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7

Nonlinearity and Stochasticity
in Population Dynamics

J. M. Cushing

Summary. Theoretical studies of population dynamics and ecological interactions
tend to focus on asymptotic attractors of mathematical models. Modeling and ex-
perimental studies show, however, that even in controlled laboratory conditions the
attractors of mathematical models are likely to be insufficient to explain observed
temporal patterns in data. Instead, one is more likely to see a collage of many
patterns that resemble various dynamics predicted by a deterministic model that
arise during randomly occurring temporal episodes. These deterministic “signals”
might include patterns characteristic of a model attractor (or several model attrac-
tors – even from possibly different deterministic models), transients both near and
far from attractors, and/or unstable invariant sets and their stable manifolds. This
paper discusses several examples taken from experimental projects in population
dynamics that illustrate these and other tenets.

7.1 Introduction

During the last century mathematicians and theoretical ecologists developed
a plethora of deterministic models for the dynamics of biological populations
and ecological systems. The mathematical analysis of these models, most
of which are based on differential or difference equations, is overwhelmingly
focussed on the asymptotic dynamics of model solutions. The standard pro-
cedure is to locate equilibrium states and perform a linearization stability
analysis. In some cases a global analysis of asymptotic dynamics is possible
(using Lyapunov functions, Poincaré-Bendixson theory, etc.). Periodic solu-
tions play an important role in some models and their existence and asymp-
totic stability often preoccupies the mathematician. In more recent years,
considerable interest has arisen in more complicated asymptotic dynamics
and attractors (such as chaotic attractors), although their study has been
mostly by means of computer simulations.

With all the historical and current attention paid to the attractors of
deterministic models, one would naturally assume that they must play an
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important role in our understanding of biological ecosystems and in the de-
scription and explanation of observed patterns in population data. Yet, it
is widely recognized that there is a serious gap between theoretical models
and ecologically data (for example, see (Aber 1997)). Few examples exist of
models that provide quantitatively accurate descriptions of population time
series data, and even less that provide quantitatively accurate and reliable
predictions of population and ecosystem dynamics. Of what use, then, to the
ecological sciences – particularly the applied ecological sciences – is the vast
literature on mathematical models whose asymptotic dynamics we mathe-
maticians spend so much time and effort analyzing?

What should one expect to see when examining ecological time series
data? Should one look for temporal patterns that are explainable by the
attractors of deterministic models? Given that “noise” is inevitable in eco-
logical time series data, should one look for “fuzzy versions” of attractors?
Something of the sort is usually uttered when noise is mentioned in model
studies (although when noise is considered it is usually not carefully mod-
eled). In addition, the (rather obvious) caveat is usually mentioned that too
much noise will completely obliterate deterministic attractors (in which case,
of course, their role is not clear). To relate a model to data one has to think
carefully about the source of the “noise” in the data (i. e., the inevitable de-
viations of data from model predictions). Are these “errors” due primarily
to inaccurate measurements? If so, then of course too much noise will likely
obliterate any deterministic trends (attractors or other), and the problem of
connecting model to data is more concerned with the problem of obtaining
accurate data. Even if data is highly accurate (even exact) there will be de-
viations of data from model predictions because no model can capture all
of the mechanisms that determine the dynamics of a biological population.
External forces and internal processes not a part of the model result in “en-
vironmental” and “demographic” noise. Another possibility is, then, that one
might come to find in an ecological data set that transient dynamics predom-
inate (relative to a given model) and take precedence over model predicted
asymptotic attractors. Perhaps it is even the case that ecological data typi-
cally exhibit repeated episodes of transients as they are continuously buffeted
by stochastic perturbations and, as a result, asymptotic attractors play only
a small role or even no role at all.

The answers to these questions can determine what one looks for in data
and what tools one uses to analyze data; in other words, they can determine
what one actually “observes” in data and hence one’s judgement about the
“validity” of a model and the accompanying theory.

For ecology to become a more precise science and to raise its principles
above qualitative descriptions and general verbal metaphors, it is necessary
to make stronger connections between models and data. This involves not
just new deterministic model equations and their mathematical analysis, but
methods to deal with model parameterization/validation and stochasticity
(the inevitable deviation of data from model predictions). A time tested pro-
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cedure used in science to connect theory and models to data is to isolate
phenomena, under controlled and replicated experimental conditions, and to
manipulate and perturb a system in order to observe its responses. The un-
derstanding resulting from such experimental and modeling procedures form
a basis for the study of larger scale systems. To quote E. O. Wilson (2002):

“When observation and theory collide, scientists turn to carefully de-
signed experiments for resolution. Their motivation is especially high
in the case of biological systems, which are typically far too complex
to be grasped by observation and theory alone. The best procedure,
as in the rest of science is first to simplify the system, then to hold
it more or less constant while varying the important parameters one
or two at a time to see what happens.”

