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Abstract. The existence of positive equilibrium solutions of the McKendrick 
equations for the dynamics of an age-structured population is studied as a 
bifurcation phenomenon using the inherent net reproductive rate n as a 
bifurcation parameter. The local existence and uniqueness of a branch of 
positive equilibria which bifurcates from the trivial (identically zero) solution 
at the critical value n = 1 are proved by implicit function techniques under 
very mild smoothness conditions on the death and fertility rates as functionals 
of age and population density. This first requires the development of a suitable 
linear theory. The lowest order terms in the Liapunov-Schmidt expansions 
are also calculated. This local analysis supplements earlier global bifurcation 
results of the author. 

The stability of both the trivial and the positive branch equilibria is studied 
by means of the principle of linearized stability. It is shown that in general 
the trivial solution losses stability as n increases through one while the stability 
of the branch solution is stable if and only if the bifurcation is supercritical. 
Thus the McKendrick equations exhibit, in the latter case, a standard exchange 
of stability with regard to equilibrium states as they depend on the inherent 
net reproductive rate. The derived lower order terms in the Liapunov-Schmidt 
expansions yield formulas which explicitly relate the direction of bifurcation 
to properties of the age-specific death and fertility rates as functionals of 
population density. 

Analytical and numerical results for some examples are given which 
illustrate these results. 

Key words: Age-structured population dynamics - -  equilibria - -  stability - -  
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1. Introduction 

If  p = p(t, a)i> 0 is the density of individuals of age a in a population at time t, 
then the equations 

Op/Ot+Op/aa+D(p)(a)p=O, t > 0 ,  0 < a < A ~ < + c ~  
(1.1) 

p(t, 0) = F(p)(a)p(t, a) da, t>O 
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describe respectively the removals and additions to the population, which is 
assumed closed to immigration and emigration, in terms of the (per unit density 
per unit time) death and fertility rates D and F. In general, D and F are functions 
of age a and functionals of the density p. For example, a frequently studied case 
is that when these vital rates are functions of the total population size P(t):= 
S a p(t, a) da. In this paper D and F will be left as quite general functionals of 
the density p which need only satisfy certain smoothness assumptions. The real 
A is the maximum age of any individual in the population, i.e. p(t, A) = 0 for all 
t ~ 0 .  

Coupled with an initial condition (1.1) constitutes a system of mathematical 
equations which determine the future time evolution of the age-specific population 
density. These equations have come to be called the McKendrick equations. In 
recent years (particularly since the seminal work of Gurtin and MacCamy [5]) 
there has been a rapidly growing literature dealing with various aspects of this 
model system of equations and its implications concerning age-structured popula- 
tion dynamics [6-12]. 

A great variety of  types of modeling equations have been used to describe 
and study the growth dynamics of populations in spatially homogeneous habitats 
closed to immigration and emigration. These different types include integral 
equations, difference equations, ordinary differential equations and functional 
or integrodifferential equations. Of major concern in application to population 
dynamics is the long time, asymptotic behavior of solutions and in particular the 
existence and stability of equilibria. A very common scenario for the asymptotics 
of these types of model equations is the following. The asymptotics of the model 
equations are studied as a function of a selected parameter, usually an inherent 
per unit density birth (or net growth or net reproductive) rate. For small values 
of this parameter the population goes to extinction, i.e. the trivial zero solution 
is stable and either positive equilibria do not exist or are unstable. As the parameter 
is increased a critical value is reached at which a branch of positive equilibria 
bifurcates from the zero solution. If this bifurcation is supercritical these positive 
equilibria are stable although, as the parameter is further increased, it may lose 
its stability at a second (Hopftype)  bifurcation point where time periodic solutions 
bifurcate from the positive equilibria branch. In some models, further increases 
of the parameter leads to further bifurcations and complicated dynamics 
(including "chaos").  The primary bifurcation point of positive equilibria 
can, on the other hand, also be subcritical and unstable. This phenomenon can 
lead to sudden population collapses and to hysteresis effects as the parameter 
is changed. 

Virtually all model equations of all types can be derived, by means of 
appropriate assumptions on the fertility and death rates, from the fundamental 
McKendrick equations (1.1). It is natural then to ask how much of the above 
bifurcation scenario holds for the equations (1.1). Some of the fundamental 
components of this scenario have indeed been established under very mild 
conditions on the vital rates D and F. The primary bifurcation of a global branch 
of positive densities p was shown to occur at a critical value of the net reproductive 
rate in [4] and the secondary Hopf-type bifurcation to time periodic solutions 
was studied in [3]. 
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The purpose of this paper is to contribute further to this bifurcation scenario 
for (1.1) by studying the local bifurcation behavior of positive equilibria near 
the primary bifurcation point. The goal is to study the stability of these branch 
equilibria (as well as the zero equilibrium) and to relate it to the direction of 
bifurcation. Lowest order terms in the Liapunov-Schmidt expansions will also 
be derived. 

An equilibrium solution p = p ( a ) ~  > 0 of  (1.1) must satisfy the equations 

p'(a)+D(p)(a)p(a)=O, 0 < a < A ~ < + e o  

jo ' p(O) = F(p)(a)p(a) da, p(A) = O. 

In order to study the existence and stability of solutions of these equilibrium 
equations by means of bifurcation techniques, a parameter must be selected to 
serve as the bifurcation parameter. This parameter will be chosen, as in [4], to 
be the inherent net reproductive rate n at low density (technically when p-= 0) 

fo ' n := F(O)(a) exp( -M(O)(a ) )  da 

io M(p)(a):= D(p)(cx) do. 

