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Extremal tests for scalar functions of several real variables at 

degenerate critical points 

J. M. Cushing 

I. Introduction 

It is, of  course, well known to students of calculus that the extremal nature of  
a function f at a critical point is decided if the so-called discriminant (or Hessian) 
given by the expression A = f 2 - f x x f y y  evaluated at the critical point is nonzero. It 
is also known through simple examples that, in the so-called degenerate case when 
A = 0 at the point, f may have either an extremum or a saddle point. Consequently, 
the extremal nature of f i n  this case is indeterminate from a knowledge of the second 
derivatives at the point in question alone and higher order partial derivatives at the 
point must be considered. (It is interesting that during the last century a certain 
confusion existed concerning the degenerate case, even apparently in the minds of 
some renowned mathematicians. For a short account of this history of the degenerate 
case see [1].) Systematic, yet straightforward and simple methods by which to take 
into account the higher order derivatives seem, however, difficult to come by. In 
fact, the only method known to the author which offers an essentially complete ac- 
count of this case is due to Freedman [2]. (His techniques are concerned with the 
solution of the equa t ionf  (x, y ) =  0 for x = x (y) but implicitly yield information about 
extrema as well. He also considers cases other than the degenerate case. Also in a 
recent paper I-3] Butler and Freedman consider the case when the lowest order terms 
o f f  are cubic or higher; as stated below, we do not consider this case here.) The 
purpose of  this note is to present a complete method for determining the extremal 
nature of f on the basis of its derivatives at the point in question under the two 
assumptions that ( i ) f  possesses the necessary number of  partial derivatives and (ii) 
the lowest order terms in its Taylor expansion with remainder at the point are qua- 
dratic. Under these conditions we will show how the extremal nature o f f  may be 
decided in the degenerate case through a sequence of tests each involving a dis- 
criminant and each having a degenerate case, whose occurence, however, can be 
followed by the next test of the sequence. Each test has the same format as the 
standard discriminant test using A, which itself may be considered as simply the first 
test of  the sequence. Although they accomplish more or less the same ends, the details 
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of our method are for the most part significantly different from those presented by 
Freedman in [2]. (A few particulars do overlap, however.) In addition, our method 
seems to be conceptually more concise in that it involves one simple algorithmic 
principle while Freedman's method consists of a rather long list of  technical cases, 
some of which may loop back upon themselves. (No discussion is given in [2] con- 
cerning this looping back nor the possibility of this indefinitely happening; such a 
possibility is briefly discussed, but not characterized, in [3] for the case, not con- 
sidered here, that the lowest order terms in f a r e  cubic or higher.) 

In Theorem 1 we describe our method as a sequence ofdiscriminant tests. Theorem 
2 contains specific information about the existence and behavior of the implicitly 
defined functions f (x, y) = 0 in the case of a saddle point, as derived from our tests. 
Theorem 3 characterizes those analytic functions for which the sequence of  tests 
terminates after a finite number of  steps, or equivalently those for which the sequence 
is indefinitely inconclusive. Finally, Theorem 4 is a stronger version of Theorems 1 
and 2 for the case when f is analytic. 

2. Main results 

L e t f b e  a real valued function of real variables x, y which is defined and possesses 
at least three continuous partial derivatives in some neighborhood N of  a critical 
point which we assume, without loss of generality, to be the origin. There is also 
no loss in generality in assuming f (0, 0 )=  0. The function f is said to have a proper 
relative minimum (maximum) at the origin if f ( x , y ) > O  ( < 0 )  in some deleted 
neighborhood of the origin and, in either case, is said to have aproper relative extrem- 
um there. If the values o f f ( x ,  y) change sign in every neighborhood of the origin, 
then we say that f has a saddle point at the origin. Finally, iff(x,y)>>.O (<~0) in 
some neighborhood and f (x, y) = 0 somewhere in every neighborhood of the origin, 
then f has an improper relative minimum (maximum) at the origin. Under assumption 
(ii) above, the vanishing of  both fxx and fyr at the origin would imply A = f 2 > 0  
and the fact that f has a saddle point. Since we are only interested in the degenerate 
case, we may assume without loss of generality that fxx # 0 at the origin. Let i!j!aij = 
O~+Jf/Oxly ~ at x = y = 0 .  Then, for our purposes, without any loss of generality, we 
may assume in everything done below that the function f has the form f ( x ,  y)= 
x 2 +aHxy +ao2Y 2 +o  (r  2) in N where r =  (x  2 +y2)1/2. 

