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1. GENESIS OF THE PROBLEM 

Consider the boundary problem 

Au = u,, + u,, = 0 on S, on as (1.1) 

where S is a bounded, simply connected region in the x, y plane, its boundary 
X3 is a regular closed curve, and n is the outwardly directed normal to 3s. 
Here A(s) is a prescribed continuous function of arc length s along S andf(u) 
is a function given in advance and assumed analytic in its argument u. We will 
assume that a solution U(X, y) to (1.1) exists satisfying at least 24 E F(S), 
II E CO(S + ES). The proof of the existence of such a solution is, in general, 
very difficult and will not be attempted here. 

In the simple case f(u) = 1 in (l.l), we have the Neumann problem for 
which it is well known that the solution is unique up to an additive constant. 
One proof [l] follows from the integral identity valid for two harmonic 
functions 24 , u2 on S, 

-+)ds=/,, [(PI - ~2)” + @I - d21 dS (l-2) 

where pc = au,/& and qi = i&Jay. If u1 , u2 are both solutions to the 
Neumann problem, then au,/& = au,/% on LX!3 and (1.2) clearly implies 
p, = p, , ql = q2 in S, which in turn yields u2 = u, + const. 

In studying the question of uniqueness for the more general problem (1 .l) 
Martin [2] generalized the integral identity (1.2) to obtain 

(1.3) 
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where 

Q = apI + 2bplp2 + cpz2 + aq12 + 2bqlq2 i- cq2” (14 

is a quadratic form in the variables p, = au,/ax, qi = aui/8y, i = 1,2, the 
coefficients of which are 

The identity (1.3) arises from Gauss’ Theorem 

upon setting 

A = 7U2Pl -flP2h l-l = ‘(f241 -fiS2). 

Here we assume that 7, 7W1 , 7Ue , are continuous functions of x, y in S so that 
Gauss’s Theorem is valid [I] on S and the coefficients of Q are continuous 
on S. 

In the uniqueness theorems of Martin 12-61 and Dunninger [7] it is stated 
that given a nonconstant solution u1 to problem (1.1) for a specified function 
f(u), then no other nonconstant solution U, exists which satisfies certain 
explicitly stated hypotheses. These hypotheses sometimes require (among 
other things) that u2 f ur in S; that is, the solutions ui , u2 must not be 
%nywhere close to one another”. In order to study the uniqueness question 
without this restriction we formulate a concept of local uniqueness in the 
following definition. 

DEFINITION 1 .I. Let p = p(x, y) be a nonnegative function of X, y defined 
on S. A solution ur to problem (1.1) is p-locally unique if no other solution ua 
to (1 .l) exists satisfying 

A solution u, is p-locally unique among the functions in a class C if no solution 
u2 E C exists satisfying (1.6). 

This concept of p-local uniqueness asserts that solutions to (1.1) cannot be 
“everywhere close to one another”, but it does not, together with results of 
the type of Martin and Dunninger, exclude the possibility, which still remains, 
that solutions may equal one another at some points of S and diier greatly 
at others. 

Note that if a solution u1 is p-locally unique and 0 & Q(X, y) < p(x, y) then 
ur is also u-locally unique. We must point out, bowever, that for some 
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functions p(x, y) a solution z+ is always p-locally unique. For example, such 
is the case if p(x, y) -+ 0 as (x, y) -+ (3, , ya) E 8s or if p(x, y) vanishes on an 
open subset of Si for the condition (1.6) then implies us = u, in S. The 
definition lacks content for such functions p&y) and they are accordingly 
excluded from consideration. 

In the special case p(x, y) = E where E = const. > 0, the concept of 
e-local uniqueness implies that a solution to (1.1) is E-locally unique if and 
only if it cannot be uniformly approximated to within “distance” E by another 
solution. 

As an example, let 211 be a solution to the Neumann problem f = 1. Then 
us = ur + R, K = const.; is also a solution and since 1 K 1 can be made 
arbitrarily small we see that ur is not E-locally unique for any constant E > 0; 
however, if p(x, y) is any nonnegative function with a zero in S, then since any 
solution is of the form us = u1 + k and since (1.6) implies K = 0, ul is seen 
to be p-locally unique. 

We now ask for what functions f(u) and under what hypotheses will 
solutions to problem (1.1) be p-locally unique for a suitable function p. 