It was in this spirit that I began a collaboration nearly fifteen years ago
with a team of mathematicians, statisticians and biologists (R. F. Costantino,
R. A. Desharnais, B. Dennis and more recently including S. M. Henson,
and A. King). This team’s collaborations has had two broad goals. First,
we wanted to derive and validate a successful model for the dynamics of
an experimental population (in this case, species of Tribolium). We sought
a model that makes quantitatively accurate descriptions of observed data and
that we could show makes accurate predictions, under a wide variety of cir-
cumstances – predictions that could be corroborated by means of controlled
experiments. Second, we would then use our model/experimental system to
conduct studies of a wide range of nonlinear phenomena. Initially our funda-
mental focus was on the asymptotic dynamics predicted by a deterministic
model (although we developed stochastic versions of the model to explain
the deviations of data from model predictions in order to validate the model
and to conduct simulations). To date, we have successfully used our system
(and several adaptations and modifications) to study a long list of dynamic
phenomena, including equilibria and periodic cycles, stability and destabiliza-
tion, bifurcations, quasi-periodic motion, routes-to-chaos, temporal patterns
on chaotic attractors, sensitivity to initial conditions, the control of chaos,
temporal phase shifting, periodicity due to environmental forcing, nonlin-
ear resonance, multiple attractors, lattice effects, the role of spatial scale on
dynamics, the effect of genetic adaptation on population dynamics, and com-
petition between two species. See the books (Caswell 2001) and (Cushing et
al. 2003) (and the references cited therein) for expositions of our methods
and for many of our results.

The final chapter of the book (Cushing et al. 2003) contains a list of gen-
eral conclusions concerning the modeling of biological populations and var-
ious nonlinear phenomena that we have studied. The purpose of this paper
is to elaborate on one of the main conclusions in that list: “full explanation
of a ecological times series data is unlikely to be found by analyses that
rely solely on deterministic model attractors.” Instead, it is suggested that
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what one is more likely to see in time series data is a mixture – a tempo-
ral collage – of many patterns that resemble various deterministic dynamics
predicted by a model that arise, perhaps only in part, during randomly oc-
curring temporal episodes. These deterministic “signals” might include one or
several attractors, transients both near and far from attractors, and unstable
invariant sets and their stable manifolds. Moreover, we found in some of our
projects that these deterministic patterns might arise from more than one
deterministic model! In this paper, I present several examples taken from our
experimental projects that are selected to illustrate these tenets.

7.2 Saddles flybys

In 1980, David Jillson (1980) reported an experiment with Tribolium casta-
neum in which a nonlinear resonance phenomenon was observed in a habitat
of periodically fluctuating volume (Henson et al. 1997). Our first example
comes from Jillson’s control treatments in which the habitat was of constant
volume. Figure 7.1 shows plots of the larval stages in the three replicate
cultures. Also shown is the model predicted orbit of the LPA model

Lt+1 = bAt exp (−celLt − ceaAt)
Pt+1 = (1 − µl)Lt

At+1 = Pt exp (−cpaAt) + (1 − µa)At

(1)

with parameter estimates obtain from the data (using maximum likelihood
methods and a stochastic version of the model (Dennis et al. 1995; Cushing
et al. 1998)). The time unit in this model is two weeks and the generation
time is four weeks. The predicted (global) attractor is a 2-cycle. There is also
a (unique) positive equilibrium which is a saddle. After a short period of time,
two of the three replicate plots of the larval stage resemble the crash-boom
cycles predicted by the 2-cycle attractor.

The third replicate is strikingly different, however. Initially it also ap-
proaches the 2-cycle attractor, but the approach is interrupted by a long
period of subdued oscillation (from t = 6 to about t = 20 or 21, or in other
words over seven generations). Figure 7.1 indicates that the larval stage, dur-
ing this period, is close to the unstable equilibrium predicted by the model.
Figure 7.2 shows the data plotted in three dimensional phase space. The
initial approach to the 2-cycle attractor was interrupted by a random event
that placed the orbit near the (one dimensional) stable manifold of the sad-
dle equilibrium. The data then closely followed the model predicted stable
manifold, until it arrived near the saddle where it lingered for 13 time steps.
Subsequently this replicate made an oscillatory departure from the saddle
(as predicted by the one dimensional unstable manifold) until it too finally
arrived near the 2-cycle attractor.
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Fig. 7.1. The first three
plots show the larval stage
of three replicate control
cultures from an experi-
ment of Jillson (1980). The
fourth plot is that of the
LPA model predicted time
series of the larval stage
with the parameter val-
ues b = 4.44, µl = 0.479,
µa = 0.154, cel = 0.0584,
cea = 0.00580, cpa =
0.0105. The attractor is
a periodic 2-cycle. The
dashed line shows the
larval component of the
model predicted saddle
equilibrium

