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1. INTRODUCTION 

The following larval-pupal-adult (LPA) model of flour beetle (Tribolium) popUla
tion growth is proposed and studied by B. Dennis et al. (1994): 

(Ll) 

Pt+ 1 = (1 - PI) Lt , 0.2) 

A t + l = P t exp(-CpaAt) + (1 - Pa)At· (1.3) 

Here L t , P t , and At are the number of feeding larvae. pupae, and non-feeding 
larvae, and adults. respectively, at time t; the unit of time is taken to be the feeding 
larval maturation period so that after one unit of time, a larva either dies or survives 
and pupates. This unit of time is also the time spent as a non-feeding larva, pupa 
and callow (young adult). b is a positive constant describing the number of eggs laid 
per adult per unit of time. System (1.1)-(1.3) models a class of flour beetles of the 
genus Tribolium that are cannibalistic (Park et al. 1965). For these flour beetles, 
adults may feed on eggs, larvae. pupae and callows, while larvae may eat eggs, 
pupae, and callows. Neither larvae nor adults eat mature adults and larvae do not 
feed on larvae. In the above model. the cannibalism of larvae and callows by adults 
and of pupae and callows by larvae is assumed negligible since it typically occurs at 
much reduced rates. The constants J.11 and J.1a are the larval and adult probability of 
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dying from causes other than cannibalism, respectively. exp( -cefit) and exp 
(-CelLt) represent the probabilities that an egg is not eaten in the presence of At 
adults and L t larvae, and exp( -cpfit) is the survival probability of a pupa in the 
presence of At adults. The nonnegative constants Cea' Cel> and cpa are called the 
"cannibalism coefficients." It is assumed here that the only significant source of 
pupal mortality is adult cannibalism. 

Following B. Dennis et al. (1994), we consider here the simplified case when 
larval cannibalism of eggs is not present, i.e., cel = O. In this case, we can see that 
system (1.1 )-(1.3) is equivalent to the following difference-delay equation 

At+! = (1 - )1a)At + b(l - )1/)At-Z exp(-ceaAt- Z - cpaAt), t 2: 2. (1.4) 

When A o, Po, and L o are given, we have 

Al = Po exp( -cpa Ao) + (1 - )1a)AO, 

Az = (1 - )1/)Lo exp(- cpaA j ) + (1 - )1a)A!. 

We assume that A o, Po, and L o are nonnegative. A complete analytical descriptIon 
of the local stability region was given in this case by B. Dennis et al. (1994). Our 
objective here is to derive some sufficient conditions for the global stability of the 
positive equilibrium (which, when it exists, is unique). 

We would like to mention that global stability results for general difference-delay 
equations are rare. Some of the recent results can be found in Kocic and Ladas 
(1993). The following theorem is a trivial extension of a result due to Hautus and 
Bolis (1979), which is stated as Theorem 2.6.2 in Kocik and Ladas (1993). This 
result will be used in our subsequent analysis. 

Theorem 1.1 (Hautus and Bolis (1979)). Consider the difference equation 

(1.5) 

where F E C(D,R), DC R k +\ is increasing in each of its arguments (when restricted 
to the region D). Let x* be an equilibrium of (1.5) and J an interval such that x* E 
1 and Jk+] = (u], '" ,Uk+]): u, E J, i = 1,2, ... ,k + I} CD. Moreover, assume that 
for u *' x*, 

(U - x*)[F(u,u, ... ,u) - u] < o. (1.6) 

Then with initial data xo, x _ ], ... , x _ k E J, we have x t E J for t 2: 0 and 

limx = x*. 
t~x, t 

2. MAIN RESULT 

The main objective of this paper is to obtain sufficient conditions for the global 
stability of the positive equilibrium (which is unique, when it eXists). Our method 
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here is to apply the general result, namely, Theorem 1.1. In order to do so, we need 
some preparations. For convenience, we define 

Then (1.4) becomes 

(2.1) 

where 

X-2 = AO 

X-I = Al = POe-cp,AO + (l - ,ua)AO 

Xo = A2 = (l - ,ul)L -cpA + (l - ,ua)A1.o

Note that if 0 :S (La, Po, A o) of=- 0, then Xo > O. It should be pointed out here that we 
are only interested in nonnegative solutions of (2.1). We assume below that x- 2 ' X-I' 

X o are nonnegative. We also assume that C1 + c2 > 0, 1 > Cl > 0, and 13 > O. Moreover, 
since we are interested in nontrivial solutions, we assume 0 :S (La, Po, A o) of=- 0, which 
implies Xo > O. 

A simple computation reveals that when Cl + {3 :S 1, Eq. (2.1) has only one 
nonnegative equilibrium, namely, Xl == O. When Cl + (3 > 1, Eq. (2.1) has two 
equilibria, they are Xl == 0 and Xl == x*(> 0), where 

1 {3
x* = ---In--. 

C 1 + C2 1 - a 

The linearized equation of Eq. (2.1) about an equilibrium x is 

For the trivial equilibrium x = 0, Eq. (2.2) reduces to 

(2.3) 

which is asymptotiCally stable if and only if a + {3 < 1.
 

The linearized equation about the positive equilibrium x* takes the form
 

(2.4)
 

where 
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and 

B = (l - 0:) [-~ (In-{3) - 1].
C\ + c2 1 - 0: 

By employing the well known Schur-Cohn criterion (Theorem 1.3.3 in [3]), we can 
obtain that Eq. (2.4) is asymptotically stable if and only if 

V\ + BI < 1, V\ - 3BI< 3, and B (B - A) < 1. (2.5) 

The following result is straightforward. 

Lemma 2.1 Assume that X s > °for some s 2: 0; then for t > S, XI > 0. 