This number n is the expected number of offspring over an individual lifespan. 
In order to introduce n into the equations, the normalized fertility ratef =f(p)(a) 
is defined to be the ratio of the per unit fertility rate at age a to the expected 
number of offspring per lifespan. Then F = nf and the equilibrium equations can 
be written 

(a) p'(a)+D(p)(a)p(a)=O, 

(b) p(O) = n f (p)(a)p(a)  da 

(c) p(A)=O. 

Note that under this normalization 

0 < a < A < ~  +oo 

fo '~f(O)(a) e x p ( - M ( 0 ) ( a ) )  da : 1. 

(1.2) 

(1.3) 

Of fundamental interest in understanding the time evolution of an age- 
structured population whose dynamics are governed by equations (1.1) is a 
knowledge of the set of values of n for which the equilibrium equations (1.2) 
have a positive solution p and conditions under which this solution is stable. 
There are many recent papers which contain existence and stability results for 
positive equilibrium solutions (e.g. see [4, 6-12] and others cited in these papers), 
although none treat this problem from the point of view of bifurcation theory 
except [4] (which deals only with the existence question). Moreover the results 
here require only that D and f be smooth near p = 0; no special assumptions 
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are made on the form of  their functional dependence on p nor are monotonicity 
or boundedness restrictions needed as they usually are in the literature. 

In [4] the global existence of a continuum C § of positive solutions (n,p), 
p > 0 on [0, A), lying in a certain Banach space is proved under mild continuity 
assumptions on D and f. This continuum is global in the sense that it connects 
(i.e. bifurcates from) the trivial solution (n, p ) =  (1, 0) to the boundary of the 
domain on which the problem is posed. The purpose of the present paper  is to 
study in detail the structure of  the bifurcating continuum C + near the critical 
point (n, p ) =  (1, 0). Specifically, after the requisite linear theory in Sect. 2, a 
parametrization of the continuum C § near criticality is derived and the lowest 
order terms are calculated in Sect. 3. This will not only prove the existence and 
uniqueness of  positive small amplitude equilibria near criticality, but will show 
exactly what properties of  D and F determine the "direction of bifurcation". In 
Sect. 4 the stability of  the trivial equilibrium p --= 0 and of those on the positive 
bifurcating branch is studied by means of a certain "characteristic equation" and 
the principle of  linearized stability. It is shown that p-= 0 loses stability as n 
increases through n = 1, but that the positive equilibria on the bifurcating branch 
are stable if and only if the direction of bifurcation is supercritical. Thus in this 
case (whose occurrence depends on the nonlinearities in D and F in a manner  
precisely given in Theorem 1 below), the McKendrick model exhibits a standard 
"exchange of stability" as the inherent net reproductive rate n increases through 
the critical value n = 1. The critical value n = 1 of  the inherent net reproductive 
rate represents exact per unit replacement. Conditions under which subcritical 
(and hence unstable) bifurcation occurs are also seen in Theorem 1. 

The results given in Sects. 2-4 are for the case A < +oo. This is done for 
simplicity. In Sect. 5 the changes necessary for the extension of these results to 
the technically more involved case when A--  +oo are briefly described. 

In Sect. 6 some general remarks are made concerning the direction of bifurca- 
tion and the normalized age distribution at equilibrium. Some examples are 
studied both analytically and numerically. 

2. The linear theory when A < +oo 

Let R denote the set of  reals and let A denote the set of  continuous functions 
tz c C~ A); R) which satisfy 

;o lirn M ( a )  = +co where M ( a )  := IX(a) da. 
a--~ a 

For ~ z l  define B~ to be the linear space of continuous functions h c  
C~ A]; R) for which h(a) e x p ( M ( a ) )  is continuous on [0, A] and B~ to be 
the space of those functions h for which, in addition, h(a) e x p ( M ( a ) )  is con- 
tinuously ditterentiable on [0, A]. It is not difficult to show that these linear spaces 
are Banach spaces when endowed with the norms 

Ilhllo := sup [h(a)[ e x p ( M ( a ) )  
[o, A] 

Ilhll, :-- Ilhllo + s up  Id/da(h(a) e x p ( M ( a ) ) )  I. 
[o, A]  
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R x B  ~ and LI([0, A]); R) endowed Also needed will be the Banach spaces 
with the norms II(r, h)ll+: = Irl+ Ilhllo and IlhllL:-- (fA ih [ ds). 

Note that p ~ B ~ implies p ( A ) = 0 .  Note also that poe B~ where 

po(a) := exp(-M(a)) .  

Consider the nonhomogeneous linear system of equations 

p ' ( a ) + t x ( a ) p ( a ) = h 2 ( a ) ,  0 < a < A < + ~  
(2.1) 

p(O) = ~ ( a ) p ( a )  da +h~ 

and the associated homogeneous system 

p ' ( a ) + l x ( a ) p ( a ) = O ,  0 < a < A < + o o  
(2.2) 

P A  

p(0)=Jo  ~ ( a ) p ( a )  
da 

with /z e A, /3poe Ll([0, A]; R) and (h~, h2) c R •  ~ By a solution of (2.1) or 
(2.2) is meant a function p e B~ (which is then continuously differentiable on 
[0, A)). An integration of the differential equation in (2.2) easily shows that (2.2) 
has a nontrivial solution if and only if 

fo ~fl(a)po(a) = 1 (2.3) da 

in which case all solutions of (2.2) have the form p(a)  = cpo(a), e ~ R. 
All solutions of the nonhomogeneous differential equation in (2.1) have the 

form 

(I0 ) p ( a ) = p o ( a )  c+ h2(o~)/po(a)d~ , c e R  

and lie in B~. Thus the nonhomogeneous system (2.1) is solvable in B~ if and 
only if the equation 

(1- f /  fi(a)po(a) da) c=h,+ f /  fl(a)po(a) f f  h2(oO/po(c~) dada 
is solvable for c c R. 