To motivate briefly our method we consider Peano's well-known example (see 
[1]) f ( x ,  y ) =  ( x - p y 2 ) ( x - q y 2 ) ,  where p, q are constants, which is an illustration 
of  the possibility of f having, at a degenerate critical point, either an extremum 
( p = q )  or a saddle point (p#q).  Although the nature o f f  at the origin is for this 
example quite easy to determine by inspection, one way of  looking at Peano's example 
is to view f as a quadratic form, not in x and y, but in x and y2. This quadratic 
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form has discriminant (p_q )2  and, hence, is indefinite if and only i f p#q  and semi- 
definite if and only if p = q. For a general function f with a degenerate critical point 
at the origin, our method takes a hint from this example and, after changing variables 
so as to complete the square on its second order terms, investigates the x 2, xy 2, and 
y4 terms (in the new variables) as a quadratic form. If this form is semi-definite 
the process in repeated, only this time to consider the x 2, xy 3, and y6 terms; etc. 
To make this process precise we make the following 

DEFINITION.  A function f as described above is said to be one-fold degenerate 
at the origin if A~ = a  z i - 4aoz  = 0 and n-fold degenerate for n/> 2 if the following three 
conditions are met: 

(i) f possesses 2n continuous partial derivatives in N; 
(ii) its Taylor expansion with remainder has the form f ( x , y )=xZ+al .xy"+ 

ao2.Y 2" +m (x, y ) + o ( r  2") where m(x, y) consists of all other terms of order three 
through 2n and has the form 

m (x, y) = ~ ai2xiy j + ~, aijx'y j ; (1) 
i + j =  3, .... n+ 1 i + j = n + 2 , . . . ,  2n 

i~O, 1 i¢=0 

(iii) A.-a2,-4ao2.=O. 
Since A 1 = A we see that the classical degenerate case A = 0  in the standard ex- 

tremal test corresponds to f being one-fold degenerate. 
It is not difficult to see that if f is n-fold degenerate for some n t> 1 while possessing 

2n + 2 continuous partial derivatives in N and if we make the change of variables 

= x + (al./2) y", )7 = y,  (2) 

then the function f t a k e s  the form 

f (g, .fi)= g2 +d l  , +  12~.~ "+1  Ji- t~o 2 , + 2 )  ~2"+2 4 - a  0 2n+ 1.~ 2 n + l  "4-/n ( .~ . .~)  dl- 0 (/~2, + 2)  

a,j= (-a,./2) (3) 

(here [p]  is the largest integer less than p) where rfi has the form (1) with n replaced 
by n + 1. This is done to complete the square on the term x 2 +ax.xy" +ao zny z" which 
is possible since A. = 0. 

Although the form of the function f i n  the definition above looks rather formidable, 
it is nonetheless exactly the type which arises from an arbitrary function after n 
degenerate extremum tests, beginning with the familiar classical discriminant test, 
as described in the following theorem. 
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THEOREM 1. Suppose that the function f is n-fold degenerate at the origin for  
some n >~ 1 and possesses 2n +2 continuous partial derivatives in N. Suppose the change 
oJ variables (2) is made. 

