(x) = exp(1 - x~ c) 

1V(x) = (e/ e)(e + x) / (c  + x2). 

For the first four models, )Q(x) is strictly decreasing from 1 at x = 0 to 0 as 
x ~ +oQ Thus for the Hoppensteadt, Chapman, Beverton-Holt and Ricker models 
or = (1, +oo) and supereritical bifurcation occurs at n = 1 with exactly one positive 
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equilibrium existing for each n >  1. Moreover, /V(x)-=0 for x~>K in 
Hoppenstaedt ' s  model while N ( x )  > 0 for x > 0 with N(+oo) -- 0 in the remaining 
three. Thus p ( p ) ~ K  as n~+oo in Hoppenstaedt's model while p ( p ) ~  +oo as 
n ~ + ~ in the Chapman, Beverton-Holt and Ricker models. The differentiability 
at x = 0 required in 112 for the local stability results of  Theorem 2 apply except 
in the Bever ton-Hol t  model with 0 < 1 (in which case a vertical bifurcation occurs). 
Thus in all of the first four models (with 0 = 1 in the Beverton-Holt case) the unique 
positive equilibrium is stable for at least n ~ 1. 

For the depensatory model Theorem 5(v) applies because /Q(x) strictly 
increases for 0 < x < xl := - e  + (e 2 + c)~/2 and then strictly decreases for x > Xl 
with N(+oo) = 0. Thus a subcritical unstable bifurcation occurs and two positive 
equilibria exist for o'~ := 1/ N(Xl)  < n < 1 and one positive equilibria exists for each 
n > l .  

The depensatory model with e = 0  appears in [10, 13, 21]. Our results do not 
apply to this case because there is no linear recruitment term (m-= 0). 

It is not difficult to see that all of  the above results remain valid for the first 
four models with density dependent death rates ( y ~ 0 )  if the death rates are 
nondecreasing in p (0xy(a, x)/> 0 in (8.7)). This leads to a modification of 1V in 
(8.8) by a decreasing factor less than one which has the same properties as the 
case 7 -= 0. For example, in Hoppenstaedt ' s  model 1V = 
[1 - x / K ] +  ~'~ r exp ( -~ o  y(s, x) ds) da. For the depensatory model however 
things are more complicated and a death rate density term might destroy the 
properties of  1V in Theorem 5(v) and even cause supercritical bifurcation to occur. 

IlL Some models involving two functionals of  density 

In some recent studies of  cannibalism in which older individuals eat the very 
young members  of  the population (such as larvae or eggs) some models have 
been proposed and studied in which death rates depend on two different func- 
tionals of  density. In the model of  Diekmann et al. [12] fertility is density 
independent while the death rate depends on two weighted integrals of  density, 
one of which p~ measures the effective number  of  cannibals and the other of  
which P2 measures the effective number  of  victims. In this model the per capita 
rates D and F = nf have the form 

f=r  e e L ( A ) ,  Cpoda=l  

D=l.L(a)+c(a)p~(p)y(p2(p)),  (~, 1) e A+(A), 

3': R ~ R is continuously differentiable, y(O) = 1, 

0 <<- c �9 Co(A) 

y(x)>~O for x~>0 

where we take p~: B ~  R as arbitrary linear, bounded functionals which satisfy 
p~(p) > 0 for p e B § (in [12] p~ have the integral form (8.4)). 

Since (6.3) holds we conclude, with the help of  Theorems 1-3, that a super- 
critical stable bifurcation of positive equilibria occurs at n = 1. The time dependent  
oscillations found in [12] indicates that stability in general is not preserved 
globally along the unbounded branch of equilibria. 



34 J.M. Cushing 

Our results in Sect. 3-6 Also permit the same conclusions when the fertility 
rate is density dependent, provided (6.3) holds. 

Other models of a similar sort were studied in [19, 20, 22, 38] in which per 
capita death and fertility rates depend on the two functionals Pl(P)=p(0), 
PE(P) =~A P da and our general results in Sect. 3-6 again permit similar con- 
clusions for such models. 