These simple facts can be summarized in the following alternative: either (2.2) 
has no nontrivial solution in B 1 in which case (2.1) has a unique solution in B~ 
for each (hi, hz) ~ R • B ~ or (2.2) has a nontrivial solution in B 1 in which case 
(2.1) has a solution in B~ i f  and only i f  (h~, h2)~ R •  ~ satisfies 

fo hi + fl(a)po(a) h2(a)/po(a) da da = 0. ( 2 .4 )  

The following lemma is fundamental to the main results in the next Section 
3. It concerns the linear operator L: B~ ~ R x B ~ defined by 

Lp:=(p(O)-f/fl(a)p(a)da, p'(a)+lx(a)p(a)). (2.5) 
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Lemma 1. Assume Ix c A, ~Po ~ L1([O, A]; R). The linear operator L: B~ ~ R x B ~ 
defined by (2.5) is bounded, has a closed nullspace N(L) and range R(L) with 
finite dimension and codimension respectively, both of which admit bounded projec- 
tions. In fact, dim N(L)= codim R(L)= 1 if (2.3) holds and 0 otherwise. 

Proof: The inequalities 

IILpll§ p(O) - I ;  ~(a)p(a ) da +llp'+p, pllo 

fo <~lp(0)l + I~(a)lpo(a)lp(a)l/po(a) da + sup [p'+tzpJ/po 
E 0, A] 

Ilpllo + 11r + sup  Id/da(p/Po)l 
E 0, A] 

= II~poll LIIp IIo + lip II, ~ (II~PolIL + 1)lip II1 

imply the boundedness of L. 
If (2.3) fails to hold, then N(L) = {0} and R(L) = R x B ~ In this case the 

Lemma is obvious. 
1 If (2.3) holds, then N(L) is the span of {po(a)} and the projection Pu:B~, 

N(L) defined by 

Io" /Io' PuP := po(a) p(a)po(a) da p~(a) da 

is clearly bounded�9 Also B~ = N ( L ) � 9  N'(L) where N• := 
{p~B~[ SoA p(a)po(a)da=0} is a closed subspace of B~,.~ Thus psB~l can be 

�9 1 N• is a bounded uniquely written p = PuP +(I - Pu)P where I - Pu .  B~ 
projection. 

If  (2.3) holds, then the range R(L) of L is the subspace of all (hi, h2) E R X B ~ 

for which (2�9 holds�9 As such R(L) is clearly closed. Define the projection 
PR : R • B ~ R(L) by 

PR(h, ,h2):=(-f;  ~(a)po(a) f~ h2(a)/Po(a) dada, h2(a)) �9 

The inequalities 

[[PR(hl, h2){l§ = f ;  fl(a)po(a) f f  h2(a)/po(a) dotda[ +llh2[[o 

~< A H flPo]] LI] h2l[o + 1[ h2[]o 

<~ (AII/3polIL + 1)ll(hl, h=)ll+ 

show that PR is bounded. Also R•176 where R• = 
{(ht, 0)[hl ~ R} is a closed subspace. In fact (hi, h2)~ R x B ~ can be uniquely 
written 
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(h,, h2)= Pg( h,, h2) +( I -  PR)( h,, h2) 

= ( -  fA~(a)po(a) f f  h2(o~)/Po(a) dada, h2(a)) 

+(h, + fafi(a)po(a) f oh2 (a ) /po (a )  dada, O). 
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[] 

3. Bifurcation of positive equilibria when A < +oo 

In this section small amplitude positive solutions of the equilibrium equations 
(1.2) are constructed by a Liapunov-Schmidt procedure. The hypothesis needed 
on the death and fertility rates D and f are that they be defined and sufficiently 
differentiable in a neighborhood of p --- 0 in B~. Specifically, let 12 ~ B~ denote 
an open neighborhood of 0 ~ B~ and assume 

HI :  f and D can be written f = / 3  +r~(p), D = ~  +r2(p) with ri(0) =0  where 
tz E A, flPo~ Ll([0, A]; R) and (2.3) holds and where the operators rl: 12 -> 
LI([0, A]; R), r2:12 --> C~ A]; R) are q t> 1 times continuously Fr6chet 
differentiable. 

In this hypothesis C~ A]; R) is endowed with the usual supremum norm. 
Note that H1 implies (by (2.3)) that (1.3) holds as required by the normalization 
in Section 1. 

Let r~(0)( �9 ) denote the first order Fr6chet derivative of ri at p = 0. These are 
linear operators defined on B 1 (mapping into L, for i =  1 and C o for i=  2). An 
ordered pair (n, p)~ R • will be called a solution of (1.2) if p satisfies (1.2a, 
b) for the given value n ((1.2c) automatically holds for p c B~ Such a pair is a 
nontrivial (positive, etc.) solution if p ~ 0 (p > 0 on [0, A), etc.). 

