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Abstract. Hierarchical structured models for scramble and contest intra-
specific competition are derived. The dynamical consequences of the two
modes of competition are studied under the assumption that both populations
divide up the same amount of a limiting resource at equal population levels.
A comparison of equilibrium levels and their resiliences is made in order to
determine which mode of competition is more advantageous. It is found that
the concavity of the resource uptake rate is an important determining factor.
Under certain circumstances contest competition is more advantageous for
a population while under other circumstances scramble competition is more
advantageous.
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1 Introduction

One way density dependent regulation of population growth can occur is
through intra-specific competition for limited resources. By affecting the
amount of resource available and therefore consumed by an individual orga-
nism, such competition can have a significant effect on the individual’s vital
growth, fertility, and survival rates. This in turn can have a determining effect
on the population’s dynamics.

The types of interactions between individuals in a population can be
diverse, ranging over all those familiar in the study of interspecific interactions
and more [32]. In particular, biologists distinguish a variety of different types
of intra-specific competition, including contest, scramble, exploitative, and
interference. Because they lack underlying submodels for vital physiological
characteristics of individual organisms, classical differential equations for
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population level statistics (such as total population size or density, biomass,
dry weight etc.) are generally too qualitative to give an adequate accounting of
intra-specific competition. As a result, these kinds of model equations cannot
describe differing types of competitive interactions and compare and contrast
their dynamical consequences for the population.

Structured population dynamics provide a modeling methodology that
bridges the gap between the level of the individual organism and that of the
total population. Such models classify members of the population according
to relevant physiological characteristics (such as chronological age, body size
or weight, life cycle stages, genetic or biochemical composition, etc.) and
provide submodels for class specific vital rates. Two broad types of models
have been widely used: discrete and continuous models. Both types have been
used to study a variety of types of intra-specific interactions, including juvenile
versus adult competition [12—15, 4—6, 25, 29]; cannibalism [1, 3, 7, 8, 11, 18,
19, 21, 33]; and contest versus scramble competition [22, 23, 9, 10].

In this paper we will use a class of continuous structured models to study
intra-specific competition. In particular, we are interested in comparing the
dynamical consequences of two opposed types of competition, contest and
scramble, in order to see under what circumstance one type might be more
‘‘advantageous’’ for a population than the other, according to a specified
criterion. This question is one of the main issues in the book by Lomnicki
[22]. After pointing out the confused state of affairs with regard to the
meanings of ‘‘scramble’’ and ‘‘contest’’ competition as they are used in the
literature, Lomnicki provides a clear definition of these terms and studies their
dynamical consequences by means of simple discrete model equations. One of
his main conclusions is that contest competition is more advantageous to
a population. This question was considered in [9] and [10] using more
sophisticated, continuous age- and size-structured models. The results in these
papers support Lomnicki’s conclusion, in so far as equilibrium level and
resilience criteria are concerned.

We have several purposes in this paper. Our main goal is to study further
the comparison between contest and scramble intra-specific competition and
to address the robustness of Lomnicki’s tenet that contest competition is
generally more advantageous. There are many ways in which a particular type
of intra-specific competition might be considered ‘‘advantageous’’ or ‘‘disad-
vantageous’’ to a population. In this regard most references in the literature
study the stability versus instability of a positive equilibrium. For example, see
[22—24, 27]. We, on the other hand, will study the effct that the competition
type has on equilibrium levels and resilience. (In fact, in our general class of
models below, the positive equilibrium is always globally stable.)

While we take the approach in [9] and [10], we modify and generalize
significant aspects of the models used in these papers. Instead of comparing
contest to scramble by means of a homotopy models that connects one to the
other, as in [9] and [10], we use here a comparison criterion based upon the
total amount of limiting resource available to the populations. Thus, we
compare scramble and contest populations that divide up the same total
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amounts of the limiting resource (given identical population sizes). We also
allow for nonlinear resource uptake rates (such as Holling type II and III), as
opposed to the less realistic linear (Volterra type) uptake rates used in [22],
[9] and [10]. As we will see, the concavity of the uptake rate, as a function of
available resource, plays a significant role in the sense that it can reverse the
comparative advantages of the contest and scramble modes of competition.

