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A Dynamic Dichotomy for a System
of Hierarchical Difference Equations

J. M. Cushing1

University of Arizona, Department of Mathematics, Interdisciplinary Program in Applied
Mathematics, Tucson, AZ 85721 USA

A system of difference equations that arises in population dynamics is studied. For this
system the interior and the boundary of the positive cone are both forward invariant. Criteria
are given for the existence of equilibria lying in the positive cone. Criteria are also given for the
existence of periodic cycles lying on the boundary of the positive cone. These equilibria and
boundary cycles arise from a bifurcation that occurs as a fundamental parameter R0 increases
through the critical value 1. Under certain monotone conditions on the nonlinearities and for
R0 near 1, we derive criteria for the stability of the positive equilibria. We also determine
the global dynamics on the boundary of the cone, namely, we show that every boundary orbit
tends to a periodic cycle (all of which we classify into four types). A dynamic dichotomy is
established between the positive equilibria and the boundary cycles. This dichotomy asserts
that either the equilibria are stable and the boundary cycles are unstable or vice versa. A
criterion is provided that determines which alternative occurs. We also establish, more gener-
ally, a dynamic dichotomy between the positive equilibria and the boundary of the cone. The
difference equations arise in the study of semelparous populations and these results describe
an alternative between equilibration with overlapping generations and cyclic oscillations with
non-overlapping generations.
Keywords: hierarchical difference equations, nonlinear matrix models, equilibria, syn-

chronous cycles, bifurcation, stability
AMS Subject Classification: 39A30, 39A28, 39A60

1 Introduction
Systems of difference equations of the form

x1 (t+ 1) = τm (x1 (t) , · · · , xm (t))xm (t)
xi+1 (t+ 1) = τ i (x1 (t) , · · · , xm (t))xi (t) , i = 1, 2, · · · ,m− 1

for t ∈ Z+ $ {0, 1, 2, · · · }, arise in age-structured population dynamics. In that context each
component xi (t) denotes the density of individuals of age i (specifically i−1 to i) and the equations
describe the dynamics of a semelparous life history in which individuals of age i survive a unit of
time with probability τ i > 0 until they reach the age m at which point they reproduce (at a per
capita rate of τm > 0 per unit time) and die. These equations define a discrete time semi-dynamical
system by means of the map bx −→ L (bx) bx (1)

1Author supported by NSF grant DMS 0917435.
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where bx = col (xi) ∈ Rm
+ (the positive cone in Rm) and L is the projection matrix

L (bx) =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0 τm (bx)
τ1 (bx) 0 · · · 0 0 0
0 τ2 (bx) · · · 0 0 0
...

...
...

...
...

0 0 · · · τm−2 (bx) 0 0
0 0 · · · 0 τm−1 (bx) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2)

This has the form of a Leslie matrix model [1], [3], [5], [13], [14].
In general, nonlinear matrix models bx −→ P (bx) bx with non-negative, irreducible projection

matrices P (bx), exhibit a fundamental bifurcation when the (extinction) equilibrium bx = b0 loses
stability as the dominant eigenvalue r of P (b0) increases through 1, resulting in the bifurcation of
a continuum of positive equilibria (from b0) whose stability depends on the direction of bifurcation.
The positive equilibria are stable if the direction of bifurcation is to the right (r ' 1) and unstable
if it is to the left (r / 1). The latter occurs only if there is sufficient positive feedback, i.e., positive
partial derivatives of τ i at bx = b0 of sufficiently large magnitude. Such positive derivatives are called
Allee effects. If all such derivatives are non-negative (but not all equal to zero), then the bifurcation
is to the right. This negative feedback case is the most common assumption in population models.
For details about the fundamental bifurcation theorem, see [3], [5].
The fundamental bifurcation scenario described above requires that the projection matrix be

primitive (i.e., that the dominant eigenvalue is strictly dominant). The semelparous Leslie projec-
tion matrix (2) is not, however, primitive. Its eigenvalues³Ym

i=1
τ i (bx)´1/m uk, k = 1, 2, · · · ,m

where the uk = exp (2π (k − 1) i/m) are the mth roots of unity, all have the same magnitude.
As a result the fundamental bifurcation theorem is inapplicable to the semelparous Leslie matrix
model. It turns out that some parts of the theorem are still valid and some are not. The extinction
equilibrium bx = b0 does lose stability as

r $
³Ym

i=1
τ i(b0)´1/m

(the spectral radius of the Jacobian L(b0)) increases through 1, or equivalently as the quantity
R0 $

Ym

i=1
τ i(b0)

increases through 1. R0 is known as the inherent net reproductive number (and equals the expected
lifetime number of offspring per individual). In fact, the semelparous Leslie matrix model is perma-
nent (dissipative and uniformly persistent) with respect to bx = b0 for R0 > 1 [3], [11]. Moreover, a
(global, unbounded) continuum of positive equilibria bx bifurcates (from b0) at R0 = 1.[4]. However,
it is not true that the stability of these bifurcating positive equilibria, near the bifurcation point
R0 = 1, depend on the direction of bifurcation (as in the general exchange of stability principle
for a transcritical bifurcation). This is related to the fact that both the positive cone Rm

+ and its
boundary ∂Rm

+ are invariant under the map (1)-(2).
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Specifically, by definition a point bx ∈ ∂Rm
+ has at least one zero component. A zero component

advances one positive in one time step, ultimately returning to its original position after m time
steps. (Positive components in bx behave in the same way.) Therefore, orbits on the boundary
of the cone sequentially visit coordinate hyperplanes and for this reason are called synchronous
orbits. In the population dynamic context they represent population trajectories that oscillate with
synchronized age cohorts and with missing age classes at every point in time. This dynamic is
of course quite different from that of the positive equilibria, which represent stationary dynamics
with all age classes present. A synchronous (boundary) orbit can be a periodic cycle (of period
m or less), in which case it is called a synchronous cycle. Since such cycles always have the same
number of missing age classes at any point in time, they can be classified according to the number
of age classes present at any point in time. For example, an extreme case is that of a single-class
synchronous cycle in which only one age class is present at any point in time.
It is proved in [4] that in addition to a branch of positive equilibria, there also bifurcates (fromb0) a continuum of single-class m-cycles at R0 = 1.
In [4] it is shown for the m = 2 dimensional case that a dynamic dichotomy occurs between the

bifurcating positive equilibria and the single class 2-cycles when a bifurcation to the right occurs
(also see [2], [12]). Specifically, it is shown (for R0 ' 1) that either the positive equilibrium is stable
and the single class 2-cycle unstable or vice versa. It cannot happen that both are stable or both
are unstable. Moreover, the criteria that determines which of the two is (locally asymptotically)
stable is related to a ratio c of between-class to within-class competition intensities as measured by
weighted averages of the partial derivatives

∂jτ i $
∂τ i
∂xj

and ∂0j τ i $
∂τ i
∂xj

¯̄̄̄
x=0

with j 6= i and j = i respectively.
A natural conjecture is that the dynamic dichotomy also holds between the bifurcating positive

equilibria and single-classm-cycles in them-dimensional case. This turns out to be false, however, as
is shown in [6] for them = 3 dimensional case. Under certain monotonicity conditions (including the
negative feedback assumption that ∂0j τ i ≤ 0) a dynamic dichotomy does occur, however, between
the bifurcating positive equilibria and the boundary ∂R3+ of the cone. This modification of the
dichotomy is necessary because, as it turns out, the bifurcation at R0 = 1 involves invariant loops
that lie on ∂R3+ and which have the geometry of heteroclinic synchronous orbits that connect the
phases of the single-class 3-cycle. This includes a case in which both the positive equilibrium and
the single-class 3-cycle are simultaneously unstable. Moreover, two-class 3-cycles can also lie on the
invariant loop, in which case the boundary dynamics are more complicated.
Whether or not the dynamic dichotomy between the bifurcating positive equilibria and the

boundary ∂Rm
+ occurs for the semelparous Leslie model (1)-(2) in dimensions m ≥ 4 remains an

open problem. It is clear, from the case m = 3 for example, that the boundary dynamics play an
important role with regard to this conjecture and that these dynamics can get considerably more
complicated in higher dimensions (as the possibility of more types of multi-class m-cycles and more
elaborate invariant loops on ∂Rm

+ arises). Numerical simulations of an example with dimension
m = 4 suggest that this dichotomy in fact does not hold in general (although this has not been
proved rigorously); see [7]. Thus, it appears likely that the dichotomy does not in general hold
for dimensions m ≥ 4, although it might hold, of course, for models with special features and
properties. In this paper we will prove that a dynamic dichotomy does hold in dimension m = 4
for a certain class of semelparous Leslie models called “hierarchical of degree one”.
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The paper is organized as follows. We describe the model equations and the hypotheses that we
require in Section 2, where we also give some preliminaries results. In Section 3 we derive a thorough
account of the global dynamics on the boundary ∂R4+. We establish in Section 4 criteria for the
occurrence of a dynamic dichotomy, near the bifurcation point R0 = 1, between the bifurcating
positive equilibria and a certain type of synchronous 4-cycle on ∂R4+. In Section 5 we give criteria
under which the dichotomy occurs between the positive equilibria and the boundary ∂R4+. These
criteria are in terms of the age-class competition ratio c. The details of mathematical proofs appear
in appendices.