IV. Models with cohort density dependence 

Not all density dependent models of age structured population dynamics assume 
death and fertility rates depend on linear functionals of density. For example, 
models have been studied in which these vital rates for an age class a depend 
on the density of age class a alone [2, 39, 40]. Our results in Sect. 3-6 apply 
straightforwardly to such models. For example, if D and f are given as in 
(8.6)-(8.7) with the functional p(p) replaced by the density p then the results of 
Sect. 3-6 once again yield an unbounded continuum of positive equilibria pairs 
which bifurcates supercritically and hence stably. 

V. Some other models 

A very general and flexible modeling assumption is that the per capita vital rates 
depend on density through integrals of the form ~a w(a, s)p(s)ds. Here the 
weighting kernel w(a, s)>t0 describes how the age class a is ettected by the 
density of age class s. If  w is multiplicafively separable then one has a model 
depending on a functional of density as in Sect. 7 and parts ( I - I I I )  above. There 
are models in the literature for which this is not the case however (e.g. see [3, 21]). 

As a specific example consider the model of Hoppenstaedt [21] in which 
fertility F = nf has the form 

f=ga(a)[1-I:w(a,s)p(s)ds]+, 

w: [0, A] x[0,  A ] ~  R + 

0 <~ ~5 ~ L(A), chpo da = 1 
(8.9) 

is continuous, w ~ 0. 

Let D =/z  + d(p), (Iz, 1) ~ A+(A) satisfy H5 and (6.3). The unbounded continuum 
of positive equilibrium pairs bifurcates supercritically and hence stably. Moreover 
for p E ~, p(a) = p(O)oo(a) exp( -~o d(p) ds) and hence IPL, = p(0) > 0 and 

O< N(P)= I :  ~(a)[1-IPl. I :  wpoexp(- I f  d(p) ds) ]+Po 

�9 e x p ( - I f d ( p )  ds ) da<l. 

If ,X is bounded then tr must be unbounded. On the other hand i f 2  is unbounded 
it is clear that Ni = 0 and by Theorem 4 that cr~ = +oo. Thus in either case 

= (1, +oo). As a result at least one positive equilibrium exists for every n > 1. 
Models have also been studied in which fertility is restricted to a single age 

class a = T (e.g. see [3]). Formally such models substitute a Dirac function ~T(a) 
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at a = T for 4~(a) or in other words have the form (6.4) where the linear 
functional I is given by l(p) = p(T).  If this is done in Hoppenstaedt 's model (8.9) 
for example Theorems 1-4 still apply and yield the same conclusions as above. 
One can also formally substitute Dirac functions for the weighting kernel w and 
arrive at the same results. For example in [3] weight kernels 6T(a) and 6a(s) 
were used. 

9. Concluding remarks 

A common scenario for models of population growth when the dynamics are 
studied as a function of a selected parameter (usually an inherent net growth 
modulus of some kind) is that for parameter values less than a critical value the 
population is subject to extinction while for values greater than the critical value 
stable positive equilibrium states exist. Stability may not persist however under 
further increases of the parameter and Hopf-type bifurcations to time periodic 
limit cycles may occur. It is possible that further increases can lead to repeated 
"cascading" bifurcations and even to "chaos" in the now familiar manner 
exhibited by well studied difference equations. Virtually all model equations of 
population gorwth which appear in the literature can be derived from the funda- 
mental equations (1.2) by making suitable simplifying assumptions on ~,/3 and 
appropriate mathematical manipula t ions . . ,  be they ordinary or functional or 
delay or integro- differential equations, integral equations or even (by discretation) 
difference and Lesli matrix-type equations. Given these facts, it is natural to ask 
to what extent the above described bifurcation scenario is valid for the general 
system (1.2). 

In this paper we have shown that under very general conditions the primary 
bifurcation of  positive equilibria in this scenario always occurs in the general 
model (1.2), i.e. a global continuum of equilibria bifurcates from the zero density 
at the unique (normalized) critical value n = 1 of the net birth modulus n. This 
continuum consists of a branch of positive equilibria near bifurcation and in the 
important special case of vital rates (1.4) expressed in terms of per unit rates the 
continuum remains globally positive. It was shown that the zero density loses 
stability as n increases through n = 1 and that under suitable local differentiability 
conditions near the bifurcation point the positive branch equilibria are stable if 
and only if the bifurcation is supercritical, at least near bifurcation. (Stability 
may not persist globally; Hopf-type bifurcation to time periodic solutions of the 
general equation (1.2) was studied in [4].) 