Continuous structured models involve complicated nonlinear integro-
partial differential equations, often with nonlinear integro-boundary con-
ditions, and therefore are generally difficult to analyze mathematically. For
this reason simplifying assumptions are necessary. One approach taken by
many authors has been to study classes of models that can mathematically be
reduced, by means of some trick or other, to more tractable equations, such as
ordinary differential equations or integral equations. Examples include so-
called ‘‘separable equations’’ [28, 2], ‘‘linear chain trickery’’ [17, 26], and
‘‘hierarchically structured’’ models [9, 10]. The latter type of models are
particularly useful for studying contest and scramble competition because the
definitions of these modes of competition involve a hierarchical ranking
within the population [22]. Hierarchically age-structured models have been
rigorously shown to have total population size dynamics governed by a de-
coupled ordinary differential equation [9]. This makes tractable the study of
the global asymptotic dynamics of the kinds of nonlinear integro-differential
equations described above. This is the approach taken in this paper. In Sect. 2
the basic hierarchical model equations will be described and in Sect. 3 the
intra-specific scramble and contest models are derived. The global asymptotic
dynamics of the two types of models are described and compared, with regard
to equilibrium levels and resilience, in Sect. 4 for both the case of a constant
resource and a dynamically varying resource. Proofs of the results appear in
the appendices.

2 The model

The continuous age structured model is formulated by means of the balance
equation

lim
h?0

o(t#h, a#h)!o (t, a)

h
"!do(t, a) , (1)

where o (t, a) is the per unit age density of organisms of age a'0 at time t'0
and d70 is the per capita death rate [26, 31]. Births are accounted for by the
boundary condition

o (t, 0)"P
=

0

bo(t, a)da, t'0 (2)

where b70 is the per capita birth rate. The model is completed by the
prescription of an initial age distribution /(a)70 and the requirement that

o (0, a)"/ (a), a70 . (3)
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In general, the vital rates b and d are functions of time t and age a. For
density regulated populations they are also dependent on the distribution
function o, usually by means of a linear functional of o. In the simplest
density-dependent models b and d depend on total population size [16]

P (t)"P
=

0

o (t, a)da .

Models involving more general weighted functions of o were studied in [30].
A special kind of functional dependence of b and d on o appropriate for
age-specific hierarchies was introduced in [9], specifically

b"b (t,½ (t, a),O(t, a))
(4)

d"d (t,½ (t, a),O(t, a) ) ,
where

½ (t, a)"P
a

0

o(t, a)da

O (t, a)"P
=

a

o (t, a)da .

In these so-called ‘‘age hierarchical’’ models the vital rates b and d depend on
time t, the number ½(t, a) of individuals younger than age a, and the number
O(t, a) of individuals older than age a (but do not otherwise depend explicitly
on age a). This includes a possible dependence on total population size

P(t)"½ (t, a)#O(t, a) .

In [9] the existence and uniqueness of solutions of the nonlinear model
equations (1)—(4) is rigorously addressed. In addition, it is shown in [9] that
the dynamics of total population size P(t) are governed by a scalar ordinary
differential equation. This ordinary differential equation can be heuristically
derived as follows. Under suitable conditions of smoothness, equation (1) can
be written as

Lo
Lt

#

Lo
La

"!do, a'0, t'0 .

Using the facts that P"½#O and

L
La

½ (t, a)"o (t, a) ,

one finds that

o (t, 0)"P
=

0

b (t,½ (t, a), O(t, a) )o (t, a)da

"P
P

0

b (t, z,P!z)dz
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and

P
=

0

d (t,½ (t, a),O(t, a)) o (t, a)da"P
P

0

d (t, z,P!z)dz .

These identities and an integration of the partial differential equation from
a"0 to a"R lead to the equation

P @(t)"B (t,P )!D (t,P) (5)

together with the initial condition

P (0)"P
=

0

/ (a)da ,

where

B (t,P)"P
P

0

b (t, z,P!z)dz

D(t,P)"P
P

0

d(t, z,P!z)dz .

The study of the asymptotic dynamics of age hierarchical models is thus
reduced to that of the scalar ordinary differential equation (5).

3 Intra-specific competition

In this section we will devise and study age hierarchical models in order to
study two different modes of intra-specific competition for limiting resources,
namely scramble and contest. The goal is to compare some of the dynamical
consequences of these two modes of competition and to see in what sense one
mode might be more advantageous to a population than the other.

Let R denote the amount of a limiting resource available to the popula-
tion. Let c3[0, 1] denote the fraction of this amount that is available to an
individual. In the presence of competition this fraction is dependent in some
way on population density. We will consider model equations in which
c"c (½,O ) is a function of the functionals ½ and O. For such a case

Rc (½ (t, a),O (t, a) )

is the resource available to an individual of age a at time t. The competition
coefficient c is assumed to satisfy the condition

P
P

0

c(z,P!z)dz61

so that the total resource available to the whole population is less than R, i.e.

P
=

0

Rc(½(t, a), O(t, a) )o (t, a)da"P
P

0

Rc(z,P!z)dz6R .
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We assume the birth rate is proportional to a resource uptake rate

u3C2 (R`,R` ), u@'0, u (0)"0 (6)
so that

b (½,O )"b
0
u (Rc (½,O)), b

0
'0 .