2 Preliminaries
We consider the m = 4 dimensional semelparous Leslie model (1)-(2) with matrix entries of the
form

τ i = τ i (xi, xi+1) , i = 1, 2, 3, and τ4 = τ4 (x4, x1)

Biologically speaking, these entries for i = 1, 2, 3 describe the situation when the probability an
individual in a juvenile class survives one time unit depends, in addition to its own age-class density,
only on the density of the next older class. For this reason the model is called “hierarchical of
degree on”. The assumption on τ4 means that adult fecundity depends only on adult and newborn
densities.
We make the following smoothness and normalization assumptions on these entries, in which Ω

is an open set in R4 that contains the closure R
4

+ of the positive cone R
4
+.

A1: τ4 = s4σ4 (x4, x1) and τ i = siσi (xi, xi+1) where σi ∈ C2 (Ω, (0, 1]) , σ4 (0, 0) =
σi (0, 0) = 1, and s4 > 0, 0 < si < 1.

We also make the following monotonicity and boundedness assumptions. We assume the sub-
script notation is mod(4), so that x5 = x1.

A2: On Ω we have
(a) ∂jσi ≤ 0 for 1 ≤ i, j ≤ 4 and at least one ∂0i σi < 0 and one ∂0i+1σi < 0;
(b) ∂i [σi (xi, xi+1)xi] ≥ 0 and σi (xi, xi+1)xi is bounded for all i = 1, 2, 3, 4.

Because of the normalizations on σi in A1, the real numbers si are the inherent (low density)
juvenile survival probabilities and s4 is the inherent (low density) adult fecundity. The Leslie
projection matrix takes the form

L (bx) =
⎛⎜⎜⎝

0 0 0 s4σ4 (x4, x1)
s1σ1 (x1, x2) 0 0 0

0 s2σ2 (x2, x3) 0 0
0 0 s3σ3 (x3, x4) 0

⎞⎟⎟⎠ . (3)

The eigenvalues of the matrix L (0), which is the Jacobian of the map evaluated at the origin, are

λk = R
1/4
0 uk where R0 $ s1s2s3s4

where we denote the 4th roots of unity by

uk = exp

µ
π (k − 1)

2
i

¶
, k = 1, 2, 3, 4 .
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The difference equations that define the dynamics of bx = col( x1 x2 x3 x4 ) are

x1 (t+ 1) = s4σ4 (x4 (t) , x1 (t))x4 (t) (4a)

x2 (t+ 1) = s1σ1 (x1 (t) , x2 (t))x1 (t) (4b)

x3 (t+ 1) = s2σ2 (x2 (t) , x3 (t))x2 (t) (4c)

x4 (t+ 1) = s3σ3 (x3 (t) , x4 (t))x3 (t) . (4d)

The prototypical nonlinearities that satisfy the assumption A1 and A2 are the discrete Leslie-Gower
(or Lotka-Volterra) type rational functions

σ4 (x4, x1) =
1

1 + β44x4 + β41x1
, σi (xi, xi+1) =

1

1 + βiixi + βi,i+1xi+1

with nonnegative competition coefficients βij ≥ 0.
The following theorem is a corollary of Theorems 2.1 and 3.1 in [4].

Theorem 1 For hierarchical semelparous Leslie model (4) of order one satisfying A1 and A2, the
following fundamental bifurcation events occur at R0 = 1.
(a) For R0 < 1 the extinction equilibrium bx = b0 is globally asymptotically stable on R4+. For

R0 > 1 the equilibrium bx = b0 is unstable and the matrix model is dissipative and uniformly persistent
(permanent) with respect to bx = b0.
(b) There exists a continuum of positive equilibria and a continuum of single-class 4-cycles that

bifurcate (to the right) from bx = b0 at R0 = 1.
3 Dynamics on the Boundary of the Positive Cone
The boundary ∂R4+ of the positive cone is held invariant by semelparous Leslie models. In this
section we will account for the global dynamics of (4) on ∂R4+. This includes proving the existence
and global stability properties of boundary 4-cycles of types other than the single-class 4-cycles
guaranteed by Theorem 1. The main result is Theorem 2 below.
To account for the global dynamics on the boundary ∂R4+ we need to consider the subsets

H1,H2a,H2s,H3 of the punctured boundary ∂R4+\{b0} defined as follows: H1 is the set of thosebx ∈ ∂R4+ with one positive and three zero entries (in other words, the coordinate axes); H2a and
H2s consist of those bx ∈ ∂R4+ with two zero and two positive entries that are, respectively, adjacent
and separated; and H3 consists of those bx ∈ ∂R4+ with one zero and three positive entries. Note
that

∂R4+\{b0} = H1 ∪H2a ∪H2s ∪H3.

A point bx ∈ ∂R4+\{b0} necessarily contains a pair of adjacent (mod(4)) zero and positive compo-
nents. Because, as observed in Section 1, zero and positive entries advance one position (modulo(4))
with each iteration of the map, it follows that within m = 4 steps the orbit associated with bx will
have components x1 = 0 and x4 > 0. Therefore, to study the dynamics on ∂R4+\{b0} it is sufficient
to consider initial conditions of the form

bx =
⎛⎜⎜⎝

0
y2
y3
y4

⎞⎟⎟⎠ , y4 > 0

5
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and to study the orbit generated by the composite map obtained from the four applications of the
map defined by (4), which returns this initial point to an image point of the same type. Careful
consideration the equations (4) shows that this composite is defined by the three equations

y2 (t+ 1) = R0g2 (y2 (t) , y3 (t) , y4 (t)) y2 (t) (5a)

y3 (t+ 1) = R0g3 (y3 (t) , y4 (t)) y3 (t) (5b)

y4 (t+ 1) = R0g4 (y4 (t)) y4 (t) (5c)

for y2, y3, y4, where the factors gi equal 1 when all yi = 0. Moreover, the smoothness, monotone and
boundedness assumptions on the σi in A1 and A2 imply that the gi have the following properties.

A3: gi ∈ C2 (Ωi, (0, 1]) , gi (0, · · · , 0) = 1, where Ωi is an open set that contains

R
5−i
+ .
A4: On Ωi we have

(a) ∂jgi ≤ 0 for 2 ≤ i ≤ j ≤ 4
(b) ∂i [gi (yi, · · · , y4) yi] ≥ 0 and gi (yi, · · · , y4) yi is bounded for i = 2, 3, 4.

Note that this system (5) of difference equations is triangular and that we are interested in
initial conditions with y4 > 0. A fixed point of (5) corresponds to a boundary 4-cycle of (4), and
if we can account for the fixed points of (5) with y4 > 0 then we can account for the boundary
4-cycles of (4). We do this by starting with the uncoupled scalar (monotone) map (5c) and then
by successively treating equations (5b) and (5a) as asymptotically autonomous maps. Relevant
theorems about scalar, asymptotically autonomous maps appear in Appendix A.
By Theorem 7 in Appendix A, when R0 > 1 equation (5c) has a positive, hyperbolic, asymp-

totically stable fixed point y∗4 > 0 that globally attracts all orbits with initial conditions y4 > 0.
Clearly col( y2 y3 y4 ) = col( 0 0 y∗4 ) is a fixed point of (5). Other fixed points with y4 > 0
of the equations (5) are also possible when R0 > 1. Specifically, it is possible to have fixed points
with y4 > 0 that lie in H2a, H2s, or H3, as shown in Table 1.

Fixed point
of (5) Type 1 Type 2a Type 2s Type 3⎛⎝y2
y3
y4

⎞⎠ =

⎛⎝ 00
y∗4

⎞⎠ ⎛⎝ 0y∗3
y∗4

⎞⎠ ⎛⎝y∗2
0
y∗4

⎞⎠ ⎛⎝y∗2
y∗3
y∗4

⎞⎠
Table 1. The four possible types of fixed points, with positive component y4, of the
composite equations (5). All y∗i are positive.