2. FUNDAMENTAL LEMMAS 

If in identity (1.3) we choose fi = f(uJ, f. = f(uJ where ur , us are two 
nonconstant analytic functions which solve (l.l), then identity (1.3) becomes 

where Q is the quadratic form (1.4) in the variables pi , p, , q1 , q2 with 
coefficients (1.5) which are functions of u, , u2 and r is a function which is at 
our disposal. 

Let D denote the set of points in two dimensional Euclidean space E, at 
which Q is positive definite. D clearly depends on the choice of 7. If for the 
two nonconstant solutions ?r, , ua the manifold 

n/r, : Ul = %(X,Y), u2 = U&Y), (x3 Y> E s 

is contained in D, then (2.1) implies Q E 0 in S which in turn implies 
pi =q$=O(i= 1,2)inS, i.e., u1 = const., us = const., a contradiction. 

As is well known [S], the quadratic form Q will be positive definite if and 
only if the descending principal minors of its associated symmetric matrix 
are all positive. A routine calculation shows these are equal to 

a, ac - b2, a(ac - P), (ac - b2)2, 
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and hence Q will be positive definite if and only if 

a > 0, A = b2 - ac < 0. 

These are partial differential inequalities for the unknown function T which 
can be written as 

where 
a = jz~l > 0, A=U2+W<0 (2.2) 

u = WP-I i-.fiT2 + (ii’ - flwt W = j&f: -ji’) TT~ . (2.3) 

Here we have set 7i = 8~/& (i = 1,2) and 

Once a function 7 has been selected the inequalities (2.2) serve to define D. 
Letting a zero superscript denote evaluation on the one dimensional manifold 

of E, one observes that 

inasmuch as @ = 0. Consequently D can never be the whole space ,Es and 
(2.2) cannot possibly be fulfilled unless u1 , u2 are solutions for which S, ,is 
avoided. We can, however, still obtain uniqueness and local uniqueness 
without excluding S, by utilizing 

LEMMA 2.1. .Ijul is a nonconstant solution to (l.l), then rto other solution u, 
exists for which Ml C D + S, . 

Proof. Given two solutions u, , ua , satisfying Ml Z D + S, , then Q is 
positive definite in S except on the nodal lines u, - u, = 0 and, hence, 
Q > 0 in S. Identity (2.2) implies Q = 0 in S which, in turn, implies the 
contradiction u, = const. 

We note that in order for Ml C D + S, it is necessary that T be chosen so 
that Lf = 0, i.e., so that 

8 = 0. (2.4) 

We wili also need the following lemma. 

Lnn5iwA 2.2. Letg(t, s) = xE=, a,(t)(s - t)” where the am(t) are contineom 
junctions of t E fa, b], b > a. Assume g(t, s) converges for all t E [a, b], 
‘0 < I s-t~jrjorsomeconstantr)O. 
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(a) If a,(t) < k < 0 for t E [a, b] and some constant k, then there exists a 
corz.stant~>Osuchthatg(s,t)<OforO<~s-tj<c. 

(b) If 40 < Ofm t E [a, 61 w h eye a2(t) = 0 ;f and only if t = to E [u, b], 
thhen there exists a function p(t) > 0 (which may be taken as continuous in t) 
dejined on [a, b] where p(t) = 0 if and onZy if t = to such that g(s, t) < 0 fw 
0 -C I t - s I < p(t), t E [a, 4, t + to . 

To prove part (a) we set g(t, s)(s - t)-Z = as(t) + (s - t) h(s, t) where 
h(s, t) is a continuous and, hence, bounded function on the closed set t E [a, b], 
0 < 1 s - t [ < Y. Let / h(s, t)l < B for B > 0. Since a,(t) < k < 0 on [a, b], 
wehavea,(t)+(s-t)k(s,t)<OifO~Is-t[(~=k/2B,tE[a,b]and 
part (a) follows. 

Suppose now that a2(t) < 0 on [a, b] with a,(t) = 0 if and only if 
t = to E [Q, b]. If to # b, divide [to , b] into the subintervals 

Ii = [t,, + (b - to) 2-i, to + (b - to) 2i+1], i = 1, 2,... . 