The death rate is assumed to be constant:

d"d
0
'0 .

We wish to compare the dynamics of scramble competition with those of
contest intra-specific competition. To do this we construct models for each of
two populations which are assumed to be identical in every way except in their
mode of intra-specific competition, one of which is scramble and the other of
which is contest. In so doing we utilize Lomnicki’s definitions of scramble and
contest competition [22]. According to this definition scramble competition
occurs when every individual (potentially) affects the amount of resource
available to any other individual in the population. On the other hand,
contest competition occurs when no individual of age less than a can affect the
amount of resource available to an individual of age a. This leads us to assume
in our model for scramble competition that the resource available to indi-
viduals is a function of the total population size P, whereas the resource
available to individuals of age a in our contest model is a function of the total
number O of individuals older than age a.

We consider competition coefficients c"c (x) that satisfy the general
conditions

c3C1 (R`, [0, 1]), c (0)"1
(7)

c @(0, lim
z?=

c(z)"0 ,

and denote the scramble competition coefficient by c
s
"c

s
(x) and the contest

competition coefficient by c
c
"c

c
(x). The resource uptake rates for the

scramble and contest populations are given by

Scramble: u
s
"u (Rc

s
(P) )

Contest: u
c
"u (Rc

c
(O) )

where u satisfies (6). We have assumed the functions u, c
s
, and c

c
(and hence

u
s
and u

c
) do not explicitly depend on age a. Therefore, in the case of scramble

competition all individuals in our model consume (per unit time) equal
portions of resource, while in the case of contest competition all individuals in
the same age class consume (per unit time) equal portions of resource.

In order to insure an appropriate comparison between the scramble and
contest populations we impose the criterion that both modes of competition
divide up the same amount of resource (for a given density distribution o).
This requires a relationship between the competition coefficients c

s
and

c
c
which is derivable from the equation

P
=

0

Rc
s
(P (t) )o (t, a)da"P

=

0

Rc
c
(O(t, a))o (t, a)da .
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If R is independent of age a, it follows from this criterion that

P
P

0

c
s
(P)dz"P

P

0

c
c
(z)dz ,

or

c
s
(P)G

1

P P
P

0

c
c
(z)dz . (8)

Thus, given a competition coefficient function

c
c
"c(O)

for the contest population (where c satisfies (7)), we consider, for comparison
purposes, the competition coefficient function c

s
for the scramble population

defined by (8).
For example, the pair

c
s
(P)"

1

1#P
, c

c
(O)"

1

(1#O)2

satisfies the ‘‘comparison criterion’’ (8). In this example, every individual in the
scramble population has available the same share R/(1#P) of the resource
and thus has an uptake rate of u (R/(1#P) ) units of resource per unit time.

With these submodels for birth and death rates the models for both the
scramble and contest populations are of the hierarchical form discussed in the
previous section. The asymptotic dynamics of the models are therefore gov-
erned by scalar ordinary differential equations for total population size P.
Specifically, the dynamics of the scramble and contest populations are deter-
mined by the equations

Scramble: P@"b
0
uAR

1

P P
P

0

c(z)dzBP!d
0
P

Contest: P@"b
0 P

P

0

u (Rc(z))dz!d
0
P .

Defining the number

n"
b
0
u(R)

d
0

,

we normalize the model equations as

Scramble: P@"d
0C

n

u (R)
uA

1

P P
P

0

Rc(z)dzB!1DP (9)

Contest: P@"d
0C

n

u (R)

1

P P
P

0

u(Rc(z))dz!1DP . (10)

The number n is the ‘‘inherent net reproductive number’’. It is the expected
number of offspring per individual per life time at low population densities.
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4 Results

In this section we will compare some general conclusions about the dynamics
implied by the scramble and contest models (9) and (10). We do this first for
the case when the resource level R is constant in time.

4.1 Constant R

When R is constant the following theorem is proved in the Appendix for both
equations (9) and (10):

Theorem 1. If n(1, then lim
t?=

P (t)"0. If n'1, then the trivial equilibrium
P"0 is unstable and there exists a unique positive equilibrium P

=
which is

globally asymptotically stable.

For n'1 denote the equilibria of equations (9) and (10) by P
s

and
P
c
respectively.

4.1.1 Comparison of the equilibria P
s
and P

c
Suppose uA(0 on (0,R). By Jensen’s Inequality, a form of which is proved in
the Appendix, it follows that

1

P P
P

0

u (Rc(z))dz(uA
1

P P
P

0

Rc(z)dzB
for all P'0. At the scramble and contest equilibria P

s
and P

c
we have

1

P
c
P

P
c

0

u (Rc(z))dz"
u (R)

n
"uA

1

P
s
P

P
s

0

Rc (z)dzB .