Criteria for the existence and stability of the fixed points of the composite map (5) in Table 1
appear in the following lemma. The globally attracting assertions all mean globally attracting with
respect to initial points in the indicated sets (with y4 > 0).

Lemma 1 Assume A3, A4 and R0 > 1. The following hold for the composite equations (5).
(1) There exists a fixed point of Type 1 in H1 that is globally attracting in H1.
(2) Suppose R0g3 (0, y∗4) < 1.
(a) If R0g2 (0, 0, y∗4) < 1 then the fixed point of Type 1 is globally attracting on ∂R4+\{b0}.
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(b) If R0g2 (0, 0, y∗4) > 1 then there exists a fixed point of Type 2s in H2s. The fixed points
of Type 1 and Type 2s are globally attracting on H1 ∪H2a and H2s ∪H3 respectively.
(3) Suppose R0g3 (0, y∗4) > 1. Then there exists a fixed point of Type 2a in H2a.
(a) If R0g2 (0, 0, y∗4) < 1 then the fixed points of Type 1 and Type 2a are globally attracting

on H1 ∪H2s and H2a ∪H3 respectively.
(b) Suppose R0g2 (0, 0, y∗4) > 1.
(i) If R0g2 (0, y∗3 , y

∗
4) < 1 then the fixed points of Type 1 and Type 2s are globally attracting

on H1 ∪H2a and H2s ∪H3 respectively.
(ii) If R0g2 (0, y∗3 , y

∗
4) > 1 then there is a fixed point of Type 3 in H3. The fixed points of

Type 1, Type 2a, Type 2s, and Type 3 are globally attracting on H1, H2a, H2s, and H3 respectively.

The proof of this Lemma appears in Appendix B.
The different types of fixed points of the composite equation (5) appearing in Table 1 and

Lemma 1 give, respectively, the following types of 4-cycles (based on the location of their zero and
positive components) of the Leslie model (4):

Single-class 4-cycle

bx1 =
⎛⎜⎜⎝

0
0
0
+

⎞⎟⎟⎠ ,bx2 =
⎛⎜⎜⎝
+
0
0
0

⎞⎟⎟⎠ ,bx3 =
⎛⎜⎜⎝

0
+
0
0

⎞⎟⎟⎠ ,bx4 =
⎛⎜⎜⎝

0
0
+
0

⎞⎟⎟⎠ (6)

2-class 4-cycle of Type 2a

bx1 =
⎛⎜⎜⎝

0
0
+
+

⎞⎟⎟⎠ ,bx2 =
⎛⎜⎜⎝
+
0
0
+

⎞⎟⎟⎠ ,bx3 =
⎛⎜⎜⎝
+
+
0
0

⎞⎟⎟⎠ ,bx4 =
⎛⎜⎜⎝

0
+
+
0

⎞⎟⎟⎠
2-class 4-cycle of Type 2s

bx1 =
⎛⎜⎜⎝

0
+
0
+

⎞⎟⎟⎠,bx2 =
⎛⎜⎜⎝
+
0
+
0

⎞⎟⎟⎠,bx3 =
⎛⎜⎜⎝

0
+
0
+

⎞⎟⎟⎠,bx4 =
⎛⎜⎜⎝
+
0
+
0

⎞⎟⎟⎠
3-class 4-cycle

bx1 =
⎛⎜⎜⎝

0
+
+
+

⎞⎟⎟⎠,bx2 =
⎛⎜⎜⎝
+
0
+
+

⎞⎟⎟⎠,bx3 =
⎛⎜⎜⎝
+
+
0
+

⎞⎟⎟⎠,bx4 =
⎛⎜⎜⎝
+
+
+
0

⎞⎟⎟⎠
The criteria given in Lemma 1 for the existence and attractivity of these various 4-cycles are

not transparently related to the original models parameters si and σi in the semelparous Leslie
model (4). We can make these relationships clear, at least near the bifurcation point R0 = 1,
by calculating the lower order terms in the ε expansions (ε = R0 − 1) of each cycle and and
using them to calculate the lower order terms in expansions for the criteria quantities R0g3 (0, y∗4) ,
R0g2 (0, 0, y

∗
4), etc. appearing in Lemma 1.

Consider first the single-class 4-cycle (6). For the first point bx1 = col ¡ 0 0 0 y∗4
¢
in that

4-cycle, we have from (5c) that y∗4 = g−14
¡
R−10

¢
and thus y∗4 (ε) = −ε/∂04g4 + O(ε2). .In order
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to express the leading coefficient in terms of the original model parameters σi, both in this and
latter expansions, we need to calculate the partial derivatives ∂0j gi of the factors gi in the composite
equations (5) with respect to their arguments yj and evaluate the results at yi = 0. This application
of the chain rule, while tedious, is straightforward. The results appear in Table 2. In this table

pj $
½
1 for j = 1Qj−1

q=1 sq for j = 2, 3, 4

cw $
4X

i=1

pi∂iσ
0
i , cb $

4X
i=1

pi+1∂
0
i+1σi, c $ cb

cw

where ∂5 $ ∂1 and p5 $ p1. Note that under assumptions A1 and A2 we have cw, cb < 0 and
0 < pj ≤ 1.The quantities cw and cb measure the intensity of within-in class and between-class
competition respectively. pj is the inherent probability that a newborn will live to age j.

∂02g2 = p−12 cw ∂03g2 = p−13 cb ∂04g2 = 0
∂03g3 = p−13 cw ∂04g3 = p−14 cb
∂04g4 = p−14 cw

Table 2. The partial derivatives ∂jgi of gi with respect to yj evaluated at all yi = 0.

From Table 2 we have
y∗4 (ε) = −

s1s2s3
cw

ε+O(ε2). (7)

We can calculate expansions for the other components of the single-class 4-cycle (6) by repeatedly

applying the map (4). For example, using s4 = p−14 R0 we have

p−14 (1 + ε)σ4 (y
∗
4 (ε) , 0) y

∗
4 (ε) = −

1

cw
ε+O(ε2)

for the first component of the second point in the 4-cycle. Similar calculations for the remaining
positive components in the points of the single-class 4-cycle (6) yield, for ε = R0 − 1 ' 0, the
expansions (recall cw < 0):

Single-class 4-cycle

bx1 (ε) = − 1
cw

⎛⎜⎜⎝
0
0
0
p1

⎞⎟⎟⎠ ε+O(ε2), bx2 (ε) = − 1
cw

⎛⎜⎜⎝
p2
0
0
0

⎞⎟⎟⎠ ε+O(ε2),

bx3 (ε) = − 1
cw

⎛⎜⎜⎝
0
p3
0
0

⎞⎟⎟⎠ ε+O(ε2), bx4 (ε) = − 1
cw

⎛⎜⎜⎝
0
0
p4
0

⎞⎟⎟⎠ ε+O(ε2).

(8)

Next, consider the first point in the Type 2a 4-cycle whose two positive entries are

y∗3 = y∗3 (ε) , y∗4 = y∗4 (ε)

8
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where the expansion of y∗4 (ε) is (7). We can calculate the expansion of y
∗
3 (ε) from the equation

1 = R0g3 (y
∗
3 (ε) , y

∗
4 (ε)) , which results from (5b) after a cancellation of the factor y

∗
3 (ε), by implicit

differentiation with respect to ε followed by an evaluation at ε = 0. The result is

y∗3 (ε) =

µ
−p3

1− c

cw

¶
ε+O(ε2).

Expansions for the subsequent points in the 4-cycle can be calculated by repeatedly applying the
map (4) to these expansions.

2-class 4-cycle of Type 2a

bx1 = − 1
cw

⎛⎜⎜⎝
0
0

p3 (1− c)
p4

⎞⎟⎟⎠ ε+O(ε2), bx2 = − 1
cw

⎛⎜⎜⎝
1
0
0

p4 (1− c)

⎞⎟⎟⎠ ε+O(ε2),

bx3 = − 1
cw

⎛⎜⎜⎝
1− c
p2
0
0

⎞⎟⎟⎠ ε+O(ε2), bx4 = − 1
cw

⎛⎜⎜⎝
0

p2 (1− c)
p3
0

⎞⎟⎟⎠ ε+O(ε2).

(9)

Note that for this cycle to lie on ∂R4+ it is required that c < 1.
Similar calculations yield the following expansions for the three-class 4-cycle and the 4-cycles of

Type 2s:
2-class 4-cycle of Type 2s

bx1 = − 1
cw

⎛⎜⎜⎝
0
p2
0
p4

⎞⎟⎟⎠ ε+O(ε2), bx2 = − 1
cw

⎛⎜⎜⎝
1
0
p3
0

⎞⎟⎟⎠ ε+O(ε2),

bx3 = − 1
cw

⎛⎜⎜⎝
0
p2
0
p4

⎞⎟⎟⎠ ε+O(ε2), bx4 = − 1
cw

⎛⎜⎜⎝
1
0
p3
0

⎞⎟⎟⎠ ε+O(ε2).