Theorem 1. (a) I f  H1 holds then the equilibrium equations (1.2) have a unique 
branch of nontrivial solutions (n, p) c R • B~ in a sufficiently small neighborhood 
of the critical solution (n, p) = (1, 0) and these solutions have the form 

n~ = 1 +A(e),  p~ = epo+ez(e), po := e x p ( - m ( a ) )  

for leJ<e* where A: ( - e* ,  e*)~R  and z : ( - e * ,  e*)~ N• are q times con- 
tinuously Frdchet differentiable and satisfy z( O ) = O, A (0) = O. 

(b) I f  i l l  holds with q>~ 2 then 

n~=l+nle+y(e) ,  p~=epo+e2zl+ew(e) (3.1) 

where y: (-e*, e*) ~ R and w: (-e, e*) ~ N ' (L)  are continuous, Jy(e)l = O(e z) 
and Ilwll, = O(e =) near e = 0  and where 

fo' fo" nl = ~(a)po(a) Dp(0)(p0)(~) da da - po(a)fo(O)(po)(a) da c R 

(fo ) Z 1 = p o ( a )  c -- D.o(O)(po)(ol .  ) dot. E g •  (3,2) 

Io' Io /fo' c = p2(a) Dp(0)(po)(CQ da da pZ(a) da ~ R. 
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In part (b) of Theorem 1, Dp(0)( �9 ) = r~(0)( �9 ) and fp(0)( �9 ) = r~(0)( �9 ) are 
the Fr~chet derivatives of D and f with respect to p at p = 0. 

Proof The equilibrium equations (1.2) can be written in the operator form 

Lp = T(,~, p) (3.3) 

where ,~ = n - 1 ,  L is defined by (2.5) and T : R  •  •  ~ is the operator 
T(A, p) := ),Ap + N(3,, p) where 

a p  := ( Io  a ~(a)p(a)da, O) 

N(&,p) :=((A+l) f~p(a)r l (p )da , -pr2(p) ) .  

To the operator equation (3.3) can be applied straightforward implicit function 
techniques to obtain (a). To do this one can refer for example to Theorem 1 in 
[2]. Lemma 1 of Section 2 and (2.3) imply the necessary hypotheses on L (namely 
H 1 and H2  in [2]) and the hypothesis H 1 above implies the necessary hypotheses 
on T (namely H3 in [2]). All that remains to be verified for this application of 
Theorem 1 in [2] is that a certain nondegeneracy condition holds, namely H 4  in 
[2]: c~ (0, 0, 0) • 0 where c = c (A, z, e) is the real coefficient of (I - P R )  T(A, P0 + 
z, e) ~ R'(L).  Here T is defined by T(A, ep) = eT(A, p, e). A straightforward 
calculation shows that cx(0, 0, 0) =~a ~(a)po(a) da = 1 by (2.3). 

That n and p have the e-expansions in part (b) follows again from Theorem 
1 in [2] because q/> 2. All that needs to be shown here is the validity of the 
formulas for the coefficients nl ~ R and zl ~ N'(L) .  This can be done in the usual 
manner of  substituting the e-expansions into (1.2) and equating coefficients of 
like powers of e on both sides of the resulting equations. The first order terms 
in e result in the linear homogeneous system (2.2) which, by the assumption 
(2.3) in H I ,  is satisfied by p = po(a). 

The second order terms in e result in a nonhomogeneous system of the form 
(2.1), namely 

z'l( a) + l~( a)z,( a) = -po( a)r~(O)(po)( a) 

fo" fo' z,(O) = ~(a)zl(a) da + po(a)r~(O)(po)(a) da +nl 

whose nonhomogeneous terms must satisfy the "orthogonali ty" condition (2.4). 
This leads immediately to the formula for n~ in Theorem l(b), Once (2.4) is 
satisfied by this choice of  nl, the above equations can be solved for z~ as in Sect. 
2 to obtain the one parameter family of solutions 

(Io ) zl(a)=oo(a ) c -  r~(O)(oo)(a)da , ceR.  

The unique solution lying in NI(L) is obtained by choosing c as in Theorem 
l(b). [] 
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The solutions p~ lying on the parameterized branch described in Theorem 1 
are positive for e > 0 (and negative for e < 0) sufficiently small. This unique local 
branch of  positive equilibria (n, p) for n - 1 is shown to exist globally in [4] in 
the sense that it is a subset of a continuum in R • B~ which intersects with the 
boundary of R • g2. Locally near the critical value n = 1 the set of n values 
corresponding to positive solutions on the branch in Theorem 1 consists of n 
values less than or greater than n = 1 (that is to say the bifurcation is sub- or 
supercritical respectively) depending on the sign of A(e) = n~ - 1 for e > 9 small. 
When q 1> 2 this direction of bifurcation, which will be related to the stability of 
the positive equilibria in the next section, depends on the sign of the real coefficient 
n~ (if it is nonzero) which in turn depends on the rates of change of D and f with 
respect to population density p at p = 0 as can be seen from the formula for nl 
in Theorem l(b). Results concerning global properties of this spectrum can be 
found in [4]. 

4. Linearized stability when A < +oo 

In this section the stability of the trivial equilibrium p---0 and the positive 
equilibria in Theorem 1 is investigated using the principle of linearized stability. 
A characteristic equation will be derived for linearized versions of (1.2) and the 
stability analysis will be carried out by means of the location in the complex 
plane C of  the roots of this equation. This procedure is of course standard and 
will not be rigorously justified here. A rigorous treatment of linearized stability 
for a similar problem by means of a semigroup approach can be found in [12]. 