Proof This is obvious from (2.1). In fact, 

X, 2: 0:
1

-
5 

X s > 0, t 2: S. (2.6)

• 
The following theorem states that when 0: + {3 :::; 1. the trivial equilibrium XI ==°of (2.1) is globally asymptotically stable with respect to nonnegative solutions. 

Recall that the local stability analysis yields asymptotical stability only when 0: + 
{3<1. 

Theorem 2.1 If 0: + {3 :::;1, then limH +x XI = 0. 

Proof Since X o > 0, we see from Lemma 2.1 that XI> °for [ > 0. Let 

Then for t > 2, 

Since c1 2: 0, c2 2: °and C1 + c2 > 0, and X t - 2 > O. x, > 0, we have 

This implies that xt is nonincreasing. Let 

x = lim xf' (2.7) 
{---7+ 00 

Assume that x > 0. Since 0: + {3 exp[-(c1 + cz)o:zx] < 1, there is an E > °such that 

o:(x + E) + (3(x + E) exp[ - (C1 + C2)0:2 x] < X-E. 
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From (2.7), there is aT> °such that if t > T, then XI < x + E. Note that (2.6) implies 
that 

2 2we see that for t > T + 2, x t 2 a xt 2 a x. Hence we have for t > T + 2, 

X t+l < a(x + E) + l3(x + E) exp[ - (Cl + cz)a
2x] < x - E, 

which implies that limH + x :=; x - E, a contradiction to (2.7). This shows that x = x t 

0, and hence limH+x X t = 0. • 
We are now ready to state our main result, which presents sufficient conditions 

for X t == x* in (2.1) to be globally asymptotically stable with respect to positive 
solutions. It can be shown that these conditions imply (2.5). 

Theorem 2.2 Assume that a + 13 > 1 and 

13 < min{e(1 - a),eac/cz}' (2.8) 

If max{L 2 ,x_l'xO} > 0, then limH +x = x*. 
In order to prove this result, we need two simple lemmas. First of all, we would 

like to obtain some result on the estimate of the eventual upper bound of solutions 
of Eq. (2.1). 

Proof Clearly. for t ?: 0, we have 

This implies that 

Since 0 < a < 1, we thus have 

l ' 13un sup x, :=; ---
H+x c l e(1 - a) 

•In the following we define 

(2.9) 
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and 

g(u) = F(u, u, u) - u = Clli + f3ue -(c, +C2)/' - 1I. (2.10) 

Clearly g(u) = 0 if and only if II = 0 or x*. Also, g( +(0) < O. Hence. for II > 0, u -=1= 

x*, we have 

(u - x*)[F(u, u, u)- u] < O. 

This proves the following lemma. 

Lemma 2.3 Let F be defined by (2.9); then for u > 0, u -=F x*. 

(ll - x*)[F(u, u, u) - u] < o. 

We are now ready to prove Theorem 2.2. 

Proof of Theorem 2.2 Let F be defined by (2.9); then 

aF 
-cJ' = a - c2f3xl - 2 exp( - C j XI _2 - c2-'). 

XI 

aF 
-=0 
aX _ , 

t j 

aF 
-- = f3(1 - c j x -2) exp( - c j xl _ - c2·\)r 2 
aXI _2 

Since f3 < e(l - a), and by Lemma 2.2, lim sUPt-->+x Xl ~ f3[c Je(l - a )r J 
• we see that 

there is aT> 2 such that, for t > T, 

In the following, we denote 1 = (O.c~J) and D = 13
; then x* Eland aFlaxl _ i 2: 0 

for i = 1,2. Note that for X I - 2 2: 0, 

Hence, for XI 2: 0, X I - 2 2: 0, 

This shows that F is increasing in each of its arguments when restricted to D. 
Lemma 2.3 asserts that condition (1.6) of Theorem 1.1 is also met. Since Eq. (2.1) 
is autonomous and by Lemma 2.2, for the set of initial data such that 
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max{x_z,x-1,Xo} > 0, there is a to = to(X_z, X- 1, x 0) > 0, such that for t ~ to, this 
solution satisfies 

If we denote Xo = x-1 = ' x-z = ' and the solution with initial datax to ' x to - 1 x to - Z
X o = xO, X- 1 = x- 1 and X- z = x-z as Xt, then by Theorem 1.1, we have limH+x 
xt = x*. However, xt = xt+ t . Therefore, limt-7+ x X t = x*. This proves the theorem.• 

In terms of the origina1 model parameters the global stability conditions of 
Theorem 2.2 are equivalent to the following constraints on b 

J1a . { J1a cea 1 - J1a}--<b<mm e--,e---- . (2.11 ) 
1 - J11 1 - J11 cpa I - J1i 

The first inequality is required for the existence of the positive equilibrium (2.2), 
which in the original parameters is given by the formula 

1 (1 - J11)x* = In b-- . 
Cea + cpa J1a 

This situation can be viewed as a bifurcation phenomenon in which this unique 
positive equilibrium emerges from the trivial (extinction) equilibrium x* = °as b 
is increased through the critical value J1)(1 - J11)' The result implied by Theorem 
2.2 and Condition (2.11) is that the bifurcating positive equilibrium is globally 
stable at least for values of b not too much larger than the critical value. (The 
inequality (2.11) implicitly requires a constraint on the adult death rate, namely, J1a 
< ecea /(eCea + cpa).) In Dennis et a1. (1995) the region of local linearized stability 
of the positive equilibrium is computed and drawn in the (11mb) plane (see Fig. 1). 
The triangular set described by (2.11) represents a subregion in which global 
equilibrium stability is guaranteed to occur. 
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