(10)

3-class 4-cycle

bx1 = − 1
cw

⎛⎜⎜⎝
0

p2(c
2 − c+ 1)

p3 (1− c)
p4

⎞⎟⎟⎠ ε+O(ε2), bx2 = − 1
cw

⎛⎜⎜⎝
1
0

p3
¡
c2 − c+ 1

¢
p4 (1− c)

⎞⎟⎟⎠ ε+O(ε2),

bx3 = − 1
cw

⎛⎜⎜⎝
1− c
p2
0

p4
¡
c2 − c+ 1

¢
⎞⎟⎟⎠ ε+O(ε2), bx4 = − 1

cw

⎛⎜⎜⎝
¡
c2 − c+ 1

¢
p2 (1− c)

p3
0

⎞⎟⎟⎠ ε+O(ε2).

(11)

With these expansions (of the components y∗i (ε)) in hand, and the derivatives in Table 2, we
are in a position to calculate the lowest order terms in the quantities in Lemma 1 that determine
the existence and global stability of the four types of boundary 4-cycles:

R0g3 (0, y
∗
4) = (1 + ε) g3 (0, y

∗
4 (ε)) = 1 +

£
1 + ∂04g3y

∗0
4 (0)

¤
ε+O(ε2)

= 1 + [1− c] ε+O(ε2)

9
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R0g2 (0, 0, y
∗
4) = (1 + ε) g2 (0, 0, y

∗
4 (ε)) = 1 +

£
1 + ∂04g2y

∗0
4 (0)

¤
ε+O(ε2)

= 1 + ε+O(ε2).

R0g2 (0, y
∗
3 , y
∗
4) = (1 + ε) g2 (0, y

∗
3 (ε) , y

∗
4 (ε)) = 1 +

£
1 + ∂03g2y

∗0
3 (0) + ∂04g2y

∗0
4 (0)

¤
ε+O(ε2)

= 1 + [1 + c (c− 1)] ε+O(ε2).

All three quantities equal 1 to lowest order. Whether or not these quantities are, for ε ' 0, greater
or less than 1 depends on the sign of the first order coefficients in their expansions. From Lemma 1
we have the following theorem which describes the boundary dynamics of the model (4). (Note that
for ε ' 0 we have R0g2 (0, 0, y∗4) > 1 and consequently (2a) and (3a) in Lemma 1 cannot occur.)

Theorem 2 Assume A1, A2, and c 6= 1. For R0 ' 1 all boundary orbits of the hierarchical
semelparous Leslie model (4) (other than the origin) tend to one of the four boundary 4-cycles
(8)-(11). Specifically, we have the following two alternatives.
If c > 1 then boundary initial conditions bx ∈ H1 ∪ H2a or H2s ∪ H3 yield orbits that tend,

respectively, to the synchronous 4-cycle (8) or (10).
If c < 1 then boundary initial conditions bx ∈ H1 or H2a or H2s or H3 yield orbits that tend,

respectively, to the synchronous 4-cycle (8) or (9) or (10) or (11).

4 A Dynamic Dichotomy
Our goal in this section is to establish a dynamic dichotomy, for R0 ' 1, between the positive
equilibria and the 4-cycles (10) of type 2s (which we show below are actually 2-cycles).
Our first goal is to determine criteria for the stability and instability of the positive equilibria

near the bifurcation point R0 = 1 that guaranteed by Theorem 1(a). For this purpose, the lowest
order terms in the Lyapunov-Schmidt parameterization bx = bx (ε) for ε = R0 − 1 of the bifurcating
branch of positive equilibria will be useful. This calculation is standard (e.g., see [3] or, specifically
for semelparous Leslie models, see [4]). The result is

bx (ε) =
⎛⎜⎜⎝

x1 (ε)
x2 (ε)
x3 (ε)
x4 (ε)

⎞⎟⎟⎠ = − 1

cw + cb

⎛⎜⎜⎝
p1
p2
p3
p4

⎞⎟⎟⎠ ε+O(ε2). (12)

We can investigate the stability of the positive equilibrium (12), using the linearization principle,
by investigating the four eigenvalues of the Jacobian of the map (4) evaluated at the equilibrium.
Because the Jacobian is a function of ε, its eigenvalues are also functions of ε. When ε = 0, the
eigenvalues equal the fourth roots of unity and hence all have magnitude equal to 1. As a result,
the magnitude of all four eigenvalues must be investigated (to see if they are less than or greater
than 1), unlike the generic bifurcation case in which the projection matrix is primitive and only the
dominant eigenvalue needs to be considered. For ε ' 0 we need only calculate the first order terms
in the expansions for the eigenvalues. The details of this calculation appear in Appendix C, with
the following result.

Theorem 3 Assume A1 and A2 hold. For R0 = s1s2s3s4 ' 1 the bifurcating positive equilibria of
the hierarchical semelparous Leslie model (4) guaranteed by Theorem 1(b) are locally asymptotically
stable if c < 1 and are unstable if c > 1.

10
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When the projection matrix of a matrix map is primitive, then a right (or supercritical) bifur-
cation at R0 = 1 always results in stable positive equilibria [3], [5]. This is, in fact, a result of the
general exchange of stability principle for transcritical bifurcations in nonlinear functional analysis
[9]. From Theorem 3 we see that this principle does not hold for the imprimitive semelparous
Leslie model (4), for which a right bifurcation does not necessarily result in stable equilibria (also
see [4], [6] for m dimensional models). Instead, equilibrium stability is determined by the ratio c.
The biological interpretation of the stability/instability criteria in Theorem 3 is straightforward:
between class competition of low intensity (relative to within class competition) results in the bi-
furcation of stable positive equilibria, whereas between class competition of high intensity results in
the bifurcation of unstable positive equilibria. A natural question is, in the latter case when both
the extinction and the positive equilibria are unstable, what are the asymptotic dynamics?
We turn our attention to the 4-cycle (10) of type 2s. Notice that the lowest order ε terms in

this cycle suggest that it is actually a 2-cycle. This is in fact true. The two step, two dimensional
map ⎛⎜⎜⎝

0
y2
0
y4

⎞⎟⎟⎠ →

⎛⎜⎜⎝
s4σ4 (y4) y4

0
s2σ2 (y2, 0) y2

0

⎞⎟⎟⎠

→

⎛⎜⎜⎜⎜⎝
0

s1σ1

³
s4g

(1)
1 (y4) y4, 0

´
s4g

(1)
1 (y4) y4

0

s3σ3

³
s2g

(1)
3 (y2, 0) y2

´
s2g

(1)
3 (y2, 0) y2

⎞⎟⎟⎟⎟⎠ $

⎛⎜⎜⎝
0

s1s4g
(2)
2 (y4) y4
0

s2s3g
(2)
4 (y2, 0) y2

⎞⎟⎟⎠
leads to the fixed point problem

y2 = s1s4g
(2)
2 (y4) y4

y4 = s2s3g
(2)
4 (y2, 0) y2

which has a branch of positive solutions, as a function of R0, that bifurcates from the origin at
R0 = 1 [3], [5]. These fixed points correspond to a branch of 2-cycles of (4). These fixed points are,
of course, also fixed points of the 4-fold composite and therefore the 4-cycles of type 2s are actually
2-cycles. This observation makes tractable a linearization stability analysis of these 2-cycles by a
calculation of the eigenvalues of the product J (bx2) J (bx1) of the Jacobian J (bx) evaluated at the
two points bx2 and bx1 of the cycles for ε ' 0:

J (bx2 (ε))J (bx1 (ε)) = J0 + J1ε+O(ε2)

where

J0 =

⎛⎜⎜⎝
0 0 p−13 0
0 0 0 s1p

−1
4

p3 0 0 0
0 s−11 p4 0 0

⎞⎟⎟⎠

11
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J1 =

1

cw

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
cwp
−1
3 − s3∂

0
4σ3

−p−13 ∂01σ4
0

−s1∂01σ4
−s21∂02σ1

0 0
cws1p

−1
4 − 2s1∂04σ4
−2s1p−14 ∂01σ1

−s1p3∂02σ1
−p23∂03σ2

0 0 0

0
−2s2p4∂03σ3
−2p4∂02σ2

−s3p4∂04σ3
−p4∂03σ2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The eigenvalues of this product are

λ1 = 1− 1
2
ε+O(ε2), λ2 = −1 +

1

2
ε+O(ε2)

λ3 = 1 +
1

2
(1− c) ε+O(ε2), λ4 = −1−

1

2
(1− c) ε+O(ε2).

