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 By means of an abstract bifurcation theorem, a multiparameter bifurcation theorem
 for systems of Volterra integrodifferential equations is proved. The result is applied
 in detail to general first-order equations with (possibly) two delays, to general
 second-order equations with delays and to some general 2x2 first-order systems.
 These applications illustrate not only the main theorem, but the main features of the
 multiparameter bifurcation approach taken here: namely, that by using several
 parameters which appear explicitly in the system, one not only gains a knowledge
 of the nature of the multiparameter bifurcation phenomenon, but also obtains very
 general results by means of a simple proof and has inherently fewer nondegeneracy
 or transversality conditions to fulfill in applications. (In fact, for the very general
 first-order and second-order equations considered as applications here, the nonde
 generacy or transversality conditions are always satisfied.) Moreover, one-parameter
 Hopf-type bifurcation can be viewed as a special case embedded in the multipara
 meter bifurcation branch. Or, alternatively, one can also prove one-parameter Hopf
 type bifurcation results (further illustrating the flexibility of the main theorem here)
 by rescaling the independent variable and applying the results given here.

 1. Introduction

 The purpose of this paper is to prove a general (multiparameter)
 bifurcation theorem for systems of Volterra integrodifferential equations
 and to study some special cases in detail. The main result (Theorem 2) is a
 generalization of that in [6] and is proved by means of the implicit function
 theorem and the method of Lyapunov and Schmidt (which is sometimes
 called the method of "alternative problems"). This method, which is
 applicable in a very general setting, is given in an abstract form suitable for
 our analysis here in Theorem 1.

 * This work was in part done while the author was an Alexander von Humboldt Foundation
 Fellow on leave at the Lehrstuhl für Biomathematik der Universität Tübingen, Auf der
 Morgenstelle 28, D-7400 Tübingen, West Germany.
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 J. M. Cushing

 The main feature of the approach taken here is the utilization of several
 parameters which appear explicitly in the equation, their number being
 determined (as is to be expected) by the codimension m of the range of the
 linear operator L obtained from the linearization of the problem at a critical
 point. In many interesting applications, such as in those involving the
 question of the existence of nontrivial periodic solutions of nonlinear
 autonomous differential and integral equations, m is greater than one. This
 is the case for example in Hopf-type bifurcation problems. In this paper the
 study of such cases is carried out by using m > 2 parameters which appear
 explicitly in the equation rather than by using only one such parameter (as
 is usually done in such problems), which in general must then be further
 supplemented by other implicit parameters, such as the unknown period or
 coordinates in the nullspace of L (for example, see [13,18] for differential
 equations, [2,17,20] for functional differential equations and [14,19] for
 partial differential equations). As will be seen in the applications in Sec. 4
 below, there can be advantages to this approach beyond gaining a
 knowledge of bifurcation phenomena as a function of several parameters.
 In a wide variety of applications the technical calculations are fewer and
 simpler. Moreover, one-parameter (Hopf-type) bifurcation can be viewed as
 a "special case" embedded in multiparameter bifurcation which corre
 sponds to "transversally slicing" the multiparameter bifurcation surface.

 2. A Multiparameter Bifurcation Theorem

 Let X, Y denote normèd linear spaces, and suppose L : X -* Y is a
 bounded linear operator with nullspace N(L) and range R{L). We consider
 the problem of solving

 Lx = T(x,X) for (jc,A) E XX Rm, x # 0, (2.1)

 where Rm is m-dimensional real Euclidean space and T is an operator such
 that T(0,\) = 0 for all X E Rm about which more is assumed in H3 below.
 Let B(Z,r;z) denote the open ball of radius r centered at z E Z in a normed
 space Z. The following hypotheses are made.

 HI. R(L) and N(L) are closed and admit (continuous) projections, and
 codimR(L) = m < +oo.