(a) The characteristic equation. Consider the following linear problem: 

Oy/Ot+Oy/Oa+c(a)y+ K(a,a)y(t,o~)da=O 

(4.1) 

io ' y(t, 0) = kl(a)y(t,a)da, y(t,A)=O, t>O.  

A system of this kind will result, under certain circumstances, when (1.1) is 
linearized around an equilibrium solution. Under the key assumption that the 
kernel K is multiplicatively separable 

K(a, o~) = d(a)k2(a) 

a relatively simple algebraic characteristic equation for (4.1) can be derived as 
follows. I f y  = ~b(a) e x p ( ~ ( t -  a)), ~ C and q~ ~ B~ is substituted into (4.1), the 
system of equations 

(a) ~'(a) + c(a)b(a) + wd(a) exp(~'a) = 0 

(b) w = k2(a)q~(c~) exp(-~a)dc~ (4.2) 

fo' (c) q~(O) = kl(a)4)(a) exp( -~a )  da 
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for ~b ~ 0 and complex numbers ~, w ~ C results. Equation (4.2a) can be easily 
solved for ~b and the result substituted into (b) and (c). This yields the equations 

(a) r a)) 

(b) ( f ;  k2(a) Y(~, a) da) ga(O) + ( - 1 -  f ;  k2(a) Y(~, a)I(~, a) da) w=O 

(4.3) 

(c) (1 -  I ;  k,(a) Y(~, a) da) c~(O) + ( f ;  k,(a) Y(~, a)I(~, a) da) w=O. 

Solving this system for ~b ~ 0 and if, w ~ C is equivalent to solving (4.2). Here 
yo(a) = exp(-S o c(t~) da) and 

g(~, a):= yo(a) exp(-~, a), I(~, a):= d(~)/Y(~, a) da. 

A necessary and sufficient condition for the solvability of (4.3) is the solva- 
bility of the homogeneous 2 x 2  algebraic system (4.3b, c) for a nontrivial 
solution (4~(0), w) ~ (0, 0). The solution of (4.1) is then given by y =  
4~(a) exp(~'(t - a)) where 4~(a) is given by (4.3a). Thus we arrive at the following 
result. 

Lemma 2. Equations (4.1) have a solution of the form y = th(a) exp(~( t -  a)) for 
~ C if and only if ~ satisfies the characteristic equation 

k2(a) Y(~, a) da kl(a) Y(~, a)I(~, a) da 
(4.4) 

+( l + I ;  k2(a) Y(~, a)I(~, a) da)(1-  f ;  kl(a) Y(~, a) da) =O. 

The linear homogeneous system (4.1) will be called stable if (4.4) has no roots 
satisfying Re ff >/0. If (4.4) has a root satisfying Re ~ > 0 then (4.1) will be called 
unstable. 

(b) The stability of the trivial equilibrium solution. If  (1.1) with F =  nf is 
linearized at the trivial solution p -= 0 then a system of the form (4.1) results with 

c(a) == Ix(a), k2(a) --- 0, k,(a) =- nil(a) 

where D and f are as in H1 (d (a) is irrelevant). The characteristic equation is then 

I; C(~,n):=l-n il(a)po(a)exp(-~a)da=O. 

Clearly for n < I and Re ~ i> 0 

n I a il(a)po(a) exp(-~a)  da < 1 
Jo 

by (2.3) and consequently C(ff, n) =0 has no roots satisfying Re ~ > 0  when n < 1. 
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On the other hand, suppose that n > 1 and consider real ~" = x. Since C(0, n) = 
1 - n < 0 and C(x, n) ~ 1 as x ~ +oe (by the dominated convergence theorem) it 
follows that C(~', n ) =  0 has at least one positive real root for n > 1. 

Theorem 2. Assume H1. The trivial solution p ~ 0 of (1.1) with F = nf is stable if  
n < 1 and unstable if  n > t. 

(c) Stability of the nontrivial branch equilibria (3.1). We wish to investigate 
the stability of  the equilibria (3.1) by studying the location of the complex roots 

of  the characteristic equation (4.4) arising from the linearization of (1.1) about 
the equilibrium (3.1) for small e > 0. To do this the linearization must take the 
form (4.1) and thus we assume that the functional dependencies of  the vital rates 
D and f on p are of  integral form. Specifically we assume that the Fr6chet 
derivatives of  the remainder terms ri in H1 are of  the integral form 

rl(p)Y = wi(p)(a, a)y(t ,  a) dm (4.5) 

In order to obtain the multiplicative separability of  K in (4.1) it is assumed that 
the kernel w2 is separable: 

w2(p)(a, a)=- k(p) (a) l (p) (a) .  (4.6) 

In view of the Riesz representation theorem the assumption of the integral 
form (4.5) is not particularly restrictive. The main constraint here is the multiplica- 
tive separability (4.6). It is met for example when the density dependence and 
the age dependence are multiplicatively separable in the death rate term r2. 

Setting y = p - p~ and ignoring higher order terms in y in (1.1) one now arrives 
at (4.1) with 

c(a)=l~(a)+r2(p~)(a),  d(a)=p~(a)k(pE)(a) ,  k2(a)=l(p~)(a)(4.7 ) 

( Io ) kl(O~)=n~ ]3(o~)+rl(p~)(c~)+ wl(pe)(s,o~)pe(s)ds �9 

We are interested in the roots of  the characteristic equation (4.4) for e - 0. Denote 
the left hand side of  (4.4) by C(~, e). C depends on e through the dependence 
of the coefficients and kernels (4.7) on e. Note that p~ =- 0, n~ = 1 when e = 0 and 
hence from (4.4) we see that 

Io" C(~, O) = 1 - ~(a)po(a) e x p ( - ~ a )  da (4.8) 

which is simply the characteristic function for the trivial solution at criticality 
n = 1 (see (b) above). It is easy to see by (2.3) that the only purely imaginary 
root ~ = iy of  C(~, 0) = 0 is ~" = 0. The following facts are straightforward to prove. 