Since both
1

P P
P

0

u (Rc(z))dz and uA
1

P P
P

0

Rc (z)dzB
are decreasing functions of P , it follows that P

c
(P

s
.

A similar argument shows that if uA'0 on (0, R), then P
s
(P

c
.

Theorem 2. ¸et n'1. If uA(0 on (0,R), then P
c
(P

s
. If uA'0 on (0, R),

then P
s
(P

c
.

This theorem asserts that a concave down u implies the scramble popula-
tion has a larger equilibrium, while a concave up u implies the contest
population has a larger equilibrium.

For example, if u is a Holling II hyperbolic functional response (and
hence always concave down), the scramble population will have the larger
equilibrium.

An S-shaped Holling III type functional response u has a change of
concavity. In this case u will be concave up on (0,R) for sufficiently low values
of resource R and so the contest population will have the larger equilibrium.
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On the other hand, for large values of R the response functional u changes
concavity from up to down on the interval (0,R). In this case, the following
example illustrates that it is possible for the scramble population to have the
larger equilibrium for sufficiently large R. If we take

u (R)"
R2

k2#R2
and c (z)"

1

(1#z)2

then the scramble equilibrium is given by

P
s
"

R

kS
b
d
!1!1 .

The contest equilibrium is a root of the equation

P"

b
dS

R

k P
(1`P)Jk/R

Jk/R

1

1#w4
dw

Therefore, 0(P
c
6mJR for some constant m'0. It follows that

0(P
c
(P

s
for sufficiently large R.

Thus, with respect to equilibria levels, an S-shaped uptake rate implies
contest competition is more advantageous for low resource levels, while
scramble competition can be more advantageous for high resource levels.

4.1.2 Comparison of equilibrium resilience
We next compare the resilience of the scramble and contest equilibria. If
a population is perturbed away from equilibrium by DP, then the resilience is
the magnitude of the linearized eigenvalue

1

DP

d (DP)

dt
+

dP@
dP

evaluated at the equilibrium. If j
s
and j

c
denote the resilience dP@/dP of the

scramble and contest populations, respectively, at their equilibria P
s
and P

c
,

then a straightforward calculation shows that

j
s
!j

c
"

d
0
n

u(R)Cu@A
1

P
s
P

P
s

0

Rc(z)dzBARc (P
s
)!

1

P
s
P

P
s

0

Rc(z)dzB
#uA

1

P
s
P

P
s

0

Rc(z)dzB!u(Rc (P
c
) )D .

We must therefore compare linearization of u at P~1
s

:P
s0
Rc(z)dz evaluated at

Rc(P
s
) with the value of u at Rc(P

c
).

The proof of the following theorem is indicated in the Appendix.

Theorem 3. ¸et n'1. If uA (R)(0, then j
c
(j

s
whenever n is sufficiently close

to 1. If uA(R)'0, then j
s
(j

c
whenever n is sufficiently close to 1.
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Since the positive equilibria P
s
and P

c
are asymptotically stable, we know

that j
s
(0 and j

c
(0. Therefore, this theorem asserts that, when n is close to

1, a concave down u implies the contest population is more resilient, while
a concave up u implies the scramble population is more resilient.

If greater resilience and larger equilibrium levels are considered advan-
tageous, then Theorems 2 and 3 imply a trade off with regard to which
competitive mode, scramble or contest, is more advantageous. The resilience
criterion gives roughly opposite conclusions from the equilibria level criterion,
at least for n close to 1.

4.1.3 Comparison of asymptotic age distributions
So far we have compared scramble and contest competition by using total
numbers of individuals in a population. It is also reasonable to ask how the
mode of competition affects the stationary age distributions at the positive
equilibria P"P

s
and P"P

c
. In general,

o(t, a)"B(t!a, P(t!a) )

]expA!P
a

0

d(t!a#a,½ (t!a#a, a),O(t!a#a, a))daB
for t'a [20]. At equilibrium we have

B (P)"D(P)"d
0
P

and therefore
lim
t?=

o (t, a)"d
0
Pe~dÒa .

The scramble and contest stationary age distributions are therefore

d
0
P
s
e~dÒ a and d

0
P
c
e~dÒ a

respectively. This shows that for the models considered here whatever rela-
tionship is borne between the scramble P

s
and contest P

c
total population

levels also holds for every age class.