(i) I f  do 2, + x ~ O, then f has a saddle point at the origin. 
(if) Suppose do2,+1 =0. Then 

(a) f has a proper relative minimum i f  A,  + ~ =-=- 6z ,  + ~ _ 4do 2, + 2 < 0; 
(b) f has a saddle point if A,+a >0;  
(c) the extremal nature o f f  is undecided i f  A,+ 1 =0, but in this event f is 

(n + 1)-foM degenerate. 
Notice that in the degenerate and inconclusive case (c), the fact that f is then 

(n +l)-fold degenerate allows one to reapply the theorem with n replaced by n + 1 
provided f has enough continuous partial derivatives (viz., 2n+4). Thus, this 
theorem provides a systematic manner in which to continue investigating the nature 
of the critical point (on the basis of higher order partial derivatives at the origin) 
in the event of any number of degenerate cases. The possibility of indefinitely 
obtaining the degenerate case is discussed and characterized (for analytic functions) 
below. 

Proof of  Theorem 1. From (3), f ( 0 ,  .9)=6o2,+D3 a"+l "t-O(fi 2n+1) and hence, if 
6o2,+1#0 then f (0 ,  9) changes sign with j5 near the origin. This proves (i). Let 
2 = i  "+1 cos0, f = f  sin0 (where ~, 0 are polar coordinates in the 2, 2v plane) in (3). 
Because rfi has the form (1) with n replaced by n + 1, this yields 

f=~2,+2 [Q(cos0, sin"+' 0) +o (1)] 

where Q (s, t) = s 2 ..~ dl n + 1st + d02 n + 2 t 2. If  A, + 1 < 0, then the quadratic form Q is 
positive definite and, hence, there is a constant q such that Q (cos 0, sin" +10)~> q > 0 
for all 0~<0~<2rc. Thus, for all t~¢0 small enough, f ( 2 ,  jT)>0 and (a) is proved. 
Suppose now that A,+I >0. We will first show that there exist values 0+ and 0_ 
for which Q(cosO, sin"+X0)>0 and <0  respectively. Clearly, we may take 0+ =0. 
Since Q(s, t ) = ( s - r + t )  ( s - r _ t )  for r+ =(1/2) ( -d1 ,+1  q-~/A,+~) we see that Q < 0  
for all s, t lying in an infinite sector S formed by the distinct lines s=r+t and s=r_t .  
Inasmuch as for any n >~ 1 the curve s = cos 0, t = sin" + 10, 0 ~< 0 ~< rc forms a continuous 
closed curve connecting (1, 0) and ( -  1, 0) in the upper half plane t~>0, it must 
intersect S for some 0_. Now clearly, for all J:#0 sufficiently small, f ( 2 , )7 )>0  at 
0=0+ and f ( 2 ,  )7)<0 at 0=0_  ; this proves (b). From (3) and the definition above, 
it is obvious that if do z, + 1 = A, + 1 = 0 then f is (n + 1)-fold degenerate. The examples 
f =  x z + xy" + z +yZ, + 4 and f =  ( x -  y" + z) ( x -  2y" + z) which have a relative proper 
minimum and a saddle point respectively and which both have A,+ 1 =0  proves (c). [q 