To explain the observed time series in the third replicate of Jillson’s con-
trols we see that it is necessary to include not just the model predicted
2-cycle attractor, but also the saddle equilibrium and the geometry of its sta-
ble and unstable manifolds. This “unusual” replicate should not be discarded
as anomalous (or averaged with the other replicates). Indeed it is valuable.
The “saddle flyby” provides more model validation than we would get from
time series data that did not visit the saddle (i. e., data orbits like the other
two replicates), because it confirms the model predicted dynamics away from
the attractor and near the saddle. Stochastic perturbations allow visitation
of a wider range of phase space and deepen our understanding of the pop-
ulations dynamics. (For the same reason they also improve our parameter
estimates, since the parameterization procedure is based on the residuals of
one-step predictions from each datum point which then have a wider range
in phase space (Cushing et al. 2003).)

We have seen such saddle flybys in virtually all of our experimental
projects (including saddle cycles as well as saddle equilibria). Figure 7.3 shows
another example taken from one of the treatments of a route-to-chaos exper-
iment reported in (Costantino et al. 1997; Cushing et al. 2003; Dennis et al.
2001). In this example, the local unstable manifold is two dimensional (in-
stead of one dimensional as in the example of Fig. 7.1) and is associated with
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Fig. 7.2. The data from Jillson’s replicate 3 produce an orbit in three dimensional
phase space. Plots are shown of this orbit over selected temporal subintervals. a Ini-
tially, from t = 0 to 6 the data orbit approaches the 2-cycle attractor denoted by
the solid circles. b At time t = 7 a random perturbation placed the data point
near the stable manifold of the saddle equilibrium (denoted by the diamond). The
vertical lines L1 and L2 are tangents to the two dimensional stable manifold at the
saddle (as determined from the eigenvectors of the two eigenvalues λ = 0.80285 and
−0.071169 of the Jacobian matrix respectively). The data orbit from t = 7 to 11
closely follow the tangent line L1. c From t = 12 to 21 the data orbit lingers near
the saddle equilibrium, eventually d to return to the 2-cycle attractor

a complex eigenvalue (of magnitude greater than one). The predicted dynamic
near the equilibrium is, therefore, quite different from that in Fig. 7.1. The de-
parture of orbits from the unstable equilibrium is expected to be “spiral-like”
(with a rotational angle predicted by the argument of the complex eigen-
value). The observed data exhibits this prediction to a remarkable accuracy.
This data is from one of three replicates, the other two of which did not un-
dergo such a saddle flyby (Cushing et al. 2003). Notice again that to explain
the “anomalous” replicate in Fig. 7.3, as well as the differences between it and
the other replicates, we need to include both the attractor and the unstable
saddle (and its characteristics) in the analysis.

Sometimes a data time series will undergo a saddle flyby after spending
considerable time on or near the attractor. For example, a distinctive sad-
dle equilibrium flyby, lasting 38 weeks (over 9 generations), occurred during
the 7th year of an 8 year experiment that placed a culture of Tribolium on
a chaotic attractor (King et al. 2003). In other examples, saddle flybys oc-
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Fig. 7.3. These four graphs show one replicate from one of the treatments of
the route-to-chaos experiment reported in (Costantino et al. 1997; Dennis et al.
2001; Cushing et al. 2003). For the estimated and controlled parameter values (b =
10.45, µl = 0.2000, µa = 0.9600, cel = 0.01731, cea = 0.01310, cpa = 0.05000)
the LPA model predicts an invariant loop attractor, appearing in the graphs as
a triangular shaped loop. The four graphs show the data orbit broken into four
temporal segments. The first and fourth segments in graphs a and d, corresponding
to the beginning and the end of the experiment, show a temporal motion around the
model predicted invariant loop. A notable perturbation away from the loop attractor
occurs when a stochastic event at t = 8 (week 16) placed the data point near a model
predicted equilibrium. Graph b shows this second segment of the orbit which lingers
near the unstable equilibrium for t = 8 to 13 (about 8 weeks or, in other words, two
generations). The saddle equilibrium has a two dimensional unstable manifold (the
linearization has complex eigenvalues of magnitude greater than one) and therefore
the model predicts a rotational departure from the equilibrium with, as it turns
out, an rotational angle of approximately 145 degrees. This rotation is clearly seen
in the data plotted in c

cur more than once in a single time series of data; see (Cushing et al. 2003,
p. 142) for an example that occurred in the route-to-chaos experiment.