4.2 Dynamic R

We now consider a model in which R is not constant in time as was the case in
the previous models. Specifically, in the absence of consumption by indi-
viduals of the biological population, it is assumed the dynamics of R are
governed by an equation R@"I(R) where I (R) models an influx of R into the
environment. In the presence of the population, the dynamics of R are
governed by an equation of the form

R@ (t)"I(R)!F (R,P) ,

where F (R,P) describes the resource consumption rate. We will examine
the prototypical example I(R)"r(R

0
!R) for which, in the absence of
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consumption by the population, R will equilibrate to a level R
0
'0. The

coefficient r is a measure of the rate at which this equilibration takes place.
Rescaling resource units and time we can, without loss in generality,

assume that I(R)"1!R. We then arrive the following two models for
scramble and contest competition respectively:

G
R@"1!R!PuAR

1

P P
P

0

c(z)dzB
P@"b

0
PuAR

1

P P
P

0

c (z)dzB!d
0
P

G
R@"1!R!P

1

P P
P

0

u (Rc(z))dz

P@"b
0
P

1

P P
P

0

u (Rc(z))dz!d
0
P .

The proof of the following theorem is outlined in the Appendix for both
models, where the net reproduction number is defined to be n"b

0
u(1)/d

0
:

Theorem 4. If n(1, the axis equilibrium (R,P)"(1, 0) is globally
asymptotically stable. If n'1, (R,P)"(1, 0) is unstable and there exists
a unique positive equilibrium (R

=
,P

=
)3 (0, 1)](0, n/u (1)) which is globally

asymptotically stable.

In order to compare the positive equilibrium levels P
s

and P
c

for the
scramble and contest populations, we note that both

uAA1!P
u (1)

n B
1

P P
P

0

c(z)dzB
and

1

P P
P

0

uAA1!P
u (1)

n Bc(z)Bdz

are decreasing functions of P on the interval (0, n/u (1)) (see the Appendix).
Moreover, by Jensen’s Inequality (as proved in the Appendix), the first
expression is the larger for all P3 (0, n/u(1)) when u ( · ) is concave down on
(0, 1) and the second is the larger when u( · ) is concave up on (0, 1). Since at
equilibrium

uAA1!P
s

u(1)

n B
1

P
s
P

P
s

0

c(z)dzB"
u(1)

n
"

1

P
c
P

P
c

0

uAA1!P
c

u(1)

n B c (z)Bdz ,

we have the same result obained for the case of constant R:

Theorem 5. ¸et n'1. If uA(0 on (0, 1), then P
c
(P

s
. If uA'0 on (0, 1), then

P
s
(P

c
. In any case, (P

s
!P

c
)(R

c
!R

s
)'0.
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A corollary of this result is that the mode of intra-specific competition
which results in the larger population equilibrium also exploits the resource to
the lower equilibrium level.

5 Generalizations and further modifications

In general, one might ask if the original partial differential equation model can
be reduced to an ordinary differential equation when the hierarchy is based on
some variable other than age. In the following, we indicate the procedure for
a hierarchy based on size m of the individual. For related details see [9, 8,
10, 34].

In this case, the structured partial differential equation model is

Lo
Lt

#

L
Lm

(co)"!do

coD
m/m

b

"P
=

m
b

bo (t, m) dm

o (0,m)"/(m) , (11)
where

dm

dt
"c(t, m,o)

is the growth rate along characteristics of the mass variable m.
We assume the competition coefficient c"c(t,S,¸) for an individual of

mass m depends on S, the total biomass of individuals of smaller size, and ¸,
the total biomass of indivduals of larger size, where

S (t, m)"P
m

m
b

so(t, s)ds

¸ (t, m)"P
=

m

so(t, s)ds .

If we assume that the birth and growth rates are proportional to body size
and are functions of S and ¸

b (t,m,o)"mb(t,S,¸)

c (t,m, o)"mg(t, S,¸) ,

then an ordinary differential equation for total population biomass

P"S#¸"P
=

m
b

so (t, s)ds

can be obtained by multiplying the partial differential equation (11) by m and
integrating from m"m

b
to m"R. Under the additional assumption that the
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per unit death rate d is a function of S and ¸

d"d(t,S,¸)

(and lim
m?=

(mog)"0) this integration results in the scalar ordinary differen-
tial equation

P @ (t)"B (t,P)#G(t, P)!D (t,P) (12)

for the total biomass P with the initial condition

P(0)"P
=

m
b

m/(m)dm ,

where

B (t, P)"m
b P

P

0

b(t, z,P!z)dz

G (t,P)"P
P

0

g (t, z,P!z)dz

D (t,P)"P
P

0

d (t, z,P!z)dz .