 H2. N(L) # {0}.
 H3. The operator T : D(r) : = B(X, r; 0) x B(Rm,r; 0) -* Y for some r > 0

 in such a way that T(ex,X) = eT(x,X,t) for all (jc, X, e) G D{r) X B(Rl,
 r;0), where T. D{R) X B{RX ,r\0) -* Y is q > 1 times continuously
 Fréchet differentiable in (x, X, e) with T(y, 0,0) = 0, Tx(y, 0,0) = 0 for

 some^ G N(L), 0 < \y\x < r.
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 Solutions of Integrodtfferential Equations

 Let M be a closed subspace of X complementary to N(L), and let
 A : R(L) -* M be bounded right inverse of L. (Such M and A are guaran
 teed by HI.) Let P : Y —> R(L) be a (continuous) projection. Then I — P is
 a (continuous) projection of Y onto an m-dimensional subspace comple
 mentary to R(L), namely N(P). As a result, for y as in H3, for 2 G M with
 \z\x small, for A G B(Rm,r; 0) and for e G /?(/?', r; 0), the element
 (/ - P)T(y + z,A,e) has m real components c = c(z,A,e) : D{r) x B(Rl,r;
 0) -* Rm (with r smaller, if necessary) with respect to a fixed basis of N(P).
 Note that c has the smoothness properties of T in (z, X, «) as given in H3.

 Also note that cz (0,0,0) = 0 by H3. Finally it is assumed that

 H4.d: = detcA(0,0,0) # 0.

 Theorem 1. If HI through H4 hold, then there exists an to > 0 such that Eq.
 (2.1) has a branch of nontrivial solutions (x, X) G X X Rm of the form
 x = c[j> + 2(c)], X = X(f) for « G B{R}, to ; 0) where z : B(R*, €q ; 0) -* M
 and X : B(Rl ,cq ; 0) —> Rm are q > 1 times continuously Fréchet differen
 tiable operators such that z(0) — 0 and \(0) = 0.

 proof. Let.y G N(L) be as in H3 and z G M, and substitute x = f(y + z)
 into (2.1). The resulting equation is easily seen to be equivalent to the
 alternative equations

 for (z,X,e) G MX Rm x J?1. Clearly (z,X,c) = (0,0,0) solves both equa
 tions (see H3). Equation (2.2) can be (uniquely) solved for z = z(A,e),
 z(0,0) = 0 by means of the implicit-function theorem [11], since the
 Fréchet derivative of the left-hand side with respect to z at (0,0,0) is the
 identity operator on Af. This solution is defined and is q > 1 times
 continuously Fréchet differentiable in (A, e) near (0,0). If this solution is
 substituted into (2.3), one obtains an equation (the so-called bifurcation
 equation) to solve for X — A(e). That this bifurcation equation is solvable
 follows from the implicit-function theorem and H4, since the Jacobian of
 these m real equations in m real unknowns with respect to X at (A,«)
 = (0,0) is the m X m matrix cx(0,0,0). □

 In application HI is usually fulfilled by means of a Fredholm alternative
 for the linear operator L. Hypothesis H2 is the familiar necessary condition
 that bifurcation can only occur at A = 0 if the linear operator L does not
 have a bounded inverse, and H4 is a sufficiency or nondegeneracy
 condition which guarantees that bifurcation (which doesn't always occur)

 z — APT(y + z,A,«) = 0

 c(z, A,«) = 0

 (2.2)

 (2.3)
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 occurs. Assumption H3 requires, roughly speaking, that T be higher order
 in (x,X)and T(0, X) = 0. Note that different choices of y E N(L), y
 ¥* 0(if m > 2) yield different solution branches.

 Suppose now that wi E Y, 1 < i < m, form a basis for N(P), and Pj is
 the (continuous) projection of Y onto the span of w(. Then c(z, X, e)
 = col(c,(z,X, e)) e Rm in H4, where P, T(y + z,X,e) = ci(z,X,e)wi and
 cx (0,0,0) = ((9/0X,)c,(0,0,0)). If further

 m

 T(x,\) = 2 hjAjX + R(x,X), (2.4)
 7=1

 where Aj : x , -* Y is bounded and linear and

 H5. R(x,X) satisfies H3 and (3/9X^)^(0,0) = 0, 1 < j < m,

 then cA(0,0,0) = (ay) in H4, where PjAjy = ayWj, ay £ Rl. Note that
 terms of order o(|x|^) or o(|X|) contribute nothing to d in H4.