(i) Given any neighborhood N of ~ = 0 in the complex plane, there exists 
an e * > 0  such that any roots ~: of  C ( ~ ' , e ) = 0  for l e l < e *  satisfying 
Re ~" 1> 0 must necessarily lie in N ;  

(ii) Q ( o , 0 ) = S o  a a f l ( a ) p o ( a ) d a > 0 ;  
(iii) c~(0, 0) = n,. 
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A proof  of (iii) appears in the Appendix. From (ii), (4.8), (2.3) and the implicit 
function theorem it follows that 

C(~', e) = 0 (4.9) 

has a unique root r -- r ~(0) = 0, for e - 0 .  An implicit differentiation of (4.9) 
with r = ~:(e) together with (iii) shows that 

~'(0) = - n l  afl(a)po(a) da. 

From (ii) it follows that the sign of Re ~'(e) is the negative of the sign of nl for 
e ~ 0. This means that when nl > 0 (or <0) (4.9) has roots in the right half plane 
for small e < 0  (or >0). On the other hand, these roots ~(e) lie in the left half 
plane in the opposite case e > 0 (or <0) when nl > 0 (or <0). By (i) these are 
the only possible roots in the right half plane when e ~ 0. We have arrived at the 
following theorem. 

Theorem3.  Assume q >12 in H1. Assume that (4.5) and (4.6) hold. The positive 
nontrivial equilibria p~ in (3.1) of  Theorem 1 for small e >~ 0 are stable i f  nl > 0 
and unstable i f  n, < O. 

5. The case when A = +oo 

Quite often the McKendrick system (1.1) is considered with A = +oo. The reason 
for this is usually that in specific cases and applications certain calculations and 
formulas are thereby simplified (e.g. those for equilibrium solutions, the computa- 
tion of stability criteria, etc.). It is possible to extend the results of the previous 
sections to the case when A = +oo by making suitable changes in the Banach 
spaces involved in a few of the assumptions. Specifically, the set A to which the 
inherent death rate/~ (a) belongs is changed to the set A + of nonnegative functions 
0 <~/~ e C~ +oo) ; R) for which lim infa-~+oo/~ ( a ) >  0. For p, e A+~ and 0 < v <~ 1 
define B~ to be the Banach space of  continuous functions h e C~ +oo); R) 
under the norm 

Ilhll~,~:= sup ]p(a)l/po,~(a) 
[0,+oo) 

where po,~(a):-- e x p ( - v  ~o / , (a )  d~). For h e B~ it follows that h(+oo) = 0. 
Similarly B~,~ is the Banach space of continuously differentiable functions h e B~ 
under the norm 

Ilhll, := Ihllo + sup Id /da(h(a) /po,  o(a))l �9 
[o, +oo) 

It is not difficult to show that the Fredholm alternative and Lemma 1 of 
Section 2 remain valid when A = +oo in (1.1) if A is replaced by A +, B ~ and B~ 

o 1 are replaced by B~,,~ and B.,~ and f l poeL i ( [O ,A] ;R)  is replaced by flpo,,,e 
L1([0, +oo); R) and if in addition ~ ( a )  is assumed bounded on [0, +oo). 

From this modified linear theory Theorems 1-3 and Lemma 2 can be justi- 
fied when A = +oo provided these same substitutions and modified assumptions 
are made throughout. Details concerning these facts can be found in Section 
4 of [4]. 
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6. Some remarks and examples 

Under the stated assumptions Theorems 1-3 show that the McKendrick equations 
(1.1) exhibit a standard bifurcation phenomenon with regard to the existence of 
positive equilibria as a function of the inherent net reproductive rate n. Namely, 
positive equilibria bifurcate from the trivial equilibrium p --- 0 at the critical value 
n = 1 and these equilibria are stable if and only if the bifurcation is supercritical, 
in which case there is an "exchange of stability" from the trivial equilibrium to 
the positive equilibria on the bifurcating branch as n increases through n = 1. 

Subcritical (and hence unstable) bifurcation, on the other hand, relates to the 
concept of "depensat ion" in the theory of population dynamics and renewable 
resources [1]. Its occurrence implies the possibility of a hysteresis effect and the 
sudden "crash" or extinction of the population as the net reproductive rate n is 
decreased. Depensation is usually defined in terms of the nonlinear properties 
of the growth rate dependence on density for differential models involving total 
population size [1, Chapter 1]. Although we offer here no generalized definition 
of depensation for age structured populations nor study hysteresis effects in the 
McKendrick model equations (1.1), the formula for n l in Theorem 1 does provide 
a means of relating subcritical bifurcation to the nonlinear effects that changes 
in population density have on the age-specific death and fertility rates D and f 

One general conclusion that follows from Theorem 3 and the formula for nl 
in Theorem 1 is that if, for low population densities, the death rate D is 
nondecreasing and the fertility rate f is nonincreasing as functionals of density 
p for all age classes (i.e. if Dp(O)(po)(a)>~O and s then the 
bifurcation at criticality n = 1 is supercritical and stable. Such assumptions are 
typical in simple population growth models. These conditions are sufficient, but 
clearly are not necessary for supercritical bifurcation. 