A stochastic version of a deterministic model provides a means by which
to study such randomly occurring saddle flybys. We can view simulations
of a stochastic model as possible outcomes of an experiment (and repeated
simulations as replicates of the experiment). Such a model should not be
derive in a cavalier fashion. It is not always appropriate, for example, simply
to add noise to the right hand side of the equations in a dynamic model, as
is often done. Instead one should place random variables of an appropriate
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Fig. 7.4. The graphs in the left column show three simulations of a demographic
stochasticity version of the LPA model (1) with parameter values as in Fig. 7.1.
Noise was added to each of the three equations in the LPA model on the square root
scale (uncorrelated normal random variables with variances 10, 1 and 1 respectively)
(Dennis et al.1995; Cushing et al. 2003). Simulations were started near the 2-cycle
attractor, plotted as the solid circles in the upper graph. The open circles graphs
show the L-stage component of the simulations and the dashed line that of the
saddle equilibrium. The upper graph show no saddle flyby, while that in the middle
graph shows one and the bottom graph shows two flybys. The open circles in the
right column graphs show Euclidean distance to the saddle of the simulated orbits at
each point in time. The solid triangles show the average of the Euclidean distances
of the orbit point and its immediate predecessor from the two points on the 2-cy-
cle attractor. (The triangles pointing up are distances to the phase of the 2-cycle
shown in the upper graph in the left column, while the triangles point down are
the distances to its phase shift)

kind in appropriate terms, so as to describe the type of stochasticity present
in the biological system of interest. Figure 7.4 shows three realizations of
a version of the LPA model that approximates demographic stochasticity1,

1 This model adds a normal random variable of mean zero to each of the three
equations in the LPA model on a square root scale. These random variables are
uncorrelated in time. In these simulations covariances among them are assumed
equal to zero. This kind of stochastic model is one way to describe demographic
stochasticity. See (Dennis et al. 1995; Cushing et al. 2003).
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with parameter values from Jillson’s experiment in Fig. 7.1, that were selected
to illustrate saddle flybys. Using a stochastic model, one can study what the
model predicts will likely be observed in experimental or observational data
(the frequency of flybys, transient characteristics due to the geometry of the
saddle in phase space, the relative roles of transients and the attractors, etc.).

While the sorting out of the transient and attractor aspects of time se-
ries data not might be difficult in some examples, such as that in Figs. 7.1
and 7.4, in other cases it can fraught with difficulties and pitfalls. If, in an
investigation of a data set, one focuses only on attractors and uses diagnostic
methods designed for attractors, in a situation when transients are abundant,
then obviously it is possible that erroneous conclusions will be drawn. This
is particularly true when the attractor is complicated and complex. For ex-
ample, if stochastically produced transients cause orbits to often revisit the
neighborhood of a saddle (or even a repellor), then a large portion of time is
spent in regions of phase space where there is exponential separation of orbits.
Lyapunov exponents are diagnostic quantities for chaos based on an asymp-
totic average taken over the attractor. Applying this diagnostic to an orbit
that spends enough time near a saddle or repellor can result in the erroneous
conclusion that chaos is present. A specific example is given in (Desharnais
et al. 1997b), using a stochastic version of the famous Ricker map, in which
a “noisy equilibrium” is erroneously diagnosed as chaos by using Lyapunov
exponents. Also see (Dennis et al. 2003).

7.3 Basin hopping

Saddles and their stable manifolds also occur as boundaries between basins
of attraction in models with multiple attractors. While a deterministic model
with multiple attractors makes clear-cut predictions about the asymptotic
dynamics of orbits (depending on the initial conditions), when noise is present
the dynamics can become complicated, and saddles on the basin boundaries of
attraction can play an important role in what dynamic patterns are predicted
to be observed in experimental (or simulation) data.

A striking example of this occurs in one of our experiments designed
to observed a model predicted, two attractor scenario in a modification of
the Jillson experiments (Jillson 1980). Jillson investigated the dynamics of
T. castaneum in a periodically varying habitat by alternating the volume of
flour medium in which populations are cultured. Our analysis of Jillson’s data
utilizes the LPA model (1) in which habitat volume V is explicitly introduced:

Lt+1 = bAt exp
(
−cel

V
Lt − cea

V
At

)
Pt+1 = (1 − µl)Lt

At+1 = Pt exp
(
−cpa

V
At

)
+ (1 − µa)At .

(2)
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The hypothesis that the interaction (cannibalism) coefficients are inversely
proportional to habitat size has been experimentally confirmed (Costantino
et al. 1998). In a temporally varying habitat, V = V (t) is a function of t; in
a periodically varying habitat V (t) is a periodic function of t.

In our multiple attractor experiment the habitat volume was varied pe-
riodically with period two and selected amplitudes (Henson et al. 1999). So,
in (2) we have V (t) = 1 + α(−1)t where α is an amplitude and cel, cea, and
cpa are the coefficients in a standardized unit of volume (in our experiments,
the volume occupied by 20 grams of flour medium) under constant habitat
conditions (α = 0).