 3. Integrodifferential Systems.

 Let H(s) be an n X n matrix of measurable functions of finite total
 variation on s > 0, and define

 Lx : = x'(t) + f dH(s) x(t - s), (3.1) J u

 Lax: = x'(t) - Jo dH'(s)x(t + s). (3.2)
 Both of these operators are linear and bounded as operators from X
 — Xn(p) to Y = Y„(p), where Yn(p) is the Banach space of continuous, p
 periodic real n-vector-valued functions defined for all t under the usual
 supremum norm |x|0 = sup_00</<+00 |x(f)|, and Xn(p) is the Banach space
 of those functions in Yn(p) which are continuously differentiable under the

 norm |x|, = |x|0 + |x'|0. Define (x,y)p: = p~l So x(t)y(t)dt for x,y
 E Yn(p). If S ç Yn(p) is a subspace, let S1 denote the subspace
 [x E Yn(p): (x ,y)p — 0 for all y E S). The following lemma was essential
 ly proved in [6].

 Lemma. For the bounded linear operators from X„(p) to Y„(p) defined by (3.1)
 and (3.2) it follows that 0 < dim N(L) = àim N(La) = m < +oo and
 R(L) = NL(La) for any p > 0.

 (The solutions found in the Fredholm alternative in [6, Theorem 2] were
 shown only to be absolutely continuous, but are easily seen to lie in Xn(p).
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 Solutions of Integrodifferential Equations

 This is because an absolutely continuous function whose derivative equals
 almost everywhere a continuous function is in fact continuously differentia
 ble.)

 The Lemma implies that HI holds for L defined by (3.1) on X = Xn(p),
 Y — Yn(p) for any period p > 0. Assume now that

 Al. the linear system y'(t) + /0°°dH(s)y(t -* s) = 0 has m > 1 independ
 ent, /»-periodic solutions^,(-,p) G Xn(p) for some periodp > 0.

 Let Wj(-,p) E Xn(p) be m independent, mutually orthogonal solutions of
 the adjoint system w'(f) - /0°° dH'(s) w(t + s) = 0, whose existence (and
 maximality) is guaranteed by the Lemma. From Theorem 1 follows

 Theorem 2. Suppose Al holds and T satisfies H3 with X = X„(p) and
 Y = Yn(p) for some nontrivial linear combination y{-,p) S Xn(p) of the
 solutions yj(t,p). If

 A2. d: = det^^ T(y, 0,0), w,^j ^ 0,

 then the system

 Lx: = x'(t) + fn dH(s)x(t - s) = T(x, \) (3.3) JO

 has nontrivial p-periodic solutions in X„(p) of the form x(t,p) = ty{t,p)
 + cz(t,p,€), \ = X(p, e) E Rm for small |t| (say je| < Co(^)), where z and
 X are q > 1 times continuously Fréchet differentiable in e and where

 z(t,p, 0) = 0, X(p, 0) = 0, (z,yi)p = 0 for I < / < m.

 Note that T need not be autonomous in Theorem 2, so that p can be
 prescribed by the system.

 If T has the form (2.4), then d — det((Ajy,Wj)p). In particular, if
 Ajx: = Jo* dHj(s) x(t - s), then

 d = det((/o°° ~ *)' wi)p)- (3-5)
 Although we will not study the case further here, we point out in passing

 that a theorem similar to Theorem 2 can also be proved for Volterra
 integral equations by means of Theorem 1 (see [4]). Let K(t) be piecewise
 continuous on a finite interval 0 < f < 6.

 10
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 Theorem 3. If L and La are redefined as

 Lx: = x{t) + f K(t - s)x(s)ds, Jt—b

 rt+b

 Lax: = x(t) + J K(s - t)x(s)ds,
 then the Lemma and Theorem 2 as stated are valid for the equation

 x(0 + fi b K(t - s)x{s)ds = T(x,X),

 where now X and Y are both taken to be Yn{p).

 Theorem 2 is a generalization of the main result in [6] in that T is more
 general and the parameter X does not appear in a restricted way.

 Although we have had in mind applying Theorem 2 to equations in which
 appear m — 2 explicit parameters, this theorem (as well as Theorem 3) can
 also be applied to autonomous equations with one parameter by using the
 then unknown period as a second parameter. The theorems can then be
 applied on A^(l), ^,(1) after a change of independent variable from t to t/p
 has been made. Using this procedure, one can prove the existence part of
 the well-known Hopf bifurcation theorem for nondelay equations [//(s)
 = where mo(j) is the unit step function at s = 0], and in fact the
 proof of Theorem 1 is just an abstract version of the proof in [18] and [19]
 made precisely in this way. In this case the nondegeneracy condition A2
 can be shown to have the geometric interpretation that the eigenvalues of
 the linearization as a function of \ cross the imaginary axis transversally.