The spectrum of n values corresponding to positive branch equilibria was 
also studied and characterized in a certain way in terms of the density dependence 
properties of the per capita vital rates. The important special case of models 
depending on functionals of densities was studied in more detail and it was 
shown how a bifurcation diagram can be easily drawn using a certain real valued 
function derived from an invariant which holds on the continuum. These results 
have widespread applicability to models of population growth as demonstrated 
by the examples given in Sect. 8. 

The stability and global existence results obtained in this paper can be 
extended to systems of equations of the form (1.2) to include models of interacting 
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populations. This will be the subject of a future paper. Some results for non- 
autonomous, but time periodic equations and the bifurcation of positive periodic 
solutions have been obtained in [7]. 

Appendix 

Proof of Theorem 1. (i) Writing the equilibrit~m equations (1.3) as (recall v(0) = 1) 

~o(vp)+#p = g2(x, p) 

p(O) = �89 + Am'(~a) + gl(x, p) 

where h = n -3 ,  g2 := -h2(Z +1, p) and g~ := hl(h +�89 p) and using the solution operator S from the 
Lemma of Sect. 2 with n= �89  we see that (n ,p )~P  is an equilibrium pair if and only if 
(Z, p) c P solves the operator equation 

p= ALp+ G(A, p) (A.I) 

where Lp := Sin'(p), m'(p) := (re(p), O) ~ P and G := Sg, g := (gl(h, p), g2(A, p)). By H1, L: B ~ B is 
linear and compact,  G: P -  B is continuous and compact and IGI~ =o(Ipl~) near p = 0  uniformly 
on bounded n intervals. As pointed out in Sect. 3 the only possible trivial equilibrium pair (n, 0) 
which can lie in el(E) is (1, 0). As a result either el(E) = E or E w {(1, 0)}. That  the latter holds as 
well as the rest of  the assertions in (i) will follow from the results for equations of the form (A.I) in 
[33] (specifically Lemma 1.24 and Corollary 1.42) once we have shown that h =3 is the only 
characteristic value of L and that it is simple. 

The equation p = ALp, 03  p ~ B, is equivalent to the linear homogeneous  system (2.4) and 
consequently the only characteristic value is h = �89 to which there is associated exactly one independent  
eigensolution p = Po- To show that h = �89 is simple we must  show that any solution of ( I -  �89 = 0 
is a solution of  (I -�89 = 0. Suppose p E B satisfies the former equation. Then p' = (I -1L)p satisfies 
the latter equation and hence p'  = kpo = (k/2)Lpo for some k e R. This means  p = �89 + kpo ) which 
by the definition of  L is equivalent to p e B solving the nonhomogeneous  equations (2.2) with n = 1 
and g = (g~, g2) = (k/2, 0). By the Lemma of Sect. 2 it follows that 0 = O(g)  = k/2. Thus k = 0 which 
implies that 0 =  (I- �89 and that ~t =�89 is simple. 

(ii) A substitution of  (3.2) into the equilibrium equations (1.3) yields, after a division by e, the 
equations 

o,(vw)+ ~w = H2(E, w, 3") 
(A.2) 

wl,~=o=m(w)+ Hl(e, w, 3") 

for weBo, 3"oR where H1: ( - t o ,  eo)XBoXRoR,  H2: (-eo, eo) X B o X R o B ,  as given by H i =  
( 2 -  i)3"m(po+ w) + (-1)~-lhi(1 + % epo+ ew)/e, are q - 1 ~ 1 times continuously differentiable near 
(e, w, 3') = (0, 0, 0) and H,(0, w, 3') =- 0. (A.2) can be solved by constructing an equivalent operator 
equation as follows. Given w s B o define 3' = 3'(e, w) E R so that the necessary solvability condition 
• (H)  = 0 holds, H := (H1,/-/2); that is the equation 

F,(e, w, 3'):= H,(e, w, 3")+m(po(a) f~ H2(e, w, 3")/povds)=O (A.3) 

is solved for 3'. This can be done for (e, w) near (0, 0) by means  of the implicit function theorem 
since F~(0, 0, 0 ) =  0, O~,F1(O , O, O)= m(po)= 1. This yields a q -  1 times continuously differentiable 
3' = "r w), ~(0, 0) = 0. In fact ~(0, w) --- 0. 