As is well known (see for example [4, §53]) the positivity of A =A~ has a certain 
geometric significance relating to the two implicitly defined curves f ( x ,  y ) = 0 ;  
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namely, these curves have unequal tangents of slopes (1 /2 ) ( - a l l+x /Aa) .  In the 
degenerate case this feature is also present in an extended form which we describe 
in the next theorem. First we point out that if f is n-fold degenerate and the hypotheses 
of Theorem 1 part (ii) and (b) hold, then the relation f (x, y ) = 0  defines, for y suf- 
ficiently small, two distinct functions x+ = ( - a l , / 2 ) y " + r + y  "+1 +y"+au± (y) where 
r± = (1/2) (--all ,+1 +x/A,+x) and u+ are continuous functions in a neighborhood of 
y = 0 satisfying u+ (0)= 0. A proof of this fact can be constructed by setting t = 2/35 "+1 
and repeating verbatim the proof of the one-fold degenerate case as given, for example, 
by Goursat [-4, p. 1 1 1]. It is not difficult to see what this fact says about a function 
f upon which the test described in Theorem 1 has been applied m -  1 >7 0 times with 
degenerate results and an mth time with case (b) as a result. The function has, of 
course, a saddle point by Theorem 1, but moreover, the relation f ( x ,  y ) = 0  (in its 
original variables) defines, in some neighborhood of y = 0 ,  two m + l  continuously 
differentiable functions x+ intersecting at y = 0  which have equal derivatives of all 
orders 1 ~< i~< m (given by - ½i!all) and distinct (m + 1)st derivatives (given by 
(m + 1)!r+) at y = 0 .  More specifically, if we follow the an changes of variables given 
by (2) which were performed in the process of performing the m -  1 degenerate tests 
described by Theorem 1 then the two intersecting arcs become, in the original vari- 
ables 

x+_= ~ ( - a x J 2 )  y k + r + y " + l + y ' + l u + ( y ) .  (4) 
k = l  

As far as saddle points are concerned, the remaining possibility is that Theorem 1 
has been applied m -  1 times with degenerate results and an ruth time with the result 
that do2,,+1~0. In this event, as pointed out by Goursat for one-fold degenerate 
critical points [-4, p. 113] the relation f ( x ,  y ) = 0  may define in a neighborhood of 
the origin either a cusp or again two intersecting curves with no other peculiarities. 
It can easily be shown that in this case the two branches have m equal derivatives 
(in the case of a cusp, one-sided derivatives) at y = 0 .  Thus, we have 

THEOREM 2. Suppose f is any function with a degenerate critical point at the 
origin to which the test described in Theorem 1 has been applied m -  1 >1 0 times with 
degenerate results and an mth time with the result that f has a saddle point at the 
origin: (a) ifdo2m+l 5 0  then f (x, y ) = 0  defines either a cusp or two intersecting curves 
x+ =x+ (y) with m equal derivatives (one sided, in the case of  a cusp) at y = 0 ;  or 

(b) i f  6o2,,+1=0 and A,,+I>0 then f ( x , y )=O defines two m + l  continuously dif- 
ferentiable functions x+ (y) given by (4) which have m equal derivatives and different 
(m + 1)st derivatives at y = O. 

(The results in this theorem are also proved in [2], if one looks hard enough, 
but not in the algorithmic format above.) 
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3. Further results 

A natural question arises concerning the repeated application of Theorem 1 : are 
there functions for which the repeated use of Theorem 1 always results in the de- 
generate case (c) and, hence, for which no decision about the extremal nature of 
the function can be made on the basis of this procedure? We will denote such func- 
tions infinitely degenerate. That infinitely degenerate functions exist can easily be 
observed by noting that, with the exception of part (c), Theorem 1 results in either 
a saddle point or a proper extremum for f ;  hence, any function possessing continuous 
partial derivatives of all orders which has an improper extremum at the origin is 
necessarily infinitely degenerate. For example, the function x 2 is infinitely degenerate. 
But then so is x ( x - e x p  ( - y - 2 ) ) ,  which shows that an infinitely degenerate function 
may have a saddle point as well as an extremum. (The function x ( x - e x p  ( - y - 2 ) )  
is infinitely degenerate because its Taylor expansion with remainder, of any order, 
is identical to that of x2.) It is interesting, however, that within the class of functions 
analytic in N the set of infinitely degenerate functions is exactly the set of functions 
with improper extrema at the origin. This fact is contained in the next theorem. 