 In applications x is often the difference between the dependent variable
 and some equilibrium state, while \ is the difference between a certain
 parameter ß G Rm and the critical value ßP = ßP(p) G Rm of this param
 eter at which the linear system has nontrivial /^periodic solutions. When
 applying Theorem 2 to autonomous systems, one in general gets bifurcation
 of nontrivial periodic solutions along a two-dimensional surface a of
 parameter values in Rm defined by ß = ß(t,p) = fiß(p) + A(c,/>), occurring
 at points on a curve C defined by ß = 0s (p) as parametrized by p. This

 two-dimensional surface a is made of curves Cp defined by ß = ß(e,p) for
 fixed p as parametrized by e, along which bifurcation occurs within the
 space Xn(p) of fixed period p. Within this geometrical framework one can
 see what happens if only one degree of freedom is allowed in the
 parameters which constitute the components of ß (as for example in [17]),
 either by varying only one component of ß of more generally by constrain
 ing ß to lie on a one-dimensional curve A in Rm. To get bifurcation along
 A the curve A must intersect C and lie in the bifurcation surface a,
 conditions which express themselves analytically in terms of further nonde
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 X X

 Figure 1. The bifurcation surface S is composed of bifurcation branches whose

 projections onto the ß parameter space are die curves Cp. along which bifurcation
 occurs within a space of functions of fixed period One-parameter bifurcation
 phenomena correspond to constraining ß to he on a one-dimentional curve A in the
 ß parameter space and "slicing" the surface S along this curve A. Except in the case

 when A coincides with one of the curves Cp, the resulting bifurcation is period
 varying.

 generacy or solvability conditions. Since even under these added con
 straints A is likely to be (but will not always be) transversal on a to the
 curves Cp, the bifurcation along A will likely be period-varying as in
 classical Hopf bifurcation. (See Fig. 1 for a generic picture when m = 2.)
 Note that it is possible when m is large (m > 3) for the curve A to intellect
 a at a point other than one on the bifurcation curve C. In this case one
 would have the sudden onset of periodic oscillations of finite (rather than
 arbitrarily small) amplitude.

 The important and interesting questions of the stability of the bifurcating
 periodic solutions and the direction of bifurcation are not considered here.
 The direction of bifurcation is of course determined by the signs of the
 lowest-order e terms in the components of X, terms which depend on the
 nonlinearities and which can be found in principle by the classical method
 of substituting c-series for x and X into (3.3) and eliminating secular terms.
 (See [3] for an example.)
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 For autonomous equations (3.3) in which dH(s) = 0 when s > s0 for
 some j0 > 0, the stability analysis of a nontrivial periodic solution by
 means of an investigation of Floquet multipliers could be carried out in the
 same manner as is done in the classical one-parameter, Hopf-type bifurca
 tion approach. This is because the existence question (which is all we are
 considering here) is really distinct from the stability question, and moreover
 formulas which determine the stability (i.e., the location of the Floquet
 multipliers) on the basis of the system and its nonlinearities evaluated only
 at the critical parameter values (i.e. on the bifurcation curve C) are clearly
 still applicable here. See for example [2,18,20].

 4. Applications

 Several applications of Theorem 2 will be given in this section. Applica
 tions of Theorem 3 can be found in [4]. In these applications R will denote
 for simplicity a remainder term which has the following properties for a

 critical value ß° G Rm.

 A3. S(x,X): = R(x,X + ß°) satisfies the conditions on T(x, X) in H3 with
 X = Xn{p), Y = Yn(p) for some 0° E Rm, and in addition |S|0
 = o(|jc|j) near x = 0 uniformly for X G B(Rm,r, 0).

 Note that A3 implies that 5 satisfies H5.

 4.1 First-Order Scalar Equations with Two Delays

 Consider the general scalar (n = 1) equation

 x'{t) = -ßi JQ x(t - s) dhx (s) - ß2f0 x(t - s) dh2 (s) + R(x, ß), (4.1)

 where R satisfies A3 with n = 1, m = 2. Let A, — ß, - /^(where ßf is to
 be determined below), and rearrange (4.1) as follows:

 x'{t) + ßi j™ x(t - s)dhx(s) + 0° f0 x(t - s)dh2(s) = T{x,X),

 T(x,X): = -X, J™ x(t - s)dh1(s) - X2 Ç x(t - s)dh2(s) + S(x,X).