The scalar equation (12), which contains an added term G(t,P) that
accounts for growth, can be compared to the corresponding equation (5) for
age-structured populations (in which only birth and death rates appear). If,
following the modeling methodology above for the age-structured case, we
assume that both (per unit size) birth and growth rates are proportional to
resource uptake

b (S,¸)"b
0
u (Rc(S,¸) ), b

0
'0

g (S,¸)"c
0
u (Rc(S,¸) ), c

0
'0

and that the death rate is a constant d
0
'0, then the equation (12) for total

population biomass P takes exactly the same form as those studied above for
the age-structured case (with b

0
replaced now by m

b
b
0
#c

0
). We conclude

that all of our results concerning the comparison between scramble and
contest competitive modes remain valid for this size-structured model.

6 Concluding remarks

Utilizing the definitions of scramble and contest competition in [22] we
derived models for the dynamics of populations practicing these types of
intra-specific competition from the hierarchical models of the form (1)—(4).
From the results of [9] and the comparison criterion (8), the scalar ordinary
differential equations (10) and (9) for the dynamics of total population sizes of
the scramble and contest populations were obtained. Conclusions concerning
the comparative advantages and disadvantages of these two modes of com-
petition can therefore be drawn from a study of the asymptotic dynamics of
these two equations. Both models predict population extinction if the inherent
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net reproductive number n is less than 1 and population survival (in the form
of a globally asymptotically stable positive equilibrium) if n is greater than 1.

With regard to the relative sizes of positive equilibria (when n'1) the
concavity of the resource uptake rate u, as a function of the available resource,
is a crucial factor. If u is concave down then the scramble population will have
the larger equilibrium. This occurs, for example, with Holling type II (or
Michaelis-Menton) uptake rates. This case is in disagreement with Lomincki’s
tenet that contest competition is more advantageous to the population. If,
however, u is concave up then the reverse is true, namely the contest popula-
tion will have the larger equilibrium, in agreement with Lominicki’s tenet.
This case occurs, for example, with a Holling type III resource uptake rate at
‘‘low’’ resource availability rates. These conclusions were shown to remain
valid for a dynamically varying resource R.

A comparison between scramble and contest competition was made with
respect to the resilience of the equilibrium, at least for n'1 values not too
large. Here it is again found that the concavity of the uptake rate u is
important. However, the opposite conclusions are reached from those reached
when the equilibrium level is used to make the comparison. Namely, if u is
concave down then the contest population is more resilient (although it has
the smaller equilibrium size), in agreement with Lominicki’s tenet, while the
reverse is true if u is concave up and resource levels are low.

The conclusions above were shown to remain valid for a general class of
size-structured, continuous population models (as opposed to age-structured).
Discrete hierarchical models are studied in [35]. In this reference it is shown
that the dynamics of total population size, in analogy to (5), are governed by
a one dimensional map. This methodology is used to study several applica-
tions, including the kinds of competition interactions studied in this paper.

We conclude that the general tenet that contest competition is more
advantageous than scramble competition needs to be carefully qualified. First
of all there is the rather obvious warning that the meaning of ‘‘advantageous’’
must be made clear and how the comparison is to be made must be specified.
Furthermore, as we have seen, certain nonlinear details can be a determining
factor in the comparison. In our case, this was the resource uptake rate. Other
factors might prove to be important in other models. For example, we ignored
in this paper the effects of the resource competition on individual survival
rates. What role such nonlinearities might play in comparing the two modes of
competition remains to be studied.

A Appendix

A.1 Proof of Therem 1

Since u (0)"0, u@'0, c (0)"1, c@(0, and lim
z?=

c(z)"0, the functions

uAR
1

P P
P

0

c(z)dzB
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and
1

P P
P

0

u (Rc(z))dz

both approach u (R) as PP0, approach 0 as PPR, and decrease monotoni-
cally in P. Therefore, for each model, if n(1, P@"0 if and only if P"0, and
P@(0 for all P'0. Furthermore, if n'1, then for each model there is
a unique positive equilibrium P

=
, and P@(0 whenever P'P

=
and P@'0

whenever 0(P(P
=

.

A.2 Proof of a Jensen-type inequlity

The following theorem is a form Jensen’s Inequality:

Theorem 6. Suppose u3C2[0,R) and f : (0,R)][0,R)PR is continuous.
If there exists a c'0 such that uA( f (x, y))(0 on (0, c)](0,x) and f"f (x, y) is
monotonic in y on (0,x) for each x3 (0, c), then

1

x P
x

0

u( f (x, z) )dz(uA
1

x P
x

0

f (x, z)dzB
for all x3 (0, c).

Proof. If uA (x)(0 on (a, b), then for all x3 [a, b] and y3 (a, b),

u(x)6u@ (y) (x!y)#u (y) ,

with the strict inequality holding everywhere except at x"y.
Let x3 (0, c). For all y3 [0, x]

u ( f (x, y))6u@A
1

x P
x

0

f (x, z)dzBG f (x, y)!
1

x P
x

0

f (x, z)dzH#uA
1

x P
x

0

f (x, z)dzB
with the strict inequality holding everywhere except at the unique y3 (0, x)
where

f (x, y)"
1

x P
x

0

f (x, z)dz .