Since for ε ' 0 we see that 0 < λ1 < 1 and −1 < λ2 < 0, if follows from the expansions for λ3
and λ4 that stability and instability by the linearization principle depends on the sign of 1 − c.
Specifically, the 2-cycle (10) is unstable if c > 1 and locally asymptotically stable if c < 1.

Theorem 4 Assume A1, A2 and c 6= 1. For R0 ' 1 the hierarchical semelparous Leslie model (4)
of order 1 exhibits the following dynamic dichotomy:

c < 1 implies the positive equilibrium is locally asymptotically stable and the 2-cycle (10) of type
2s is unstable;

c > 1 implies the positive equilibrium is unstable and the 4-cycle (10) of type 2s is locally
asymptotically stable.

5 Attractor & Repeller Criteria for the Boundary of the
Nonnegative Cone

Theorem 4 is analogous to the dynamic dichotomy that occurs at bifurcation in the m = 2 dimen-
sional case between the positive equilibrium and a synchronous 2-cycle [2]. In the m = 3 case, and
indeed in the m = 2 case as well, a stronger dynamic dichotomy occurs, namely, one between the
positive equilibrium and the boundary of the positive cone. In this section we consider a dichotomy
between the positive equilibrium and the boundary ∂R4+ for the m = 4 hierarchical case (4). We
will use the average Lyapunov function Theorem 9 in Appendix D with function p(bx) = Π4i=1xi.
The method requires a consideration of the ratio p(L(bx)bx)/p(bx) = R0Π

4
i=1σi(bx) along boundary

orbits.
If bx(t) is a boundary 4-cycle, then ln(R0Π4i=1σi(bx(t))) is a 4-periodic sequence. Let L1, L2s, L2a,

and L3 denote the averages of this sequence for the four possible boundary 4-cycles in Theorem 2.
Near the bifurcation point, these limits are functions of ε = R0 − 1 ' 0 :

L1 (ε) , L2s (ε) , L2a (ε) , L3 (ε) .

If c 6= 1, Theorem 2 implies all boundary orbits asymptotically approach one of these 4-cycles. Since
the asymptotic average of an asymptotically periodic sequence equals the average of the periodic

12
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limit, we have

lim
t→+∞

1

t

t−1X
j=0

ln

Ã
R0

4Y
i=1

σi (bx(t))! = L1 (ε) , L2s (ε) , L2a (ε) or L3 (ε)

for all boundary orbits. Specifically we have the following lemma.

Lemma 2 Assume A1, A2 and c 6= 1. For ε = R0 − 1 ' 0 we have for any boundary orbit bx(t)
that

c > 1⇒ lim
t→+∞

1

t

t−1X
j=0

ln

Ã
R0

4Y
i=1

σi (bx(t))! = L1 (ε) or L2s (ε)

c < 1⇒ lim
t→+∞

1

t

t−1X
j=0

ln

Ã
R0

4Y
i=1

σi (bx(t))! = L1 (ε) , L2s (ε) , L2a (ε) or L3 (ε) .

It is straightforward to calculate expansions of the averages
P4

j=1 ln
¡
R0Π

4
i=1σi(bxj(ε)¢ /4 withbxj(ε) given by (8), (10), (9) and (11). The results are contained in the next lemma.

Lemma 3 Assume A1, A2 and c 6= 1. For ε = R0 − 1 ' 0 we have

L1 (ε) =
1
4 (3− c) ε+O(ε2), L2s (ε) =

1
2 (1− c) ε+O(ε2)

L2a (ε) =
1
4

¡
c2 − c+ 2

¢
ε+O(ε2), L3 (ε) =

1
4 (1− c)

¡
c2 + 1

¢
ε+O(ε2).

We apply the average Lyapunov function Theorem 9 as follows. By assumption A2(b), after at
most one step, all orbits lie in a (compact) box B = [0, b1]× [0, b2]× [0, b3]× [0, b4] ⊂ R

4

+ for t ∈ Z+

where bi is an upper bound for σi (xi, xi+1)xi on Ω. For R0 > 1 the origin is a repeller and therefore
there is an open neighborhood N of the origin for which the punctured box B\N is forward invariant
and which all orbits enter in finite time. Thus, all asymptotic dynamics and attractors occur in
the compact set B\N ⊂ R

4

+. Because ∂R
4
+ is invariant, it follows that ∂ (B\N) = B\N ∩ ∂R4+

is also invariant. We apply Theorem 9 with p(bx) = Π4i=1xi and ψ(bx) = p (L(bx)bx) /p(bx) and with
X = B\N and S = ∂ (B\N).

Theorem 5 Assume A1, A2 and c 6= 1. For R0 ' 1

c > 3 =⇒ ∂ (B\N) ⊂ ∂R4+ is an attractor

c < 1 =⇒ ∂ (B\N) ⊂ ∂R4+ is a repeller.

Proof. (a) If c > 3 then by Lemmas 2 and 3 all boundary orbits in X satisfy, for ε ' 0,

lim
t→+∞

1

t

t−1X
j=0

ln

Ã
R0

4Y
i=1

σi (bx(t))! < 0.

This in turn implies

inf
t≥1

t−1Q
j=0

ψ (bx(j)) = inf
t≥1

t−1Q
j=0

µ
R0

4Q
i=1

σi (bx(j))¶ < 1,
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which is the criterion in Theorem 9 that implies X is an attractor.
(b) If c < 1 then by Lemmas 2 and 3 all boundary orbits in X satisfy, for ε ' 0,

lim
t→+∞

1

t

t−1X
j=0

ln

Ã
R0

4Y
i=1

σi (bx(t))! > 0.

This in turn implies

inf
t≥1

t−1Q
j=0

ψ (bx(j)) = inf
t≥1

t−1Q
j=0

µ
R0

4Q
i=1

σi (bx(j))¶ > 1,

which is the criterion in Theorem 9 that implies X is a repeller.
Note that when c > 3 the positive equilibrium is unstable (Theorem 3) and when c < 1 it is

stable. Consequently, Theorem 5 provides a dynamic dichotomy between the positive equilibrium
and the boundary of the cone when c does not lie between 1 and 3.

6 Concluding Remarks
We have investigated the dynamics of the m = 4 dimensional hierarchical Leslie model (4) near
the bifurcation point R0 = 1 under the boundedness and monotone assumptions A1 and A2. From
the general bifurcation theory for Leslie matrix models [4] there exists a bifurcating continuum
of positive equilibria and of single class 4-cycles as R0 increases through 1. We have shown that
there is a dynamic dichotomy between the positive equilibria and a bifurcating continuum of 2-
class 2-cycle (Theorem 4) (not the single-class cycles, perhaps unexpectedly). This is reminiscent
of the dichotomy for m = 2 Leslie models, except it does not involve the bifurcating single-class
cycles. Moreover, as part of our characterization of the global dynamics on the boundary of the
positive cone, we have shown that there can be other types of bifurcating 4-cycles on the boundary
(Theorem 2). The fact that all boundary orbits asymptotically approach a boundary cycle allows us
to prove a limited dichotomy between the positive equilibria and the boundary of the positive cone,
limited in that c must not lie between 1 and 3. This result is reminiscent of the dichotomy in the
m = 3 dimensional case [6]. Our results also show that the ratio c of between class and within class
effects on survivorship is the crucial parameter in determining the nature of these dichotomies (as
in both the m = 2 and 3 cases). Even though our results are not for the general m = 4 dimensional
case, they illustrate the complexity of the bifurcation phenomenon that can occur at R0 = 1 for
semelparous Leslie matrix models as the dimension m increases. This increased complexity as n
increases arises because of the increased dimension of the boundary dynamics and because of the
possibility of more types of boundary cycles.
Many open questions remain. Is the boundary of the cone an attractor or a repeller when

1 < c < 3? When the boundary is an attractor, what are the omega limit sets of orbits? When
m = 3 orbits can approach complicated cycle-chains lying on the boundary, consisting of heteroclinic
boundary orbits that connect phases of single-class and/or 2-class 3-cycles [6]. Are there such
bifurcating cycle-chains (invariant loops) in the m = 4 case considered here? What becomes of the
dynamic dichotomies for m = 4 models that are not hierarchical of order 1? Can the monotone
assumptions in A2 be relaxed? (The answer to this question is probably yes, since the investigation
is carried out only near the bifurcation point and hence the monotone assumptions are only needed
locally near the origin.) And, of course, in higher dimensions m > 4 the question remains as
to whether or not there is a dynamic dichotomy at bifurcation R0 = 1 and, if so, what is its
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nature? It would also be of interest to investigate what becomes of the dynamic dichotomy when
R0 is increased far beyond 1? Given the propensity of nonlinear maps to exhibit sequences of
bifurcations, routes-to-chaos, and so on, what role would the dynamic dichotomy at R0 = 1 plays a
role? For example, it is known that multiple positive attractors (i.e., with several classes present)
can exist in semelparous Leslie models when R0 is not close to 1 [8].
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Appendices

A Asymptotically Autonomous 1D Maps
Let Rm

+ denote the positive cone in Rm and Z+ $ {0, 1, 2, 3, · · · }. Let R̄m
+ denote the closure of

Rm
+ .