 Since this T satisfies H3, it is only necessary to consider the hypotheses Al
 and A2 in Theorem 2.

 First of all, Al holds, that is to say the linear equation

 y'(t) + ßy Jo°° y{t - s)dh\ (s) + ß°2 fQ y{t - s)dh2(s) = 0 (4.2)

 has exactly m = 2 independent /»-periodic solutions for an isolated point

 ß° = co\(ßi,ß2), if and only if
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 C,( 1) # C2( 1) and 2, : = C,(1)S2(1) - S,(1)C2(1) + 0; (4.3)

 either Ci(l)C2(n) * C,(«)C2(1)
 (4.4)

 or «2, # C,(1)S2(«)-C2(1)S,(k)

 for all integers n > 2;

 0? = -«C2(l)/2, and $ = wC^l)/^, w = 2»//>, (4.5)
 where

 /• 00 /*00

 C,(/j): = I cos nusdhjis), Sj(n): = I sin nusdh,(s). JO JO

 This follows from a straightforward Fourier analysis. Under these condi
 tions, two independent solutions are sin ut, cos ut, which also turn out to be
 solutions of the adjoint equation.
 Secondly, consider the nondegeneracy condition A2. Since T has the
 form (2.4), the formula (3.5) can be used to calculate d with y = k\ sin«/
 + k2cosut, A:,2 + k2 ¥= 0, and w, = sin«/, w2 = cos«*. A simple calcula

 tion shows that d = —(/c,2 + &2 )2,/4 # 0 and hence A2 holds.
 Thus, in this rather general application, the nondegeneracy (or sufficien
 cy) condition A2 is implied by the (necessary) condition Al. The lack of
 any further nondegeneracy or transversality conditions (in addition to the
 generality of the delay integrators and nonlinearities) is one of the nice
 features of this multiparameter approach. This also occurs for the case of
 general second-order delay equations, as will be seen below.

 Theorem 4. If the linear equation (4.2) has exactly m = 2 independent p
 periodic solutions for an isolated point ß° = col (yS®, /?§ ) (i.e. (4.3)-{4.5)
 hold), and if the remainder term R satisfies A3, then (4.1) has a bifurcating
 branch of nontrivial p-periodic solutions as described in Theorem 2 with

 ßi(e>p) = ß?(p) + \(*,P), ß? being given by (4.5).

 As an example, consider the following equation with two constant lags:

 At) = ßxfMt -t,)) + ß2f2(x(t - t2)), t2 > t, > 0, ft e Rl,

 fiec\R\Rx), m = o, /;(0) = -i. (4-6)
 In this case C,(n) = cos noyr^ St(n) = sin nui; , u = 2m/p. By Theorem 4
 one gets ^-periodic bifurcation if p can be chosen so that (4.3) and (4.4) hold
 and if

 0 _ U COS <0T2 qO _ «COSttTi
 1 sin«(r2 - T])' 2 sinw(t2 — T])' ' '
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 The trigonometric inequalities (4.3) and (4.4) will not be studied in depth
 here, but two illustrative examples will be considered. Clearly (4.3) fails if
 both t, = r2 = 0, so that is necessary that at least one r, > 0. Since the
 case when one r, is zero is considered in detail in [3], we will assume that
 t2 > Tj > 0. By rescaling t we lose no generality in assuming = 1, r2 = r
 > 1.

 (i) Take 7j = 1, t2 = r > 1 and p = 2r/k for some integer k > 1. Then
 (4.3) reduces to sin kir/r =£ 0. Secondly (4.4) becomes

 either cosnkir/r ¥= (-l)^n+l^kcosirk/r

 or smnkir/r # (— 1 /n+1 ^ n sin w/c/r

 for all integers n > 2, whose truth can be seen as follows. If both
 inequalities are assumed to be equalities for some integer n > 2, then
 the contradiction (n2 — I) sin2 kir/r = 0 can be reached by squaring
 both equalities and adding. Thus, Eq. (4.6) with t( = 1, t2 = t > 1 has
 a bifurcating branch of nontrivial Ir/k-periodic soltutions for an integer