Integration with respect to y of both sides of the inequality yields the
conclusion.

The analogous theorem with the inequalities reversed can be similarly
proved.

A.3 Proof of Theorem 3

It is sufficient to compare

jI
s
"u@A

1

P
s
P

P
s

0

Rc(z)dzBGRc (P
s
)!

1

P
s
P

P
s

0

Rc (z)dzH#uA
1

P
s
P

P
s

0

Rc(z)dzB
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and
jI
c
"u (Rc(P

c
) ) .

When n"1, P
s
"P

c
"0 and jI

s
"u (R), so for n sufficiently close to 1,

jI
s
'0. Thus,

u (0)"0(jI
s
(uA

1

P
s
P

P
s

0

Rc (z)dzB
since

Rc(P
s
)(

1

P
s
P

P
s

0

Rc (z)dz .

Also u@'0, so
Q(n)Gu~1 (jI

s
(n))

is well-defined and is a continuous function of n.
Expanding P

s
(n), P

c
(n), c(P

c
(n)), and Q(n) in a Taylor series about n"1,

we find

Q(n)!Rc(P
c
(n))+

1

2 C
!uA(R) (u(R) )2

3(u@ (R))3 D (n!1)2

to second order.
If uA (R)(0, then Rc(P

c
)(Q when n is sufficiently close to 1 and so

jI
c
"u (Rc(P

c
) )(u(Q)"jI

s
.

If uA (R)'0, then Q(Rc (P
c
) when n is sufficiently close to 1 and so

jI
c
"u (Q )(u(Rc(P

c
))"jI

s
.

A.4 Proof of Theorem 4

As in [9] one can prove that solutions to both models are bounded by
showing each triangle 06R6k, 06P6b

0
(k!R) is positively invariant

for k'maxM1, 1/d
0
N.

Each model has an axis equilibrium (1, 0). Any interior equilibria must
satisfy the equations

f
s
(P)GuAA1!P

u (1)

n B
1

P P
P

0

c (z)dzB"
u (1)

n

for the scramble model and

f
c
(P)G

1

P P
P

0

uAA1!P
u(1)

n B c (z)Bdz"
u (1)

n

for the contest model.
Clearly

f
sA

n

u (1)B"f
cA

n

u (1)B"0 .
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Also, f
s
(P) approaches u (1) as PP0 and is monotonically decreasing in

P on (0, n/u(1)).
From

d

dP P
P

0

uAA1!P
u (1)

n B c (z)Bdz

"!

u (1)

n P
P

0

u @AA1!P
u(1)

n Bc(z)Bc (z)dz#uAA1!P
u (1)

n Bc (P)B
we can show, using l’Hopital’s rule, that f

c
(P) approaches u(1) as PP0. From

d f
c

dP
"!

u (1)

nP P
P

0

u @AA1!P
u(1)

n Bc(z)Bc (z)dz

#

1

P CuAA1!P
u(1)

n Bc(P)B!
1

P P
P

0

uAA1!P
u (1)

n Bc (z)BdzD
it follows that f

c
is monotonically decreasing in P on the interval

(0, n/u (1)).
Thus, each model has an interior equilibrium if and only if n'1, and this

equilibrium is unique.
A straightforward linearlized stability analysis for each model shows the

axis equilibrium (R,P)"(1, 0) is stable when n(1 and is a saddle when n'1,
with its stable manifold on the R axis. In the latter case, the Hartman-
Grobman Theorem implies (1, 0) cannot be contained in the u-limit set of
a positive orbit. An application of the Dulac-Bendixson Theorem (with factor
1/P) to each model shows there are no closed orbits. By Poincare-Bendixson
theory the u-limit set of any positive orbit must in fact be the interior
equilibrium.

References

1. Botsford, L. W., The effects of increased individual growth rates on depressed
population size, Am. Nat. 117: 38—63 (1981)

2. Busenberg, S. and M. Iannelli, Separable models in age-dependent population dynam-
ics, J. Math. Biol. 22: 145—173 (1985)

3. Costantino, R. F., and R. A. Desharnais, Population Dynamics and the Tribolium
Model: Genetics and Demography, Monographs on Theoretical and Applied Genetics
13, Springer, Berlin, 1991

4. Cushing, J. M. and Jia Li, On Ebenman’s model for the dynamics of a population with
competing juveniles and adults, Bull. Math. Biol. 51: 687—713 (1989)