With 3"= ~(e, w) in (A.2) these equations can be reformulated as the equivalent equation 
F2(e, w):= W-SoH(e  , w, "~(e, w ) ) = 0  which can be solved by another application of  the implicit 
function theorem since/ '2(0 , 0) = 0, awF2(O, O) = L This results in a q - 1 times continuously differenti- 
able w = w(e), w(0)= 0 which in turn yields 3' = 3"(e)= "~(e, w(e)) for lel small. 
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To obtain formula (3.3) divide (A.3) by e and let e ~ 0. (3.3) then follows since by HI 

n t / e =  e-lm(po + w) + e-2h,(1 + 3/, coo+ ew) --> y, +�89 O)(po , Po) 

H2/e = e-2h2(1 + T, epo+ ew) ~ �89 0)(po , Po). 

Proof of the Lemma in Sect. 5. The existence and uniqueness of the solutions z, y for le[ small can 
be established by a straightforward application of the implicit function theorem (along the lines of 
the proof above of Theorem 1 (ii)) using the solution operator S o in the Lemma of Sect. 2 with n = 1 
and the expansions (3.2) for n(e) and p(e). The details are omitted. 

To derive the formula (5.6) substitute z = z(e), y = po + u(e) into the linearized equations (5.1) 
to obtain 

Oa(vu ) + lzu = -Z(po + u) - h~(e)(po + u) 

ula=0 = re(u)+ r(e)m(po + u)+ h'l(e)(po + u) 

for u 6 B 0. From the necessary solvability condition of Sect. 2 follows 

zm(po( V+ foa U/vds))  = y(e)m(po+ u)+ h~(e)(po+ u)-m(po(a)  foa h'2(e)(po+u)/povds). 

Dividing this equation by e and letting e ~ 0 one obtains, using the definitions (5.2) of h I 

zl m(po V) = y~ + OZ hl(1, O)(Po, Po)- m(  po( a ) f o  O~hz( l, O)(po, Po) / p o v  ds ) 

or in view of the formula (3.3) for 3q 

zl m(po V) = Y1- 2Yl = -Yl. 

Proof of Theorem 3. All that needs be proved is (ii) and this will follow from the Lemma of Sect. 5 
if it can be shown that for Isl small there exist no eigenvalues z satisfying Re z>~0, Iz[~> r. 

Consider first the trivial solution p-= 0 and its characteristic equation (5.4). For purposes of 
contradiction suppose there are sequences n j, z j such that n j < 1, n j ~ 1, Re z j/> 0, Izq I> r and (5.4) 
holds for n = n J, z = z y. Since m is bounded the set {c(z)[Re z >1 O, Iz[ >1 r} is bounded and by extracting 
a subsequence if necessary we can assume c(zJ)~c ' where c ' #  1 by H4. From (5.4) follows the 
contradiction that 1 = #c(z j) ~ c' # 1. 

Similarly for the positive equilibria p(e) we assume there exist sequences e j, z j such that e j > 0, 
e j ~ 0, Re z j >1 O, [zJ[ >i r for which (5.1) has a nontrivial solution yJ e B which without loss in generality 
satisfies [yq. = 1. Again by extracting a subsequence if necessary we assume that c(#) ~ c' where 
c ' #  1 by H4. Equation (5.1a) for y=yJ can be written 

yJ(a)=pJ(a)eJ(a)[yJ(O)-foh~(eJ)(yJ)/po(S)V(s)eJ(s)ds I (A.4) 

where eJ(a):= exp(-zJV(a)) which when substituted into (5.1b) yields 

(1 - n(eJ)c(zJ))yJ(O) = R j (A.5) 

where 

RJ =-n(eJ)m(po(a)eJ(a) f o  h'z(eJ)(yJ)/po(s)v(s)eJ(s) ds) + h~(eJ)(yJ)~O 

as j ~ +oo by the definition (5.2) of h~ and the order properties of h i near p = 0 in H1. (A.5) implies 
yJ(O)-~ 0 which by (A.4) in turn implies the contradiction 1 = lyJl, ~ O. 
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