Theorem 6 Suppose h ∈ C1
¡
R̄1+ × Z+, R̄1+

¢
and that

(a) h = h (x, t) is nonincreasing in x ∈ R̄1+ for each t ∈ Z+

(b) lim supt→+∞ h (0, t) $ h0 < 1.
(13)

Then any solution of the nonautonomous difference equation

x (t+ 1) = h (x (t) , t)x (t) , t ∈ Z+

with x(0) ≥ 0 satisfies limt→+∞ x(t) = 0.

Proof. x(0) ≥ 0 implies x(t) ≥ 0 for t ∈ Z+. By (a) we have 0 ≤ x (t+ 1) ≤ h (0, t)x(t) for t ∈ Z+.
Since (1 + h0) /2 > h0 we can find a T > 0 so that h (0, t) ≤ (1 + h0) /2 $ ω for t ≥ T. It follows
that 0 ≤ x (t+ 1) ≤ ω2x(t) for t ≥ T and by induction

0 ≤ x (t) ≤ ωtx(T ) for t ≥ T.

Since ω < 1, it follows that limt→+∞ x(t) = 0.
In what follows Ω1 denotes an open interval containing R̄1+ in its interior.

Definition 1 A function h has Property M on Ω1 if if h ∈ C1
¡
Ω1, R̄

1
+

¢
and

(a) ∂xh(x) < 0
(b) ∂x (h(x)x) > 0
(c) h(x)x is bounded.

The limit h∞ $ limx→+∞ xh(x) exists and is positive. It follows that

lim
x→+∞

h(x) = 0, 0 ≤ h(x)x ≤ h∞ for x ∈ R̄1+ (14)

Theorem 7 Suppose h(x) has Property M. Consider the difference equation

x (t+ 1) = h (x (t))x (t) , t ∈ Z+. (15)

(a) If h(0) > 1 then there exists a positive, hyperbolic fixed point x∗ > 0 that is globally asymp-
totically stable on R1+.
(b) If h (0) < 1 then x∗ = 0 is globally asymptotically stable on R1+.
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Proof. Note by (14) that all solutions of (15) with x(0) ≥ 0 are non-negative and bounded by h∞.
(a) For h(0) > 1 it follows from the intermediate value theorem that there exists an x∗ > 0

such that h (x∗) = 1. This fixed point of (15) is unique since h(x) is strictly decreasing. Since
0 < ∂x (h(x)x)|x∗ = 1 + x∗ ∂x (h(x))|x∗ < 1, it follows by the linearization principle that x∗ is
locally asymptotically stable. The inequality h(0) > 1 also implies the fixed point is a repeller,
since ∂x (h(x)x)|0 = h(0). Since (15) defines a monotone maps it follows that all orbits on R1+ tend
to x∗.
(b) Since 0 < ∂x (h(x)x)|0 = h(0) < 1, it follows by the linearization principle that x∗ is locally

asymptotically stable. For x(0) ≥ 0 it follows by Definition 1(a) that 0 ≤ x (t+ 1) = h (x (t))x (t) ≤
h (0)x (t) and, by induction, that 0 ≤ x (t+ 1) ≤ [h (0)]t x (0). Hence limt→+∞ x(t) = 0.

Theorem 8 Suppose h ∈ C1
¡
Ω1 × Z+, R̄1+

¢
satisfies the following properties:

(a) h (x, t) has Property M as a function of x for each t ∈ Z+

(b) limt→+∞ h (x, t) $ h∞(x) uniformly on compact subsets of R̄1+
(c) h∞(x) satisfies Property M and h∞(0) > 1

Then any bounded solution of the nonautonomous difference equation

x (t+ 1) = h (x (t) , t)x (t) (16)

with x(0) > 0 satisfies limt→+∞ x(t) $ x∗ > 0 where x∗ is the globally asymptotically stable fixed
point of x (t+ 1) = h∞ (x (t))x (t).

Proof. If x (0) > 0 then the solution of (16) satisfies x(t) > 0 for t ∈ Z+. Let ω denote the forward
limit set of bounded solution x(t), which is nonempty and lies in R̄1+.
Step 1: We show that ω contains a positive real. For purposes of contradiction assume there

exists no positive limit point. Then limt→+∞ x(t) = 0 and for any ε > 0 there exists a T1(ε) such
that t ≥ T1(ε) implies 0 < x(t) < ε. Since h∞(0) > 1 we can choose a real number r such that
h∞(0) > r > 1. By continuity there exists an ε > 0 such that h∞ (x) > r for 0 ≤ x ≤ ε. By (b)
there exists a T2 (ε) such that

|h (x, t)− h∞ (x)| ≤
r + 1

2
for t ≥ T2 (ε) and for 0 ≤ x ≤ ε.

For t ≥ T (ε) $ max{T1 (ε) , T2 (ε)} we have 0 < x(t) < ε and

x (t+ 1) = h (x (t) , t)x (t) ≥
∙
h∞ (x(t))−

r + 1

2

¸
x(t) ≥

∙
r − r + 1

2

¸
x (t) =

r − 1
2

x(t)

This implies

=⇒ x (t) ≥
µ
r − 1
2

¶t−T (ε)
x (T (ε)) for t ≥ T (ε)

and since (r − 1)/2 > 1 we find that x(t) grows exponentially as t → +∞, which contradicts
0 < x(t) < ε for t ≥ T (ε).

Step 3: We prove that for any interval a ≤ x ≤ b with a > 0 and containing x∗ in its interior
there exists a T (a, b) such that a ≤ h (x, t)x ≤ b for t ≥ T (a, b) and all x ∈ [a, b].
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Since h∞ (x) is decreasing, h∞(0) > 1, and h∞ (x
∗) = 1, in follows that h∞ (a) > 1 and

h∞ (b) < 1 and a < h∞ (a) a < x∗ < h∞ (b) b < b. Consequently h∞ (x)x maps [a, b] into itself,
specifically

h∞ (x)x : [a, b]→ [h∞ (a) a, h∞ (b) b] ⊂ [a, b].
Define

δ $ min
½
h∞ (a) a− a

2
,
b− h∞ (b) b

2

¾
> 0.

Since limt→+∞ h (x, t)x $ h∞(x)x uniformly on bounded x intervals, there exists a T = T (a, b)
such that

|h (x, t)x− h∞ (x)x| ≤ δ for t ≥ T (a, b) and for x ∈ [a, b].
Then for t ≥ T (a, b) and all x ∈ [a, b] we have

h∞ (x)x−
h∞ (a) a− a

2
≤ h (x, t)x ≤ b− h∞ (b) b

2
+ h∞ (x)x

h∞ (a) a−
h∞ (a) a− a

2
≤ h (x, t)x ≤ b− h∞ (b) b

2
+ h∞ (b) b

h∞ (a) a+ a

2
≤ h (x, t)x ≤ b+ h∞ (b) b

2
a+ a

2
≤ h (x, t)x ≤ b+ b

2
.