Consider the following illustrative example in which the death and fertility 
rates are simple linear functions of total population size P = So A p(t, a) da: 

D = [1 + DoP]+, f =  [1 - foP]+,  A = +oo. (6.1) 

Here [ x ] + = x  for x~>0 and Ix]__=0 for x < 0 .  In this example tz(a)=- 1 and 
13(a) = 1 are constant, i.e. the inherent death and fertility rates are not age-specific. 
It is assumed that the coefficients Do and fo are nonnegative and Do +fo > 0. For 
this case the equilibrium equations (1.2) are easily found to have the unique 
nontrivial equilibrium solutions 

p ( a) = n( n - 1)(Do + fo)( Do +_ nfo) -2 exp ( -n (D0  + fo)a/ ( Do + nfo) ). 

One clearly sees here the bifurcating branch of positive equilibria for n > I. Note 
that in this example Do=-Dp(O)(po)(a)>10 and -fo=-fo(O)(po)(a)<-O so that 
n~ = Do + fo>  0 as is consistent with supercritical bifurcation in Theorem 1. 

Note also in this example when Do > 0 that as the net reproductive rate n ~> 1 
increases the population "becomes younger" in the sense that the proportion of 
the total population taken up by younger age classes increases while that of older 
age classes decreases with increasing n. To see this observe that at equilibrium 
P = (n - 1) / (Do+ nfo) and 

p( a)/ P = n( Do + fo)( Do + nfo) -~ exp ( -n (  Do + fo)a/ ( Do + nfo) ) 
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so that 

O ] { > 0  f o r a < l  
(p(a)/P) =D~176176 <0 f o r a > l .  

n = l  

This phenomenon in fact occurs more generally whenever supercritical 
bifurcation occurs and the death rate increases with density for all age classes. 
To see this consider the parameterized branch of equilibria (3.1) which, if nl ~ 0, 
can be parameterized by n in place of  e. Dropping the parameter  subscript 
notation on the equilibrium solutions p, we calculate from (3.1) 

On\ P ] n=l Oe OnlOe ~=o niP 2 

where Po = S A po(a) da. By (3.2) this expression can be written 

• 
(p(a)~ = p o ( a )  Dp(O)(po)(S) ds po(a) da/nlPg. (6.2) 

On\ P ] .=1 =o =a 

I f  

n l > 0  and Dp(O)(po)(a)>-O ( ~ 0 )  (6.3) 

then the derivative (6.2) is positive when a = 0 and negative when a = A and thus 

I On \ P ] n=l d 0  

for a ~ 0  
(6.4) 

for a ~ A .  

For subcritical bifurcation (nl < 0) the inequalities reverse, but insamuch as the 
branch equilibria near bifurcation are in this case unstable this property of  the 
normalized age distribution is probably of little interest. 

I f  on the other hand Dp(0)(p0)(a) is not nonnegative for all a, (6.4) may no 
longer hold. To allow Dp(O)(po)(a) to be negative for some a is to imply that 
increased populat ion density reduces the death rate for these age classes. This 
could be caused by such things as enhanced predator protection due to schooling 
or herding or to improved survival rates of  the young due to collective care. Such 
phenomena  are at the heart of  the concept of  depensation and have, for example, 
been used to explain the dynamics of  some fisheries [1]. 

As a simple example of  this case suppose that the coefficient Do = Do(a) in 
the linear death rate functional (6.1) is age-specific and in particular that it is 
negative for younger age classes a ~ 0 and increases to positive values for older 
age classes a ~ +oQ Since Dp(O)(po)(a)= Do(a), the one sign condition on Dp 
in (6.3) now fails to hold. To see the details of  a specific example suppose Do 
is given by the exponential 

Do(a) = 1 - 2  e x p ( - y a ) ,  3' = 0 - l  In 2. (6.5) 

In this case the effect of  an increase in total population size P is a decrease in 
the death rate D for age classes 0 < a < 0 and an increase in D for a > 0. From 
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(3.2) we find that  

nl = / o + 7 -  1 0 (o(a)'] =e_OS2(a)/nl 
T + 1' O-"-n \ T / J  n=l 

g2(a) := - a  + 2  (1 - e -va) +Y - 1 
y 3/+1" 

This leads to three cases for  this example:  

(a) 0 < In 2 

(b) 0 > l n 2  and fo>(O-ln2)/(O+ln2) 

(c) 0 > l n 2  and fo<(O-ln2)/(O+ln2). 

(6.6) 

I f  (a) holds (i.e. if the range o f  young  age classes whose death rates are 
decreased by popula t ion  increases is sufficiently small), then nl > 0 and (6.4) 
holds. In  this case supercritical stable bifurcat ion occurs and the normalized age 
distr ibution o f  the popula t ion  becomes younger  with increased n ~> 1 in the same 
sense as above for the case when Do was constant.  This case is illustrated in Figs. 
1 and 2 which show graphical  results f rom numerical ly  computed  solutions o f  
(1.2)-(6.1). 

I f  (b) holds then nl > 0 and in place o f  (6.4) it turns out that  

On < 0  f o r a = 0  and a ~ + ~ .  