 k > 1 and for /?, near the critical values

 0 kir kir «o / ,\*+l** „kit ß] =—csc—, Pi = \— 1) —cot —
 T T T T

 provided sin kn/r ¥= 0. This follows immediately from Theorem 4.
 (ii) Let 7] = 1, t2 = 2 and p = 6/k, where k — integer > 1. It is straight
 forward to show that (4.3) holds if and only if k — 6m + 1 or
 k = 6m + 5 for some integer m > 0 and that the second inequality in
 (4.4) always holds for n > 2. (Note that |/j2, | > 2 for n > 2.) Theo
 rem 4 yields a bifurcating branch of hontrivial 6Ik-periodic solutions of
 Eq. (4.6) for k = 6m + 1 or 6m + 5, m > 0, with rj = 1, r2 = 2, and /?,
 near the critical values = /$ = (-l)'fcfr/3\/5, where v = 0 if k
 = 6m + 1 an</ r = \ if k = 6m + 5.

 Because (4.3) and (4.4) are inequalities, if they hold for some p = p° then
 they will hold for p near p°. (In particular, this applies to examples (i) and
 (ii).) It is customary to draw bifurcation diagrams in which the parameters
 ßf are plotted against the norm of the solutions in Xn(p). If this is done, then
 one gets for a fixed period p a curve of points (1*1,,/?,,/^) ë P? which
 intersects the /?,,/}2-plane at (0,$>) and projects onto the curve Cp given
 by ßj(t,p) as parametrized by £. As p varies one constructs from such curves

 Cp a surface S which intersects the ß\, /32-plane in a bifiu"cation curve C
 given by ß°(p) as parametrized by p (see Fig. 1). If one varies the ß, through
 only one degree of freedom along a curve A which intersects the bifurcation
 curve C as drawn in Fig. 1, then one obtains bifurcation along A by
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 "slicing" S along A, which, unless A coincides with some Cp, produces
 period varying bifurcation. (In Fig. 1 only one-sided bifurcation is drawn.)

 For example, a piece of one branch of the bifurcation curve C for
 equation (4.6) as given by

 (this is from (4.7) with tj = 1, r2 = 2) is drawn in Fig. 2. Above, in (i) with
 k = 1, we justified bifurcation for p near 2r = 4. Note that C in Fig. 2
 crosses the ft-axis transversally at the point ß — (w/2,0), corresponding to
 p — 4. C also crosses the ft-axis transversally at the points ß — ((-l)m
 • (2m + l)ir/2,0), m > 0, corresponding to p = 4/(2m + 1), because
 (d/dp)ß% ¥= 0 at these points (these points are not shown in Fig. 2).
 Bifurcation occurs near these points also because (i) above applies with
 t = 2, k — 2m + 1.

 Taking A to be the ft-axis in the above discussion corresponds to
 studying the equation

 for which we obtain the bifurcation values jßf = (-l)m[(2m + l)n/2)],
 m = integer > 0, with p = 4/(2m + 1) where the ft-axis crosses the
 bifurcation curve C given by (4.8). Whether the ft-axis crosses the curves
 Cp, these bifurcations are period-varying, with the consequence that de
 pends on the nonlinearities in /. In general one would expect this, but it

 cocos2w

 sinw '  = u cot co, co = — (4.8)

 At) = ß\f(x(t ~ 0),

 feC\Rl,Rl), /(0) = 0, /'(0) 1,
 (4.9)

 a

 ß. '1

 Figure 2. A piece of one branch of the bifurcation curve C is shown for Eq. (4.6)
 with T| = 1, t2 = 2 as given by (4.8) for periods 2 < /> < 8.
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 would not necessarily occur. The result of Kaplan and Yorke [12] implies
 that under certain restrictive conditions on / (including oddness) the
 bifurcation is not period-varying but occurs in Xl (4). In case (ii) bifurcation
 was found near ßf = ir/3\/3 for p — 6. Clearly in Fig. 2 the curve A given
 by the straight line ß2 = ß\ is transversal to the bifurcation curve C at the
 intersection point (tt/ 3\/3, m/ 3\/3 ), corresponding to p = 6. This straight
 line corresponds to bifurcation for the equation

 x'(t) = /?, [/, (x(t - 1) +f2(x(t - 2))],

 m = o, /;(o) = -l

 for ßx near w/3\/3 and period p near 6. The results of Kaplan and Yorke
 [12] and Nussbaum [15,16] again imply that under certain restrictive
 conditions on /, this bifurcation is not period-varying, but in general one
 expects the line ß2 = ß\ to cross the curves Cp.