THEOREM 3. Suppose f is analytic in N (and as always is quadratic in lowest 
terms at the origin). Then f is infinitely degenerate i f  and only i f  it can be written as 
f (x, y ) = ( x - ~  ° diyi) 2 g(x,  y) where g is a function analytic in N with g(O, 0)= 1. 
Thus, f is infinitely degenerate i f  and only i f  it has an improper minimum at the origin. 
As a result, for analytic functions whose lowest order terms are quadratic, saddle points 
and proper extrema are always found by our procedure within some finite number of 
applications of Theorem 1. 

Note that i f f  is analytic, its lowest order terms being quadratic, and infinitely 
degenerate (i.e., if f has an improper extremum at the origin) then f (x, y ) =  0 defines 
a single analytic function x = ~  diy i near y = 0 .  Here the di are the coefficients 
generated by repeated use of the change of variables (2): d l=-½a11,  d2 = --½d12, 
etc. In proving Theorem 3 we will also obtain stronger results than those contained 
in Theorem 2 for analytic f ;  namely we can show that the cases (a) or (b) in Theorem 
3 distinguish respectively the cases that f (x, y ) =  0 defines a cusp or two intersecting, 
analytic arcs at the origin. Thus, we will prove 

THEOREM 4. Suppose f is analytic at the origin (its lowest order terms being 
quadratic) and has a saddle point there. Then there exists an integer m ~ 1 such that 
the first m - 1 >>. 0 extremal tests described in Theorem 1 fail, but such that at the mth 
test either doz,,+150 or do2m+l =0  and Am+l >0. Furthermore, 

(a) i f  do2,,+150 then f (x, y ) = 0  defines a cusp at the origin consisting of  two arcs 
both analytic only for either small y > 0 ( i f  do Zr~ + 1 < O) or else small y < 0 ( i f  do 2m + 1 > O) 
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and both terminating at the origin with m equal one-sided derivatives c~, 1 <<.i<~m, at 
y =0. On the other hand, 

(b) i f  dOZm+l =0  and Am+ 1 >0, then f (x, y ) = 0  defines two analytic arcs for small 
L yl which intersect one another at the origin andpossess m equal derivatives ci, 1 <<. i <<. m, 
but unequal (m + 1)st derivatives at y = 0 .  

The proofs of Theorems 3 and 4 depend on a theorem from the theory of functions 
of several complex variables (the Weierstrass preparation theorem [5, p. 68]) from 
which we may conclude, since f i s  analytic, that f (x, y) = Ix 2 + a (y) x + b (y)] g (x, y) 
where g(x, y) is analytic at the origin with g(0, 0)= 1 and where a and b are analytic 
functions of y. The following facts are easily established (the proofs are omitted for 
brevity): the function f is infinitely degenerate at the origin if and only if x 2 + a ( y ) x  
+b(y)  is; a n d  xZ+a(y)x+b(y)  is infinitely degenerate at the origin if and only 
if a 2 (y )  = 4b (y) for all y in their common domain of definition. 

Proof of  Theorem 3. I f f  has an improper extremum at the origin, then as already 
pointed outfnecessarily is infinitely degenerate; suppose conversely that f i s  infinitely 
degenerate. Then by the remarks above f (x, y ) =  [y + ½a (y)]Z g (x, y) where g (0, 0 )=  
1, and it becomes clear that f has an improper relative minimum at the origin. [3 

Proof of  Theorem 4. We can say immediately from Theorem 3 that if f has a 
saddle point at the origin then necessarily the sequence of extremal tests terminates 
at some finite step. Thus, either case (a) or (b) of Theorem 4 holds; the assertion 
of (b) follows immediately from the proof of Theorem 2. (We need only note in 
addition that the analyticity o f f  implies that the functions u+ (y) are analytic at 
y = 0 ,  as well known implicit function theorems tell us [4, p. 399].) For part (a) 
we observe that the given hypotheses on f together with the remarks made above 
can readily be shown to yield 

a a,_j y' 
i = 2 n + l  j = l  

(5) 