Since a,(t) < ki < 0 on Ii for some kz > 0 part (a) implies g(s, t) < 0 for 
0 < 1 s - t 1 < Q’, t E Ii for some Q’ > 0; clearly we can choose ci’ > E:+~ . 
If to # a a similar argument for subintervals Jt = [a + (to - a> 2i, 
a + (to - a) 2-i+1], i = 1,2, . . . . of [a, t,] yields a sequence ~1 > 0 such that 
c; > <;+I and g(s, t) < 0 for 0 < I s - t I < E;, t E jg . Let l i = min(e;‘, l :) 
i = 1, 2,... . If infi ei = E > 0 then clearly g(s, t) < 0 for 0 < I s - t I < E, 
t E [a, b] and part (b) holds for any 0 < p(t) < E for which p(t) = 0 if and 
only if t = t, . If infi ei = 0, we define 

/ 

l i+l + 2g(ci - ca+J(b - Q-1 [t - t,, - (6 - to) 2-7, 
tE&, i = 1, 2,... 

PM = 6i+l + 2i(~i - ci+l)(to - a)-l [t - a - (t, - a) 2-i+1], 
tG3iTi, i = 1, 2,... 

0, t = t, 
which is continuous for t E [a, b] and vanishes if and only if t = to . Moreover, 
since 0 < p(t) < ei on Ii and Ji we have g(s, t) < 0 if 0 < I s - t I < p(t), 
t E [a, b], t f: to which proves part (b). 

That we must in general take p(t) to vanish at t = t,, in part (b) follows from 
the example g(s, t) = -P(s - t)2 - t(s - t)3 = -st(s - Q2 which is non- 
positive in the first and third quadrants and nonnegative in the second and 
fourth; here t, = 0 andg(s, t) > 0 at points in any neighborhood of s = t = 0. 

3. LOCAL UNIQUENESS THEOREMS 

If we can find a function 7 = G-(ZX~ , ~a) such that the identity (1.3) is valid 
and inequalities (2.2) hold whenever two nonconstant solutions zc, , U, to (1.1) 
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satisfy 0 < [ ua - u1 1 < p(x, y) for some suitable function p(x, y) >, 0 then 
by evoking Lemma 2.1 we can conclude that any nonconstant solution to (1.1) 
is p-locally unique. To this end assume that T permits the expansion 

(3.1) 

where the coefficients olrn = a,(~,) are as yet unspecified. Since f is assumed 
analytic we may write 

and assume the expansion is valid for 0 < 1 uz - u, ( < r for some constant 
r > 0. Substitution of these series expansions into the expression a, U, and W 
yields series expansions for a and A given by 

where the coefficients a(m) and Acm) are expressions involving the CX, and f irn) 
which can be computed. 

Treating A as a function of ~a expanded about the “point” ur , we, must 
require that A be negative in a deleted neighborhood of u1 in order to utilize 
Lemma 2.1 for local uniqueness results. Moreover, referring to (2.4) we must 
require the condition 

on T, i.e., olo = const. Thus, we must require that T be chosen so that d, 
regarded as a function of ua , has a local maximum at 21% = u, , for which it is 
necessary that 

d, = FP2 = flf ;a& = 0 

where as a matter of notation aA/&, = A,, @A[t&2 = As2, etc. Ignoring 
the linear case f u = 0 we accordingly choose either “0 or ~7~ to be zero. 

(i) The case c+, = 0. As we have just seen 0’ = da = 0 and, hence, if A is 
to have a local maximum at ua = U, we require 
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On inspection of (3.2) we are led to set a1 = -l/fi , or, = 0 (m = 2,3,...) 
in the expansion (3.1) which amounts to setting T = (2~~ - uz)/fi . From (1.5) 
we find 

a = X(1 - fi’p), 2b = -1 - X f f2’2&, c=l 

where 

and hence 

(3.3) 

a = + e(f12 + . ..). 
( 1 d = P2(fifi + -) 

1 

where the dots denote (as always in the sequel) terms of the first order in 
us - u, with continuous coefficients as functions of ur . In order to insure 
the validity of the identity (1.3) we assume A, p are continuously differentiable 
in S + aS or equivalently, as can be seen by the expansion 

for ] u2 - u, 1 sufficiently small, that h is continuously differentiable in 
S + i%’ and fi , fi’ do not vanish simultaneously. Lemmas 2.1 and 2.2 now 
yield 

THEOREM 2.1. (a) If the function f = f(u) in (1.1) meets the condition 
fj; < k < 0 for some constant k on the range of a nonconstant solution u1 to 
(l.l), then u1 is &cally unique for all constants E > 0 suficiently small. 