For parameter values estimated for T. castaneum in a constant habitat
(α = 0) (Costantino et al. 1997) the LPA model (2) predicts a stable 2-cy-
cle attractor. In a periodically varying habitat (α > 0) the model predicts
two different 2-cycle attractors that perturbed from the two phases of this
2-cycle. (This is true, in fact, in a rather general setting (Henson 2000).)
These 2-cycles, while out-of-phase, are not phase shifts of one another and
have distinctively different amplitudes; a large amplitude 2-cycle is a called
the “resonance” cycle and a small amplitude 2-cycle is called the “attenuant”
2-cycle (Costantino et al. 1998). An unstable (saddle) equilibrium present
when α = 0 perturbs to a saddle 2-cycle that sits on the basin boundary
separating to the regions of attraction for the resonance and attenuant 2-
cycles. This multi-attractor scenario occurs for 0 < α < 0.42. At α = 0.42
the attenuant and saddle 2-cycles annihilate one another in a saddle-node
bifurcation, leaving a single 2-cycle – the stable resonant cycle.

The experiments reported in (Henson et al. 1999) verified the occurrence
of the LPA model’s multiple attractor predictions by growing cultures for
appropriately selected amplitudes α of flour volume oscillations between 0
and 1. In particular, the presence of the two 2-cycle attractors – resonant and
attenuant – was observed in the experimental data at α = 0.4. (One reason
this is interesting is because the attenuant oscillation was counter-intuitive
biologically and seemed not to be a possible dynamic for the beetles.)

However, an interesting and unexpected phenomenon occurred in the
multi-attractor experiment. Each replicate culture whose initial conditions
were placed in the attenuant 2-cycle’s basin of attraction, while clearly ex-
hibiting the features (quantitatively and qualitatively) of the model predicted
attenuant 2-cycle early in the experiment, ultimately moved to the basin of
the resonant 2-cycle and assumed that attractor’s characteristics. No cul-
ture in the experiment made the reverse basin migration. The analysis of the
experiment presented in (Henson et al. 1999) showed how the saddle cycle
and its stable (two dimensional) manifold exhibited a strong influence on the
dynamics. Because of stochastic perturbations, the data orbits underwent
flybys of the saddle 2-cycle that caused a lingering near that saddle and the
basin boundary, which ultimately resulted in a stochastic jump to the res-
onant 2-cycle basin. These phenomena are in fact predicted by simulations
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of a stochastic version of the periodic LPA model (2). (Why reverse basin
jumps never occur in this case remains an open question.)

The multi-attractor experiment, and the stochastic model used to explain
it, show that the predictions of a deterministic model can be altered by noise
in important, but predictable and observable ways. In this experiment (and
in the stochastic model) one of the two deterministic attractors becomes, in
effect, a transient. While the deterministic model helps to explain the results
of the experiment, the stochastic version of the model “corrects” (or modifies)
the deterministic predictions and provides deeper understanding and insight
into the biological system.

Jillson’s experiments also included periodic forcing of the habitat volume
with other periods. An analysis of the temporal patterns observed in his data,
based on the periodically forced LPA model of period 4 and on attractor basin
switching and basin boundary saddles, appears in (Henson et al. 2002). In this
case, multiple basin switches (back and forth) are observed in some individual
time series.

Stochastic attractor basin hopping has also be used as a means to explain
phase shifts in oscillatory data time series in non-fluctuating habitats. See
(Henson et al. 1998, 2003).

7.4 Lattice effects

The most ambitious experimental project undertaken by our research team
during the last decade involved the investigation of a route-to-chaos. This
experiment is reported in (Costantino et al. 1997; Dennis et al. 2001) and
summarized in our book (Cushing et al. 2003). An analysis of the “chaos”
treatment in this experiment not only illustrates the issues described above –
the stochastic “dance” of attractors, saddles, and transients – but uncovered
some other interesting modeling issues and dynamic phenomena.

In the eight year (96 generations) time series data from the treatment that
was designed to corroborate the chaotic attractor predicted by the determin-
istic LPA model, one can observe a distinctive recursive temporal pattern –
a near 11-cycle. An explanation for this dynamic pattern was found when we
discovered that there exists an 11-cycle lying on the chaotic attractor that,
although a (unstable) saddle cycle, highly influences motion on the attrac-
tor. It was surprising to us that such a subtle pattern is discernible in real
population data, especially in the presence of chaos and noise2.

2 Others have also noted transient periodicity in data. Lathrop and Kostelich
(1989) found evidence for saddle cycles in a long series of data from the Belousov–
Zhabotinshii reaction. So et al. (1998) found evidence for saddle cycles in neu-
ronal electrophysiological recordings. Kendall et al. (1993) and Schaffer et al.
(1993) observed similarities between saddle cycles on a chaotic attractor pre-
dicted by an epidemiological model and historical measles case-report data.
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Furthermore, one finds an even more prominent cyclic pattern – a near
6-cycle pattern – in the times series data. However, it turns out that there is
no 6-cycle on the chaotic attractor (or anywhere else in phase space). There
is seemingly no explanation possible for this pattern based on the determin-
istic LPA model. This mystery was solved when, after thinking about the
details of the manipulations performed in the experimental protocol, we in-
vestigated various “integerized” version of the LPA model. (The experimental
data comes in whole numbers, of course, as do individuals in all life stages
of the beetle populations.) See for example the model described by Eqs. (4)
below. This and other “lattice” models predict, for the initial conditions of the
chaos treatment, that the final state of the orbit should be a 6-cycle that is
remarkably similar to the pattern observed in the data (Henson et al. 2001)!