where a ( y ) = ~  a~y i and b ( y ) = ~  biy ~. Since the right hand side vanishes for small 
IxL, l Yl if and only if the bracketed expression vanishes the implicitly defined curves 
are identical for these two expressions. Now the condition do 2.+1 # 0  means that 
upon setting ~ = 0 at the ruth test (that is, in the original variables, x + ½ ~ +  1 a S  = O) 
the resulting power series in )7 has )72.+1 as its lowest order term. From (5) this 
condition is precisely do2.+l=b2.+l--¼ 2n ~ j = l  a ja2 ,+l - j '#  0. Since .92"+1 is an odd 
power of .9, it is clear that f (x, y) vanishes only for small )7 = y  > 0 if do 2,+1 <0  or 
only for small y < 0  if do2,+1>0. In fact the branches are found by setting the 
bracketed term in (5) equal to zero and solving for x. 

Remark. All of the above results can be extended in a straightforward manner 
to functions f of n~>3 variables xx, . . .x ,  provided the sum of the second order terms 
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is a semi-definite quadratic form of deficiency one; i.e., in canonical variables, 
f = ~ ] - i  eix2+o(r2),  e i=cons t .>0 .  I f  the deficiency d is two or more, then the 
method fails in that the behavior of the quadratic form in the variables xl .... , x,_ d, 

2 2 does not determine that o f f  near the origin. This can be shown by X n - d +  1 ,  • " " ,  X n  

the following two examples (with n = 3 ) :  f=(x~  +x2x3) 2 +x24+(¼)x~ and f = x  2 + 
X~q-X~--4XlX2X 3 which have a proper minimum and a saddle point at the origin 
respectively, while the quadratic forms (in xl,  x 2, and x 2) given by x 2 +x2" + (~)3 x3 
and 2 4+xa4 are Xl +x2 both positive definite. 

EXAMPLE.  To illustrate the repeated use of  Theorem 1 consider the polynomial 
f = x 2 2 x y + y 2 _ 2 x y 2  +2y3 q _ y 4 y 6  +xy6. Since A1 =0,  the origin is a degenerate 

critical point. To apply Theorem 1 with n = 1 we make the change of variables (2) 
with Cl = 1 and obtain 22-22)72 +374-)76 +2)7 6 +377. Inasmuch as doa=0  and A2= 
d22 - 4dl 4 = ( -  2) 2 - 4 (1) = 0, f is two-fold degenerate. To apply the theorem again 
with n = 2 we make a second change of variables given by (2) (after replacing the 
coordinates 2, )7 with x, y for simplicity to avoid complicating the notation):  2 =  
x - - y  2, fi=y. This yields 22--y6+2376+377+fi8 and dos=0,  A2=d23-4do6=O - 

4 ( -  l ) =  4 > 0. From part  (b) of  Theorem 1 we find that this polynomial has a saddle 
point at the origin. Furthermore, by Theorem 4, f ( x , y ) = O  defines two analytic 
functions of  the form x+ =y+yE+y3+yau+ (y) and x_ = y + y E _ y 3  +yau_ (y) for 

[y[ sufficiently small. 

REFERENCES 

[1] HANCOCK, H., Theory of Maxima and Minima (Dover, New York 1960). 
[2] FREEDMAN, H. I., The Implicit Function Theorem in the Scalar Case, Canad. Math. Bull. I2, 721- 

732 (1969). 
[3] BUTLER, G. J. and FREEDMAN, H. I., Further Critical cases of the Scalar hnplicit Function Theorem, 

Aequationes Math. 8, 203-211 (1972). 
[4] GOURSAT, E., A Course in Mathematical Analysis (Dover, New York 1959) Vol. 1. 
[5] GUNMNG R. C. and Rossl, H., Analytic Functions of Several Complex Variables (Prentice-Hall, 

Englewood, Cliffs, N. J. 1965). 

Department of  Mathematics, 
University of  Arizona, 
Tucson, Arizona 85721, 
U.S.A. 