(b) If the function. f = f (u) in (1.1) meets the condition fjr ,< 0 and fi , fi’ 
do not vanish simultaneously on. the range of a nonconstant solution 211 to (l.l), 
then u1 is p-locally unique mong the class of nonconstant solutions u, for which 

filfi E c’v + as> f or all suficiently small functions p = p(ul) > 0 which 
vanish on and only on the level lines u, = k where k is a constant such that 
f(k)f”(k) = 0. 

In particular this theorem applies to the boundary problem f = sin u 
studied by Martin [6] and Dunninger [7] inasmuch as ff” = -sin2 u < 0 
and f 2 + (f’)2 = 1. For example Martin’s strongest result [6, Theorem 7.11 
for this problem states that two nonconstant solutions ur , u2 cannot exist 
satisfying 0 < u1 < z-, 0 < uz < m= on S + Z3. This result can be restated in 
terms of local uniqueness to assert that any nonconstant solution ur satisfying 
0 < z+ < v on S + 8s is p-locally unique for 
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(That 0 < u, < rr is needed on S + iX? and not just on S is not explicitly 
stated in [6] but nonetheless is needed to insure the validity of the identity 
used.) This is stronger than the result of part (a), Theorem 2.1, but part (b) 
asserts local uniqueness for this problem without ruling out the possibility 
that u, = rtrr, n = integer, in S + 8s. 

Theorem 2.1 is also valid for the mixed boundary problem 

Au = 0 on S, u = g(s) on C, , g = h(s)f(u) on c, (3.4) 

where g(s) is a prescribed function of arc length along C,, and &S’ = Ca + C, , 
since the integral identity (1.3) still reduces to (2.1) for two solutions u, J u, 
to (3.4) and r = p. 

(ii) The case 011 = 0, ol, # 0. In this case, we require, in place of (3,2), 

A,, = -&“f;t~J; + ~2f.J < 0, 

an inequality we try to satisfy by placing as = --l/f1 , ol, = 0 (m = 3,4,...) 
in the expansion (3.1) whereupon 

42 = &%f&J,” - 4) (3.5) 

and T = o10 + ip(ua - ui) so that from (1.5) 

a = X(24, - Ul - k-ifl’(% - %>), 
2b = (fi’ - fi’) “0 + tu2 - @d--l - h 3 fi’i-4 

c = u2 - Ul 

where h, p are defined by (3.3). 
Assume that f(u) has a nonvanishing second derivative. Then there exist 

constants M, vz such that 0 < m < If;’ 1 < M on the range of u, and if the 
constant ~“0 is chosen to have the same sign asf; such that M ] o10 j < 4 then 
from (3.5) we have 

a = (242 - A = p2(+j-l2 d, + -) 

Lemmas 2.1 and 2.2 yield 

THEOREM 2.2. Assume the function f = f (u) in (1.1) has a nonvanishing 
second derivative on the range of a nonconstant solution u, to (1.1). Iffz , f2' do 
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not vanish simultaneously on tke range of u, , then u1 is p-locally unique among 
the nonconstant solutions uz for which h = fi/fl E C’(S + as) and zl, 2 u1 
for all su@ciently smallfunctions p = p(uJ 3 0 which vanish on and only on the 
level lines zc, = k where k is a con&ant such that f (k) = 0. 

In this theorem the condition us > u, may be replaced by ua < ur by 
choosing r = -c+, - &(ua - u& and arguing as above. 

4. SEMIDEFINITE FORMS Q 

In this section we obtain some local uniqueness theorems from integral 
identities derived from (1.3) other than (2.1). Assume that the subset 

S” = {@, Y) E s : f’M% Y>> -=c 01 (4-l) 

of S is nonempty. Clearly S* is an open set in S and fl' < 0 on S* + as*. 
Now 

and by Lemma 2.2b there exists a function p = p(u& > 0 which vanishes on 
and only on the level lines ur = k where k is a constant for which f ‘(k) = 0 
such that I < 0 on S* provided 

I u2 - %I G Ph> on S*. (4.2) 