On the other hand, a deterministic lattice model cannot predict chaos,
since bounded orbits necessarily reach, in finite time, a periodic cycle. More-
over, there are usually more than one “lattice” attractor in such a model.
This is true in the lattice LPA model used for the chaos experiment and, as
a result, numerous other cyclic patterns might be observable in the data. But
what then becomes of chaos? More generally, what roles do the continuous
state LPA model and its asymptotic attractors play?

When noise is added to the lattice LPA model we get a stochastic model
that predicts the dynamics of the integer value experimental data. Stochas-
ticity continually produces transients on the lattice and these transients, it
turns out, resemble the underlying continuous state space attractor (chaotic,
in this case). Thus, simulations of a stochastic integerized model predict an
episodic interplay of deterministic patterns – attractor, saddles, and tran-
sients – from both the deterministic lattice and the deterministic continuous
state space model. This phenomenon is illustrated using simpler “toy” models
in (Henson et al. 2001; Cushing et al. 2003) and such an example appears in
Fig. 7.5. An analysis of the chaos experiment using these notions appears in
(King et al. 2003).

Whereas the experiment was designed to put a population into chaotic
dynamics – as predicted by the deterministic, continuous state space LPA
model – other deterministic patterns are predicted by the lattice LPA model.
Specifically the lattice LPA model identified several cycles of various periods
as important on the lattice. Stochastic simulations of the lattice LPA model
predicted the observed data should contain (randomly occurring) episodes
of all these deterministic patterns – and even occasional flybys of the saddle
equilibrium (of the deterministic continuous state space model). Indeed, our
analysis of the data showed this to be the case; see Fig. 7.6.

In our analysis of the data obtained from the chaos treatment of our
experiment, in order to account for the observed temporal patterns it is not
sufficient to consider only the asymptotic (chaotic) attractor predicted by the
deterministic, continuous state space LPA model. The chaotic attractor does
play a role by contributing observable patterns not predicted by the determin-
istic lattice model, but conversely so also does the deterministic lattice model
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Fig. 7.5. a With b = 17 and c = V = 1, the Ricker map xt+1 = bxt exp (−cxt/V )
exhibits chaotic dynamics. b–e Show periodic lattice attractors of the integerized
Ricker map xt+1 = round[bxt exp (−cxt/V )] with b = 17 and c = 1 for increas-
ing values of V . Specifically a 2-cycle, 1-cycle (equilibrium), 13-cycle and 117-cycle
respectively. In the lagged phase space these attractors (plotted on a density lat-
tice) are seen to increasingly resemble the chaotic attractor. In f appears a re-
alization of the (environmental) stochasticity lattice Ricker model xt+1 = round
[bxt exp (−cxt/V ) + σzt] with b = 17 and V = c = 1. Here zt is a standard nor-
mal random variable (uncorrelated in time) and σ measures the magnitude of the
noise. This realization is to be compared with the continuous state space, chaotic
attractor in a and the equilibrium lattice attractor in c. Noise has “revealed” the
underlying continuous state space chaotic attractor. The time series shows intermit-
tent episodes of both the chaotic and the equilibrium dynamics of the continuous
and the lattice models

predict patterns that are not predicted the deterministic chaotic attractor.
Stochasticity is needed to explain how these patterns manifest themselves
(and in this sense stochasticity becomes an aid and not an obstacle, as it is
often viewed).

Henson et al. in (Henson et al. 2003b) consider in more generality the mod-
eling methodology that emerged from the chaos experiment. These authors,
using the LPA and other models, discuss how recurrent patterns in stochas-



138 J. M. Cushing

Fig. 7.6. One of the treatments of the route-to-chaos experiment reported in
(Costantino et al. 1997; Cushing et al. 2003; Dennis et al. 2001) was based on
a chaotic attractor predicted by the LPA model (1) with parameter values b = 10.45,
µl = 0.2000, µa = 0.9600, cel = 0.01731, cea = 0.01310, cpa = 0.9600. A “signature”
of the temporal dynamics on the chaotic attractor is a distinctive 11-cycle. The top
graph shows the eleven lag metrics (one for each phase of the 11-cycle) computed
using one replicate from the experimental treatment. The lag metric measures the
average distance of eleven consecutive data points from the corresponding points
on a selected phase of the 11-cycle. A low value indicates that the data was close
to the 11-cycle for eleven consecutive time steps. The “unravelled” portions of the
lag metric braid indicate time intervals during which the data followed closely this
signature of the chaotic attractor. (Recall that one generation is 4 weeks.) The
LPA model on an integer lattice predicts the experimental initial conditions (and
many others) ultimately arrive at a 6-cycle. The graph second from the top shows
the lag metrics for the lattice 6-cycle computed from the data. Unravelled portions
indicate intervals during which the data was close to this lattice model “attractor”.
The lattice LPA model has several other cycle attractors, one of which is an 8-cycle
whose lag metrics appear in the third graph. The bottom graph displays the lag
metric computed with respect to the saddle equilibrium. It clearly indicates a saddle
flyby late in the experiment. More details of this “anatomy” of the chaotic attractor
appear in (King et al. 2003)