Step 4: Next we prove x∗ ∈ Ω. Let l1 be a positive limit point (Step 2). Then there exists a
subsequence ti → +∞ such that x (ti)→ l1. Since

x (ti + 1) = [h (x (ti) , ti)− h∞ (x (ti))]x (ti) + h∞ (x (ti))x (ti)

and since the first term tends to 0 (by (b), because x(t) is bounded) it follows that x (ti + 1) →
h∞ (l1) l1. Thus l2 $ h∞ (l1) l1 > 0 is a limit point. Similarly from

x (ti + 2) = h (x (ti + 1) , ti + 1)x (ti + 1)

an analogous argument shows

x (ti + 2)→ h∞ (l2) l2 $ l3 > 0

and hence l3 $ h∞ (l2) l2 > 0 is a limit point. Inductively we obtain x (ti + j) → h∞ (lj) lj and
hence a sequence of positive limit points lj that satisfies lj+1 = h∞ (lj) lj > 0, i.e. lj satisfies (16).
Property M and (c) implies lj → x∗. By the usual diagonalization argument used in analysis we
have that x (ti + i)→ x∗ and hence x∗ ∈ Ω.
Step 5: Finally we prove limt→+∞ x(t) = x∗ for any positive orbit. Let ε > 0 be arbitrary. By

Step 3 (using a = x∗−ε and b = x∗+ε) there exists a T1 = T (ε) such that h (x, t)x ∈ [x∗−ε, x∗+ε]
for t ≥ T (ε) and all x ∈ [x∗ − ε, x∗ + ε]. Since x∗ ∈ Ω (Step 4) there exists a time T (ε) ≥ T1(ε)
such that x (T (ε)) ∈ [x∗ − ε, x∗ + ε]. Since x(t) satisfies (16) it follows that x(t) ∈ [x∗ − ε, x∗ + ε]
for t ≥ T (ε). This is the definition of limt→+∞ x(t) = x∗.
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B Proof of Lemma 1
We begin by pointing out that all nonnegative orbits of the composite equations (5) are (forward)
bounded, which follows from assumption A2(b). The uniform convergence require in the applica-
tions of Theorem 8 below follows from the continuity, and hence boundedness, of partial derivatives
on compact sets.
(1) This is a consequence of Theorem 7(a), since h(0) = R0.
(2) R0g3 (0, y∗4) < 1 and Theorem 8 imply y3 → 0 as t→ +∞ for positive initial conditions.

(a) R0g2 (0, 0, y∗4) < 1 and Theorem 8 imply y2 → 0 as t → +∞ for positive initial condi-
tions.

(b) If R0g2 (0, 0, y∗4) > 1, then Theorem 8 implies there exists a positive fixed point of the
limiting equation

y2 (t+ 1) = R0g2 (y2 (t) , 0, y
∗
4) y2 (t)

the attracts all positive solutions y2 of the asymptotically autonomous equation (5a).
(3) R0g3 (0, y∗4) > 1 and Theorem 8 imply there exists a positive fixed point of the limit equation

y3 (t+ 1) = R0g3 (y3 (t) , y
∗
4) y3 (t)

that attracts all positive solutions of the asymptotically autonomous equation (5b). Thus, for
positive initial conditions, we have y3 → y∗3 and y4 → y∗4 as t→ +∞.
(a) If in addition R0g2 (0, 0, y

∗
4) < 1, then Theorem 8 implies y2 → 0 as t→ +∞.

(b) R0g2 (0, 0, y∗4) > 1 and Theorem 8 imply there exists a fixed point of the limiting equation

y2 (t+ 1) = R0g2 (y2 (t) , 0, y
∗
4) y2 (t)

that attracts all positive solutions y2 of the asymptotically autonomous equation (5a). Thus, with
initial condition y3 = 0 and with positive initial conditions for y2 and y4 we have y2 → y∗2 and
y4 → y∗4 as t→ +∞.
(i) R0g2 (0, y∗3 , y

∗
4) < 1 and Theorem 8 imply that y3 → 0 as t → +∞ for positive initial

conditions.
(ii) R0g2 (0, y∗3 , y

∗
4) > 1 and Theorem 8 imply that the limiting equation

y2 (t+ 1) = R0g2 (y2 (t) , y
∗
3 , y
∗
4) y2 (t)

as a positive fixed point y∗2 > 0 that attracts all positive solutions y2 of the asymptotically au-
tonomous equation (5a). Thus, for positive initial conditions we have y2 → y∗2 , y3 → y∗3 , and
y4 → y∗4 as t→ +∞.

C Proof of Theorem 3
The goal is to use the Lyapunov-Schmidt expansion (12) of the positive equilibrium to obtain
expansions of the Jacobian and its eigenvalues to lowest order in ε = R0 − 1. These eigenvalues
equal the fourth roots of unity at ε = 0 and the lowest order terms in their ε expansions will allow
use to determine when the magnitude of each is less than or greater than 1 when ε ' 0.
For notational convenience, we define d $ − (cw + cb). Then, from (12), the components of the

positive equilibria are
xi (ε) =

pi
d
ε+O(ε2), R0 (ε) = 1 + ε. (17)
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The Jacobian of the m = 4 dimensional Leslie model (1)-(3) is J = L+M where

L =

⎛⎜⎜⎝
0 0 0 R0p

−1
4 σ4 (x4, x1)

s1σ1 (x1, x2) 0 0 0
0 s2σ2 (x2, x3) 0 0
0 0 s3σ3 (x3, x4) 0

⎞⎟⎟⎠ (18)

and

M =

⎛⎜⎜⎝
R0p

−1
4 ∂1σ4 (x4, x1)x4 0 0 R0p

−1
4 ∂4σ4 (x4, x1)x4

s1∂1σ1 (x1, x2)x1 s1∂2σ1 (x1, x2)x1 0 0
0 s2∂2σ2 (x2, x3)x2 s2∂3σ2 (x2, x3)x2 0
0 0 s3∂3σ3 (x3, x4)x3 s3∂4σ3 (x3, x4)x3

⎞⎟⎟⎠
(19)

When evaluated at the positive equilibrium (17) M = M (ε) , L = L (ε) and hence J = J (ε) are
functions of ε. The eigenvalues and the right and left eigenvectors of J (ε) are also functions of ε,
which is we denote by λ (ε) , v̂ (ε) , and ŵ (ε) respectively. Thus, v̂ (ε) is the right eigenvector asso-
ciated with λ (ε) and ŵ (ε) is the left eigenvector associated with the complex conjugate eigenvalue
λ̄(ε). Our goal is to calculate the first order term in the ε expansions of each of the four eigenvalues
of M(ε). This will require calculating the first order terms in the expansions

J (ε) = J (0) + J 0 (0) ε+O(ε2), L (ε) = L (0) + L0 (0) ε+O(ε2)

M (ε) =M (0) +M 0 (0) ε+O(ε2)

v̂ (ε) = v̂ (0) + v̂0 (0) ε+O(ε2), ŵ (ε) = ŵ (0) + ŵ0 (0) ε+O(ε2).

By definition

J(ε)v̂ (ε) = λ (ε) v̂ (ε) (20)

ŵ (ε) J(ε) = λ̄ (ε) ŵ (ε) . (21)

A formula for λ0(0) can be obtained as follows. From (20), to zeroth and first orders in ε,
we have

J(0)v̂ (0) = λ (0) v̂ (0) (22)

J(0)v̂0 (0) + J 0(0)v̂ (0) = λ (0) v̂0 (0) + λ0 (0) v̂ (0) (23)

Similarly, from (21) we have

ŵ (0)J(0) = ŵ (0) λ̄ (0) (24)

ŵ0 (0) J(0) + ŵ (0) J 0(0) = ŵ0 (0) λ̄ (0) + λ̄
0
(0) ŵ (0) (25)

Let hbx, byi denote the dot product of the conjugate of bx with by : hbx, byi $P4
i=1 x̄iyi. From (24) we

have

λ (0) hŵ (0) , v̂0 (0)i =

ŵ (0) λ̄(0), v̂0 (0)

®
= hŵ (0)J (0) , v̂0 (0)i = hŵ (0) , J (0) v̂0 (0)i

and from (23)

λ (0) hŵ (0) , v̂0 (0)i = hŵ (0) , λ (0) v̂0 (0)i+

ŵ (0) , λ0 (0) v̂ (0)

®
− hŵ (0) , J 0(0)v̂ (0)i

= λ (0) hŵ (0) , v̂0 (0)i+ λ0 (0) hŵ (0) , v̂ (0)i− hŵ (0) , J 0(0)v̂ (0)i .

20

Page 20 of 23

URL: http:/mc.manuscriptcentral.com/gdea  Email: jdea@tandf.co.uk

Journal of Difference Equations and Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Thus, 0 = λ0 (0) hŵ (0) , v̂ (0)i− hŵ (0) , J 0(0)v̂ (0)i and

λ0(0) =
hŵ (0) , J 0(0)v̂ (0)i
hŵ (0) , v̂ (0)i . (26)

We apply this formula to each of the four eigenvalues λk(ε), k = 1, 2, 3, 4, of the Jacobian
J(ε), whose lowest order terms λk(0) are the fourth roots of unity, namely, 1, i,−1 and −i. These
eigenvalues have the form

λ1 (ε) = 1 + λ01 (0) ε+O(ε2), λ2 (ε) = i+ λ02 (0) ε+O(ε2) (27)

λ3 (ε) = −1 + λ03 (0) ε+O(ε2), λ4 (ε) = −i+ λ04 (0) ε+O(ε2).