0.~ 

0.1 

~q01 

c b 

a 

0.95 1.0 1.1 1.2 1.3 

Fig. 1. Three branches of positive equilibrium solutions of (1.1) with death and fertility rates given 
by (6.1) and (6.5) were calculated numerically with fo=0.5 for 0 =0.1, 1.1 and 3.25. These cases 
correspond respectively to (a), (b) and (c) in (6.6) 
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p(a)/P 

2.0[ 

\ iiiii'; 
1.0 ~ N ~ " ~ j n  = 1.013 

i i i i. I 
3' 1.0 2 0 .0 

Fig. 2. Three normalized age distributions from branch (a) in Fig. 1 are plotted. As the inherent net 
reproductive rate n increases these distributions become younger 

9(a)/p 

1.0( 

0.7, ~ 

0.50 

O. 2; 

n : 1.003 ~ n = 1.234 

1.0 2.0 3.0 

Fig. 3. Three normalized age distributions from branch (b) in Fig. 1 are plotted. As the inherent net 
reproductive rate n increases the proportion of young and of older age classes decreases while that 
of the middle age classes increases 

In  this  case  s u p e r c r i t i c a l  s table  b i f u r c a t i o n  stil l  occurs  bu t  in t he  n o r m a l i z e d  age  

d i s t r i b u t i o n  b o t h  the  p r o p o r t i o n  o f  y o u n g e r  a n d  o l d e r  age  c lasses  d e c r e a s e  as 

n ~> 1 inc reases .  Th i s  case  is i l lus t r a t ed  by  n u m e r i c a l  resul t s  in Figs.  1 a n d  3. 

F i n a l l y  i f  (c) h o l d s  t h e n  nl < 1 a n d  the  b i f u r c a t i o n  is subcr i t i ca l  a n d  uns tab le .  

This  case  is a l so  i l l u s t r a t ed  n u m e r i c a l l y  in Fig.  1. 
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7. Concluding remarks 

The existence of equilibrium solutions of the McKendrick equations (1.1) for 
the density p of an age-structured population has been studied here as a bifurca- 
tion problem using the population's inherent net reproductive rate n as a bifurca- 
tion parameter. Under general conditions Theorem 1 not only implies the local 
existence and uniqueness of a branch of positive equilibria which bifurcates from 
the zero density p -= 0 at the critical value n = 1, but gives the lower order terms 
in the Liapunov-Schmidt expansion of these equilibria. This local result is meant 
to supplement the more general global existence result in [4] in that it provides 
a means for studying the structure of the bifurcating branch near bifurcation, the 
age-distribution of  the equilibrium density, the direction of bifurcation and the 
influence on these things of the density dependence of the death and fertility rates. 

Theorems 2 and 3 deal with the stability properties of the zero density state 
and the positive branch equilibria of Theorem 1. Theorem 2 shows in general 
that p -= 0 is (locally) stable if and only if n < 1. Thus, for low density levels at 
least, it is necessary for the survival of the population that its inherent net 
reproductive rate exceed one. (This may not be true for large density levels.) 
Under slightly more restrictive conditions on the death and fertility rates as 
functionals of density, Theorem 3 utilizes linearized stability criteria to show that 
the positive equilibria in Theorem 1 are stable if and only if the bifurcation is 
supercritical. 

The use of this local bifurcation analysis is illustrated in Section 6 where 
some general biological implications are derived and some examples are analysed. 
It is shown that the common case when an increase in population density causes 
an increase in the death rate and also a decrease in the fertility rate for all age 
classes always results in a stable supercritical bifurcation. Moreover, this case 
leads to a younger normalized age distribution in the equilibrium density as the 
inherent net reproductive rate is increased beyond the critical value of one. These 
assumptions are not always appropriate, however, and by means of examples it 
is shown in Section 6 that if they do not hold subcritical bifurcation can occur. 
These examples also show that the normalized age distribution of the equilibrium 
density is not always made younger by increasing the net reproductive rate. 

This paper has concentrated on small amplitude equilibria lying in a neighbor- 
hood of the bifurcation point only. More global questions concerning the proper- 
ties of  solutions of  (1.1) are not addressed. The global existence of the local 
branch investigated here is known [4], but the investigation of global stability 
properties remains a challenging problem. In general the stability of even a 
supercritical stable bifurcation may not be global nor persist globally along the 
branch [3] and even chaotic dynamics can occur. In the case of subcritical unstable 
bifurcation the dynamical properties of  solutions are unclear. Many possibilities 
present themselves in this case, including for example a "turning back" of the 
bifurcating branch (as in Fig. l(c)) with a resulting stable sub-branch of large 
amplitude stable equilibria (and a possible hysteresis effect) or the presence of 
multiple positive equilibrium states. That such phenomena can occur is clear 
from various special cases of (1.1), but a study of their occurrence, and that of 
other interesting dynamical behavior, related to general properties of the vital 
death and fertility rates and their density dependence, would be interesting. 
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Appendix 

In this appendix the statement (iii) of Sect. 4(c) is proved. Using (4.7) we calculate 

io fo Yo = -po(a) l(O)(a)po(a) k(O)(a) da da 
e = O  

Io" Io" kl = n,•(a) + wl(O)(a, a)po(a) da + wm(O)(a, a)po(a) da 
e ~ O  

where nl is given by (3.2) which turns out under (4.5)-(4.6) to equal 

I0 n, = [3(a)po(a) k(O)(a) l(O)(s)po(s) ds da da 

- Wl(0)(a, c~)po(a)dapo(a) da. 

This expression together with a differentiation of the left hand side of (4.4) with 
respect to e at e = 0 yields 

fo Io' Io C,(0, 0) = 2 l(O)(a)po(a) da ~(a)po(a) k(O)(s) dsda-n,  

-2 fApo(a)  fAw,(O)(a,a)po(a)dc~da=2nl-n,=n,. 
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