tic processes can be predicted by various deterministic models derived from
a parent stochastic mode.

For example, a probabilistic model for Tribolium dynamics (based on
models of demographic stochasticity in life cycle stage specific birth and death
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rates) is described by the equations

Lt+1 ∼ Poisson
[
bat exp

(
−cea

V
at − cel

V
lt

)]
Pt+1 ∼ binomial [lt, 1 − µl]

Rt+1 ∼ binomial
[
pt, exp

(
−cpa

V
at

)]
St+1 ∼ binomial [at, 1 − µa]
at+1 = rt + st .

(3)

Here Rt is the number of sexually mature adult recruits, St is the number
of surviving mature adults, and lt, pt, rt and st are the respective numbers
observed at time t. The total number of mature adults is At = Rt + St and
at = rt+st is the number of mature adults observed at time t. The symbol ‘∼’
means ‘is distributed as’. This “Poisson/binomial” LPA (or PBLPA) model
is integer value and its dynamics occur on a lattice.

One way to construct a deterministic “skeleton” for the PBLPA model is
by iterating the conditional expectation (so that the “most likely” data triple
(Lt+1, Pt+1, At+1) to occur at time t+1, given the observed triple (lt, pt, at),
is assumed to be the mean of the random variables in the PBLPA model).
This results in the continuous state space LPA model (2).

On the other hand, we can obtain a deterministic skeleton that remains
on the integer lattice (where real data is observed) by using another measure
of central tendency, namely, the mode. By iterating the conditional mode we
obtain a deterministic lattice mode described, as it turns out (assuming the
unlikely event of a non-unique conditional mode), by the equations3

Lt+1 = floor
[
bAt exp

(
−cea

V
Lt − cea

V
At

)]
Pt+1 = floor [(1 − µl) (Lt + 1)]

At+1 = floor
[
(Pt + 1) exp

(
−cpa

V
At

)]
+ floor [(1 − µa) (At + 1)] .

(4)

3 These equations result from formulas for the mode of a binomial random variable
and the mode of a Poisson random variable. The following derivations are due
to Michael Trosset and Shandelle Henson (private communication). The pdf for
a binomial random variable binomial(n, p) is f (x) = n!

x!(n−x)!
px (1 − p)n−x. If

x = m is the mode, then f (m + 1) ≤ f (m) and hence p (n + 1) − 1 ≤ m.
Also f (m − 1) ≤ f (m) implies m ≤ p (n + 1). Since m is an integer, and since
p (n + 1) is almost always an integer, it follows that m = floor[p(n + 1)]. The
pdf fo a Poisson random variable poisson(µ) is f (x) = µx e−µ

x!
. For the mode m,

we see that f (m + 1) ≤ f (m) implies µ − 1 ≤ m and f (m − 1) ≤ f (m) implies
m ≤ µ. Since µ is almost always not an integer, we have m = floor[µ]. We also
point out that the equation for At+1 is different from that given in (Cushing
et al. 2003) because of the nature of the experimental protocol involved in the
study discussed in that book.
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Examples (in addition to the LPA models and the chaos experiment) given
by Henson et al. (2003b) show how temporal patterns from both mean (con-
tinuous state space) and mode (lattice state space) models are evident in
realizations of a stochastic model.

Notice that from this point of view it is not so appropriate to inquire
whether or not a specific time series of ecological data has a particular dy-
namic predicted by a deterministic model, and thus to identify the time series
with some type of asymptotic attractor (equilibrium, limit cycle, chaos, etc.).
Instead, one expects to observe intermittent episodes of various kinds of pat-
terns, attractor and transient, from perhaps more than one deterministic
skeleton. If one expects to see, and only looks for, deterministic attractor
patterns, then the modeling exercise used to study the data might be judged
a failure when in fact it is very much a success – a success because it can, using
an expanded analysis as described above, successfully explain the observed
temporal patterns.

For example, suppose one is looking for evidence of chaotic dynamics in
time series data. How reliable are conclusions (pro or con) obtained from
techniques and diagnostics (e. g., Lyapunov exponents) that are based on the
assumption that the data is on an attractor (with some noise, of course),
when, in fact, the dynamics might exhibit a stochastic “dance” of attractors,
saddles, and transients (Dennis et al. 2003)? A chaotic attractor could be
a role player – in this “dance” – and the fact be overlooked. If we found this
to be so in the controlled environment and accurately censused populations
cultured in our laboratory, then we would expect it to be so, perhaps even
more prominently, in field situations.