 More generally, if in Theorem 4 there is a period p for which Ct(l) = 0
 and {d/dp)Cx{ 1) # 0, then the /Sraxis will cross the bifurcation curve C
 given by (4.5) as parametrized by p, which corresponds to bifurcation for
 the single-variable problem

 AO = ~ß\ f0 x(t ~ s) dh\ (J) + R(x> ß\ )•

 (When applied to Vol terra's population equation this would yield a
 corrected, period-varying version of Theorem 2 in [7]; see [8].)

 4.2 Another Look at Eq. (4.9)
 In order to further illustrate the use of Theorem 2, we show how

 bifurcation results for Eq. (4.9) can be obtained directly from Theorem 2
 by using the unknown period p as a second parameter. If a change of
 variable from / to t/p is made, Eq. (4.9) reduces to x'(t) = pßxf(x(t - 1//>)),
 which we rewrite as

 x'(t) + a.yx(t - a°) = otfx(t - a®) - <*i x(t - a2) + Ä(x, ö| ,a2),

 where a) = pß\, a2 = 1/p, and where af are critical values chosen so that
 the linear homogeneous equation

 /(') + - a°) = 0

 has two independent 1-periodic solutions sin2w/, cos 2irt. A simple Fourier
 analysis shows that af = (— l)m2ir, a2 = (2m + l)/4 for some integer
 m > 0 [i.e. ß° = (—l)m(2w + lV/2, p° = 4/(2m + 1)]. Theorem 2 applies
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 det

 with X, = a, - of and q = 1 on * , ,(1), ^(1) provided d ¥= 0. The adjoint
 solutions are also sin 2irt, cos 2irt and

 • T(x,X) = ctfx(t - a2) - (A, + ax)x(t - X2 - a2) + S,

 from which, together with (3.5), it follows that

 -(y{t - «5), sin 2irt\ -(y(t - c$), cos 2irt\

 I «?(/(' - «2)' sin 2irt)x ax(y'(t - a2), cos 2-irt\

 where y = kx sin 2nrt + k2 cos 2vt, kx + kx ^ 0. Hence it follows that d

 = (-1 r+V(*,2 + ki) # 0.

 4.3 Second-Order Equations with Delays
 The system

 x\ = x2, x'2 = ~ßx f0 xx(t - s)dhx{s) ~ ß2f0 x2(t - s)dh2(s)

 + R(xx,x2,ßx,ß2), <410)
 /?, G /?', is equivalent to the second-order equation

 *"(/) = ~ßx Jo x(t - 5)dh, (s) - ß2Jo x'(t - s)dh2(s) + R(x, x', ßx, ß2).

 (4.11)

 Suppose that ßf are chosen so that the linear equation

 y"(t) = -/ß? ></ - s)dhx(s) ~ ßij0 y'O - s)dh2(s) (4.12)

 has exactly two independent /»-periodic solutions. This is possible for an

 isolated point ß° = col(/?{\/?2) if and only if

 C2( 1) * 0 and 22 : = S,(1)S2(1) + C,(1)C2(1) # 0, (4.13)

 either nSx(l)S2(n) + C2(l)Cj(«) # h222
 (4.14)

 or hS,(1)C2(h) - C2(1)5j(«) # 0

 for all integers n > 2, and

 A° = "2C2(l)/22, $ = «5,(0/22, (4.15)
 in which case the solutions are smut, cos cor. Let A, = ßt - $ and x
 = col(x,x') = co1(jc, ,x2), and write the equivalent system (4.10) in the
 form (3.3) in Theorem 2 with
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 H(s) =
 0 -1

 Ißfh{(s) $h2(s)\

 T(x,X) = 2 \ [ dHXs)x(t - j) + K(x,A), j=\ JJ0 J

 Hi(s) =
 0 0

 -/,,(*) 0
 #>(*) =

 0 0

 0 -/i2(j) R = col(0 ,S(x,\)).

 By choice of $ hypothesis Al is fulfilled, and two independent /»-periodic
 solutions of the linear homogeneous system are

 y)(/) = col (cos -co sin wt), y^2\t) = col (sin wt, to cos at).