To apply the formula (26) for each coefficient λ0k (0) we need to lowest order terms v̂k (0) , ŵk (0) of
the J(0) associated with λk (0). Since M (0) = 04×4, we have

J (0) = L (0) =

⎛⎜⎜⎝
0 0 0 p−14
s1 0 0 0
0 s2 0 0
0 0 s3 0

⎞⎟⎟⎠ . (28)

By (24) and (27),

ŵ1 (0)J (0) = ŵ1 (0) , ŵ2 (0) J (0) = −iŵ2 (0) (29)

ŵ3 (0)J (0) = −ŵ3 (0) , ŵ4 (0) J (0) = iŵ4 (0)

Without loss of generality we take the first component of ŵk (0) to be 1 and write ŵk (0) $¡
1 wk2 wk3 wk4

¢
. By (28), we have

ŵk (0) J (0) =
¡
s1wk2 s2wk3 s3wk4 p−14

¢
(30)

Solving (29) and (30) for the wk1, wk2, ..., wkm, we obtain the four left eigenvectors

ŵ1 (0) =
¡
1 1

s1
1

s2s1
1

s3s2s1

¢
=
¡
p−11 p−12 p−13 p−14

¢
(31)

ŵ2 (0) =
¡
1 − 1

s1
i − 1

s2s1
1

s3s2s1
i
¢
=
¡
p−11 −p−12 i −p−13 p−14 i

¢
ŵ3 (0) =

¡
1 − 1

s1
1

s2s1
− 1

s3s2s1

¢
=
¡
p−11 −p−12 p−13 −p−14

¢
ŵ4 (0) =

¡
1 1

s1
i − 1

s2s1
− 1

s3s2s1
i
¢
=
¡
p−11 p−12 i −p−13 −p−14 i

¢
.

From similar calculations we obtain the four right eigenvectors

v̂1 (0) =

⎛⎜⎜⎝
p1
p2
p3
p4

⎞⎟⎟⎠ , v̂2 (0) =

⎛⎜⎜⎝
p1
−p2i
−p3
p4i

⎞⎟⎟⎠ , v̂3 (0) =

⎛⎜⎜⎝
p1
−p2
p3
−p4

⎞⎟⎟⎠ , v̂4 (0) =

⎛⎜⎜⎝
p1
p2i
−p3
−p4i

⎞⎟⎟⎠ (32)

Thus, hŵk (0) , v̂k (0)i = 4 for k = 1, 2, 3, 4 and, by (26) and J 0 (0) = L0 (0) +M 0 (0) ,

λ0k(0) =
1

4
hŵk (0) , L

0(0)v̂k (0)i+
1

4
hŵk (0) ,M

0(0)v̂k (0)i (33)
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It remains for us to calculate L0(0) and M 0(0). From (18) and (17), we have

L0 (0) =

⎛⎜⎜⎜⎜⎝
0 0 0 1

p4
+

p4∂
0
4σ4+p1∂

0
1σ4

p4d

s1
p1∂

0
1σ1+p2∂

0
2σ1

d 0 0 0

0 s2
p2∂

0
2σ2+p3∂

0
3σ2

d 0 0

0 0 s3
p3∂

0
3σ3+p4∂

0
4σ3

d 0

⎞⎟⎟⎟⎟⎠ (34)

From (34), (32), and (31) it is straightforward to compute

hŵ1 (0) , L 0(0)v̂1 (0)i = 1 +
1

d
(p4∂

0
4σ4 + p1∂

0
1σ4 + p1∂

0
1σ1 + p2∂

0
2σ1

= +p2∂
0
2σ2 + p3∂

0
3σ2 + p3∂

0
3σ3 + p4∂

0
4σ3)

= 1 +
1

d
(−d) = 0.

Similarly calculations establish that hŵk (0) , L
0(0)v̂k (0)i = 0 for k = 1, 2, 3, 4.and hence, by (33),

that
λ0k(0) =

1

4
hŵk (0) ,M

0(0)v̂k (0)i . (35)

Now, from (19) and (17) we have

M 0 (0) =

⎛⎜⎜⎝
d−1p1∂

0
1σ

0
4 d−1p1∂

0
2σ4 d−1p1∂

0
3σ4 d−1p1∂

0
4σ4

d−1p2∂
0
1σ1 d−1p2∂

0
2σ1 d−1p2∂

0
3σ1 d−1p2∂

0
4σ1

d−1p3∂
0
1σ2 d−1p3∂

0
2σ2 d−1p3∂

0
3σ2 d−1p3∂

0
4σ2

d−1p4∂
0
1σ3 d−1p4∂

0
2σ3 d−1p4∂

0
3σ3 d−1p4∂

0
4σ3

⎞⎟⎟⎠ (36)

and from (34), (32) and (31) it is straightforward to compute the dot products

hŵ1 (0) ,M 0 (0) v̂1 (0)i = d−1

Ã
4X
i=1

pi+1∂
0
i+1σi +

4X
i=1

pi∂
0
i σi

!

hŵ2 (0) ,M 0 (0) v̂2 (0)i = d−1

Ã
4X
i=1

pi+1∂
0
i+1σi + i

4X
i=1

pi∂
0
i σi

!

hŵ3 (0) ,M 0 (0) v̂3 (0)i = d−1

Ã
4X
i=1

pi+1∂
0
i+1σi −

4X
i=1

pi∂
0
i σi

!

hŵ4 (0) ,M 0 (0) v̂4 (0)i = d−1

Ã
4X
i=1

pi+1∂
0
i+1σi − i

4X
i=1

pi∂
0
i σi

!
.

which, from the definitions of d, cw and cb, reduce to

hŵ1 (0) ,M 0 (0) v̂1 (0)i = −1
hŵ2 (0) ,M 0 (0) v̂2 (0)i = d−1 (cb + icw)

hŵ3 (0) ,M 0 (0) v̂3 (0)i = d−1 (cb − cw)

hŵ4 (0) ,M 0 (0) v̂4 (0)i = d−1 (cb − icw) .
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These formulas, together with (35), yield formulas for λ0k (0) and hence approximations (27) to

λk(ε) to order 1.
Stability is determined by the magnitudes of the eigenvalues λk(ε). It is straightforward to show

that

Re
¡
ūkλ

0
k (0)

¢
< 0 =⇒ |λk (ε)| < 1 for ε ' 0

Re
¡
ūkλ

0
k (0)

¢
> 0 =⇒ |λk (ε)| > 1 for ε ' 0.

Thus, the local stability of the positive equilibrium is determined by the signs of

Re
¡
λ01 (0)

¢
=

1

4
Re (hŵ1 (0) ,M 0 (0) v̂1 (0)i) = −

1

4

Re
¡
iλ02 (0)

¢
=

1

4
Re (−i hŵ2 (0) ,M 0 (0) v̂2 (0)i) =

1

4
d−1cw

Re
¡
−λ03 (0)

¢
=

1

4
Re (− hŵ3 (0) ,M 0 (0) v̂3 (0)i) = −

1

4
d−1 (cb − cw)

Re
¡
−iλ04 (0)

¢
=

1

4
Re (i hŵ4 (0) ,M 0 (0) v̂4 (0)i) =

1

4
d−1cw

Since d > 0, cw < 0 and cb < 0 by assumptions A2(a) we see that the first, second and fourth real
parts are negative. Thus, stability is determined by the sign of the third real part, i.e., by the sign
of cb − cw. We conclude that the positive equilibrium is stable if cw < cb (equivalently c < 1) and
unstable if cw > cb (equivalently c > 1).

D Average Lyapunov Functions
See Theorems A.1 and A.2 in [11] (and relevant earlier references) for the following theorem con-
cerning a continuous map T : X → X on a metric space X.

Theorem 9 Suppose S ⊂ X is a compact subset of a compact set X such that S and X/S are
forward invariant under a mapping T . Then S is a repeller if there exists a continuous function
P : X → R̄+ such that
(a) p(bx) = 0⇐⇒ bx ∈ S
(b) for all bx ∈ S

sup
t≥1

t−1Q
i=0

ψ
¡
T i(bx)¢ > 1 (37)

where ψ : X → R̄+ is a continuous function satisfying

p (T (bx)) ≥ ψ (bx) p (bx) . (38)

On the other hand, S is a attractor if

inf
t≥1

t−1Q
i=0

ψ
¡
T i(bx)¢ < 1 (39)

where ψ : X → R̄+ is a continuous function satisfying

p (T (bx)) ≤ ψ (bx) p (bx) . (40)
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