7.5 Habitat size

Another issue, relating to the important issue of scale in ecology, arose from
our route-to-chaos experiment. The predictions of a lattice model can depend
significantly on habitat size. This is the case for (3) or (4), whose dynamics
change in important ways with the volume V . This is not the case with the
continuous state space LPA model (2) whose dynamics only scale with V .

For example, with the estimated and controlled parameter values used in
the chaos treatment (Fig. 7.3), a change of V from V = 1 (corresponding
to the experimental habitat volume occupied by 20 g of medium) to V = 3
(60 g of medium) changes the lattice model prediction for the experimental
initial conditions from the 6-cycle that played such an important role in the
dynamics and analysis at V = 1 to a 14-cycle. The 6-cycle is no longer present
in the lattice dynamics at the larger habitat volume V = 3. Thus, a different
collage of patterns would have been predicted and utilized in analysis of the
data had the experiment been performed in 60 g of medium.

In the state space of densities, the number of lattice points increases with
V (the lattice mesh size decreases) and the dynamics of the deterministic
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Fig. 7.7. The top graph shows the chaotic attractor, plotted in phase space, pre-
dicted by the LPA model in the treatment of the route-to-chaos experiment dis-
cussed in the caption of Fig. 7.6. The graph on the lower left shows data points
(open circles) from all replicates clustered around the chaotic attractor. This ex-
periment was carried out in a volume occupied by 20 g of standard medium, which
corresponds to V = 1 in the LPA model (2). A follow-up experiment was conducted
in 60 g, or V = 3. The results, plotted (as densities) in the lower right hand graph,
show a tighter cluster of data points around the chaotic attractor (as predicted by
the stochastic lattice model (3))

lattice model converge to the deterministic attractor. This is illustrated for
the lattice Ricker model in Fig. 7.5. See Henson et al. (2001, 2003b) for
other examples, including the LPA model. Moreover, the stochastic PBLPA
model (3) predicts a stronger deterministic (continuous state space) signal as
V increases. This is typical of models with demographic stochasticity (May
2001). We have conducted an experiment that duplicates the chaos treatment,
but does so in the larger habitat of 60 g (V = 3). Although we have not yet
published an analysis of this experiment, one can see in Fig. 7.7 that the
prediction of a stronger deterministic signal in a larger habitat is supported
by the data.

Conversely, the continuous state space attractor is “lost” from the dynam-
ics of the corresponding lattice model if the habitat size is too small. In other
words, the size of the habitat effects the predicted dynamic patterns. In the
case of chaos, we know of no studies of chaos in ecological data that consider
habitat size as a possible factor.
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7.6 Concluding remarks

The examples taken from our experimental projects for inclusion in this pa-
per were chosen to illustrate that non-attractor dynamics can play an im-
portant role in explaining dynamic patterns observed in data. This is not to
say, of course, that attractors are unimportant. Indeed, we designed virtually
all of our experimental projects on the basis of model predicted attractors.
Nonetheless, we found that in order to obtain a complete and satisfactory
explanation of our data it is necessary to include unstable invariant sets, sta-
ble manifolds, and so on. This is true even though our experiments involve
(seemingly) low dimensional ecosystems cultured in controlled environments
in which population counts are highly accurate and stochasticity is mini-
mized. We can successfully account for the dynamic patterns observed in our
data by using deterministic model predicted patterns blended together by
stochasticity (in most of our cases, demographic stochasticity). In this set-
ting stochasticity becomes an aid, rather than a hindrance, in that it provides
the means by which the collage of observed patterns arise (and, in the pro-
cess, by which the “validation” of the deterministic skeleton that underlies
the model is strengthened).

Biological populations and ecosystems are complex, at all levels of or-
ganization, and our experience suggests that the mix of stochasticity and
nonlinearity will likely be important in most systems. The “higher dimen-
sions” (internal and external) ignored in models with a relatively few number
of state variables produces deviations from model predictions (which is mod-
eled as stochasticity). A good example is the plethora of models in which
state variables are total population sizes and which in effect treat all in-
dividuals as identical, a gross oversimplification in most biological systems.
Mathematicians could contribute more to theoretical and applied ecology by
extending their efforts beyond the analysis of asymptotic attractors in deter-
ministic models. The study of attractors is, of course, the first step. However,
by including stochasticity (in an appropriate way), one can suggest how the
deterministic dynamics are likely to manifest themselves in real data. (As we
have seen, one can do better than to say that attractors simply made “fuzzy”
by noise.) This will strengthen the connection between data and models, and
thereby aid ecologists in attempts to account for observed dynamic patterns.
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