 The adjoint system

 w'i = $ f0 w2(t + s)dhx(s), w'2 = -w, + w2(t + s)dh2(s)

 has two independent, orthogonal solutions given by

 col (&>Ci(l)C2(l) cos <o/ — wSj ( 1 )C2 ( 1 ) sin at, —S2 sin at)

 col(wC1(l)C2(l)sinw/ + coS, ( 1 )C2 ( 1 ) cos at, 22 cos at).

 If y = kxy^ + k2y^ = col(^ ,y2), kj2 + k2 0, then from (3.5)

 d =

 (~ Jo y^' ~ ^ dhl _S2 sin co^ (- Jo y,(t- s) dhx (s), S2 cos utj^

 (~ fo y2^ ~ ^^("X -22sinw^(- fj3 y2(t - s)dh2(s),I,2cosat^

 or d — -(co/4)(&,2 4- k2yZ2 =£ 0.

 Theorem 5. If the linear equation (4.12) has exactly m = 2 independent p
 periodic solutions for an isolated ßP (i.e. if (4.13)-(4.15) hold) and if R
 satisfies A3, then the second-order equation (4.11) has a bifurcating branch
 of nontrivial p-periodic solutions as described in Theorem 2 with ßt(e,p)

 = ß?(p) + h(*'P)and $ siven by i4-15)

 Note that if there is no delay in the derivative in (4.1 l)(as in [1,9,10]) then

 h2(s) = Uq(s) and C2(n) = 1, S2(n) = 0 for all n.
 As an example, suppose hx(s) — uT(s), r > 0, and h2(s) = Wo(s)> so that

 (4.11) reduces to the equation

 x"(t) = -/?,x(t - r) - ß2x'(t) + R(x,x',/?,,&)• (4.16)

 det
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 In this case (4.13) reduces to coswf ^ 0. The condition (4.14), which
 reduces to

 either cos nur # n1 coswr
 (4.17)

 or nsinwr — sin/iwr.¥= 0

 for all integers n > 2, can be shown to hold as follows. Suppose that the
 inequalities in (4.17) are both equalities for some integer n > 2. By
 squaring both sides of these equalities and adding, one gets the contradic
 tion n2 + n2(n2 — l)cos2wr = 1. Thus, from Theorem 5 it follows that if
 cos2ttt/p # 0, then the second-order equation (4.16) has a bifurcating branch
 of nontrivial p-periodic solutions for /}, near the critical values given by

 /Î? = — sec—, 02 = ~~ tan—. (4.18) 1 P P 2 P P

 The bifurcation curve C, given by (4.18) as parametrized by p, is drawn
 in Fig. 3 for Eq. (4.16) when r = 1. As a specific example, the delay van
 der Pol equation studied by Grafton [9,10] is obtained from Eq. (4.16) by

 letting R = ß\ x2.

 Figure 3. Several branches of the bifurcation curve C, as given by (4.18), for the
 second-order delay equation (4.16) with r = 1.
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 J. M. Cushing

 4.4 Some Systems with Delays

 Many two-species models with delays found in mathematical ecology are
 of the form [5,6]

 x'> = "A(Jo X^' ~ S^dh^+ fo ~ S)dh2i(s)) + R(x,ßM
 (4.19)

 where R = col (/?,) satisfies A3. Suppose that the linearized system

 y'i = -Â°(X y\(* ~ s)dhu(s) + Çy2(t ~ *)<%(*)) (4.20)

 has exactly m = 2 independent ^-periodic solutions for some 0 < 0}
 e R]. It is easy to write down necessary and sufficient conditions involving

 the Fourier integrals of the integrators hy(s) for this assumption to hold, but
 it is not necessary here to do this. Let these /»-periodic solutions and those
 of the adjoint system be given by the real and imaginary parts of ae'°" and
 be10", « = 2ir/p, respectively, where a = col^c^) and col^,^) are
 complex vectors. One can straightforwardly apply Theorem 2 as in the
 above applications. After some lengthy calculations it is found that

 d = + ki)lma\ ui~b\ h (4-21)
 4Pi Pi

 (where the bars denote complex conjugation).
 Thus, the two-species model (4.19) has a bifurcating branch of nontrivial p

 periodic solutions for /?, near the values ßf where the linearization (4.20) has
 exactly m = 2 independent p-periodic soltutions provided d ^ 0, where d is
 given by (4.21). This result is sufficient to prove the bifurcation theorems for
 the specific ecological models in [5, ch. 4],
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