Under assumption (4.2), aS* consists of points on 8s and on the nodal lines 
ua - ur = 0 and, consequently, if ur E C(R) for some region R 3 S + as, 
then S* is a regular subregion of S. This follows from the fact that nodal 
lines of harmonic functions in the plane are regular analytic curves which can 
intersect only at critical points (see [9, p. 2691). The number of critical points 
is finite under the assumption that ua - u, is harmonic in R 3 S + as, and, 
thus, the subregion 5’” on which ua - ur > 0 (or <0) has a boundary 
consisting of a finite number of regular analytic arcs either on aS or on nodal 
lines ua - u, = 0 arranged in order such that the terminal point of each arc is 
the initial point of the next arc. We conclude that this subregion is a regular 
region [ 11 and that Gauss’ theorem and, consequently, identity (1.2) are valid 
on S* [l, p. 1181. However, since the integrand of the boundary integral in 
(1.2) vanishes when ua - ur = 0 we have a nonzero contribution to this 
integral only on that portion of X5’* coinciding with as. This leads us to the 
identity 

ff as*nas h(s)Ids = j j,, [(PI -9~2)~ + (a - qJ21 ds* (4.3) 
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from which we conclude u, = u, + k, k = const., if h(s) > 0. Sincef,’ cannot 
be negative everywhere in S unless u1 = const. [lo], p vanishes somewhere 
in S and, hence, k = 0 or uz z ur . 

THEOREM 4.1. If h(s) 3 0 in (1 .l) ana u1 6 C2(R) for some region 
RI S + X5’ is a nonconstant solution for which S* is nonempty, then ul is 
p-locally unique for all su$ciently small functions p = p(uI) > 0 which vanish 
on and only on the level lines u1 = k where k is a constant such that f ‘(k) = 0. 

Note that the restriction (4.2) on us need only be made on 5’” and, hence, 
in Theorem 4.1 us can be considered unrestricted on S - (P + as*). 

Assume ur , ua are two nonconstant solutions to (1. I). Then one of the sets 

s, =((X,y)ES:U1>0}, s- ={(zc,y)ES: u1 <O> 

is nonempty; assume for definiteness that S, is nonempty. Just as for A’*, 
we know S, is a regular region if ur is harmonic in R IJ S + 85’. If we replace 
fi 3 fi by ~1s u2 respectively in (1.3), set T = A - 1, X = uzjul and assume 
X E C’(S + X5”) in order to insure the validity of (1.3) which we apply over 
the regular S- , we obtain 

I as nas h(s)1 ds = IIs+ [@PI - ~2)” + Oq, - qJ2] ds, (4.4) 
+ 

where 

(4.5) 

Note that the integrand of the boundary integral in (1.3) for fl , f2 replaced 
by u1 , us respectively vanishes when u1 = 0 and X E C’(S + as), since y =r 0 
implies u2 = 0 under this assumption, and consequently we have nonzero 
contributions to the boundary integral in (4.4) only on aS+ n 8s. Suppose 
h(s) > 0 andf = f (u) is a function satisfying 

f(u) - uf’(u) 3 k > 0, U>O (4.6) 

for some constant k. Then by Lemma 2.2, I < 0 on S, provided 
0 < [ us - u1 / < E for E = const. > 0 sufficiently small. Identity (4.4) now 
yields I = 0 on S, which implies u, = u1 on S, and hence S as can be seen 
from the power series expansion (4.5). 

THEQRRM 4.2. Suppose “1 E C’(R) for some region R 3 S -+ a&’ is a 
nonconstant solution to (1.1) for which u1 > 0 at some point in S, If h(s) > 0 
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and f = f (u) meets condition (4.6) f m some k = const. > 0, then for any 

E = const. > 0 sujiciently small u, is docally unique among those nonconstant 
solutions u2 fm which X = u,/t+ E C’(S + 8s). 

Theorem 4.2 remains valid if u, < 0 at some point in 5’ provided the 
hypothesis (4.6) on f (u) is replaced by 

f (4 - uf ‘(4 < k < 0, U<O 

for some k = const. The proof remains the same as above except identity (4.4) 
is now applied over the regular subregion S- . 

Both Theorems 4.1 and 4.2 remain valid for the mixed boundary problem 
(3.4). The proofs carry over exactly as given where we need only notice that 
the integrands of the boundary integrals appearing in (4.3) and (4.4) vanish 
identically on C, for two solutions zl, , u2 to (3.4). 
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