5. Cushing, J. M. and Jia Li, Juvenile versus adult competition, J. Math. Biol. 29: 457—473
(1991)

6. Cushing, J. M. and Jia Li, Intra-specific competition and density dependent juvenile
growth, Bull. Math. Biol. 54 (4): 503—519 (1992)

7. Cushing, J. M., A simple model of cannibalism, Math. Biosci. 107: 47—71 (1991)
8. Cushing, J. M., A size-structured model for cannibalism, Theor. Popul Biol. 42 (3),

347—361 (1992)

Hierarchical models of intra-specific competition 771



9. Cushing, J. M., The dynamics of hierarchical age-structured populations, J. Math. Biol.
32: 705—729 (1994)

10. Cushing, J. M., Competition in hierarchically size-structured populations, to appear,
Proceedings International Conference on Differential Equations & Applications to
Biology and Industry, World Scientific Publ., Co., Singapore, 1995

11. Diekmann, O., R. M. Nisbet, W. S. C. Gurney and F. van den Bosch, Simple
mathematical models for cannibalism: a critique and a new approach, Math. Biosci.
78: 21—46 (1986)

12. Ebenman, B., Niche differences between age classes and intra-specific competition in
age-structured populations, J. Thor. Biol. 124: 25—33 (1987)

13. Ebenman, B., Competition between age classes and population dynamics, J. Theor.
Biol. 131: 389—400 (1988)

14. Ebenman, B., Dynamics of age- and size-structured populations: intra-specific
competition, Size-structured Populations (Ebenman & Persson eds.), Springer-Verlag,
Berlin, 127—139, 1988

15. Ebenman, Bo and Lennart Persson, Size-structured Populations: Ecology and
Evolution, Springer, Berlin, 1988

16. Gurtin, M. and R. C. MacCamy, Nonlinear age dependent population dynamics, Arch.
Rat. Mech. Anal. 54: 281—300 (1974)

17. Gurtin, M. and R. C. MacCamy, Some simple models for nonlinear age-dependent
population dynamics, Math. Biosci. 43: 199—211 (1979)

18. Hastings, A., Cycles in cannibalistic egg-larval interactions, J. Math. Biol. 24: 651—666
(1987)

19. Hastings, A. and R. F. Costantino, Cannibalistic egg-larva interactions in ¹ribolium: An
explanation for the oscillations in population numbers, Am. Nat. 130: 36—52 (1987)

20. Hoppenstaedt, Frank, Mathematical Theories of Populations: Deomographics,
Genetics and Epidemics, Reg. Conf. Series in Appl. Math., SIAM, Philadelphia, 1975

21. Landahl, H. D. and B. D. Hansen, A three stage population model with cannibalism,
Bull. Math. Biol. 37: 11—17 (1975)

22. Lomnicki, A., Population Ecology of Individuals, Monographs in Population Biology
25, Princeton University Press, Princeton, New Jersey, 1988

23. Lomnicki, A. and J. Ombach: Resource partitioning within a single species population
and population stability: a theoretical model, Theor. Pop. Biol. 25, 21—28 (1984)

24. Lomnicki, Adam and Stanislaw Sedziwy, Resource partitioning and population stabil-
ity under exploitation competition, J. Theor. Biol. 132,: 119—120 (1988)

25. Loreau, M., Competition between age classes, and the stability of stage-structured
populations: a re-examination of Ebenman’s model, J. Theor. Biol. 144: 567—571 (1990)

26. Metz, J. A. J. and O. Diekmann, The Dynamics of Physiologically Structured
Populations, Lecture Notes in Biomathematics 68, Springer, Berlin, Heidelberg,
New York, 1986

27. Rogers, Alan R., Population dynamics under exploitation competition, J. Theor. Biol.
119: 363—368 (1986)

28. Stephen D. Simmes, Age dependent population dynamics with nonlinear interactions in
the death rate, Ph.D. dissertation, Carnegie-Mellon University, 1978

29. Tschumy, W. O.: Competition between juveniles and adults in age-structured
populations, Theor. Pop. Biol. 21: 255—268 (1982)

30. Tucker, S. L. and S. O. Zimmerman, A nonlinear model of population dynamics
containing an arbitrary number of continuous structure variables, SIAM J. Appl. Math.
48(3), 549—591 (1988)

31. Webb, G. F. Theory of Nonlinear Age-Dependent Population Dynamics, Marcel
Dekker, Inc., New York 1985

32. Werner, E. E. and J. F. Gilliam, The onogenetic niche and species interactions in
size-structured populations, Ann. Rev. Ecol. Syst. 15, 393—425 (1984)

33. Van den Bosch, F., A. M. de Roos and W. Gabriel, Cannibalism as a life boat
mechanism, J. Math. Biol. 26: 619—693 (1988)

.

772 S. M. Henson, J. M. Cushing


