
On Preserving Stability of Volterra Integral Equations 
under a General Class of Perturbations 

by 

J. M. BOWNDS 

and 

J. M. CUSHING 

Department of Mathematics 
University of Arizona 

Tucson, Arizona 85721 

We consider the linear system of  integral equat ions 

(L) v(t) = ~o( t )+ Sta A(t, s)v(s) ds 

and its per turbat ion 

(P) u(t) = 9(t) + St a A(,, s)u(s)ds + f t  p(t, s, U(,~ ) ) ds 

for  t _> a, where, following Strauss in [1], we assume that  A(t, s) is an n x n 
matr ix  which, for  some fixed to, is defined for  t > s > to and satisfies 

f l i m  f r [A(T+h, s ) -A(T ,  s)[ ds = 0 
/ h ~ O  " 

(H1) ] sup f '  IA(t, s)l ds < + oo 
~ a<_t< T J a  

| l i m [  '+h IA(t+h,s)l ds = 0 uniformly for  a < t _< T 
\ h ~ 0  , J r  

for  all T > a > to. The matr ix  A(t, s) is assumed to be locally in L 1 in (t, s) 
for  t > s > to. Here  u, v and ~o are cont inuous (but not  necessarily differentiable) 
n-vector-valued functions. The per turbat ion  te rm p(t, s, ~(s)) is, for  each 
t > s > to, a functional defined for  all f E S(b) = {~ ~ C O [to, +oo ) :  I~1o = 
maxt>__to I~(t)l -< b} for  some b > 0 which is sufficiently smooth  so tha t  solutions 
of  (P) exist locally and are extendable.  (For  example,  p might  be cont inuous for  
t >_ s >_ to and all ~ ~ S(b) [2].) Also p(t, s, 0) = 0 for  all t > s > to. H y p o -  
thesis (H1) is satisfied for  example if A(t, s) is continuous.  

I f  ( H I )  holds, then for  each ~o(t), cont inuous for  t > t o, the linear system (L) 
has a unique solution existing for  all t _> a (see [2]). Also the existence and 
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uniqueness for all t _> s >_ t o of the (continuous)fundamental  matrix U(t, s) as 
a solution of the matrix system 

; (U) U(t,s)  = I +  s A ( t ' r ) g ( r ' s ) d r '  t >_ s >_ to, 

is assured. (I is the n x n identity matrix.) We will also have occasion to assume 
that 

(H2) ~(L) has a resolvent R(t, s) which is locally in L 1 in (t, s) for 

( t > _ s > _ t  o. 

This resolvent satisfies the matrix system 

~) + f l  A(t, 0R(r,  ~) dr, t _> • _> to. (R) R(t, S) A(t, 

The solution of (L) has the representations 

(1) v(t) = u(t, a)~(a) + f~ U(t, ~)~'(~) ds 

v(t) = ~o(t) -- f t  R(t, s)q~(s) as (2) 

for t >_ a. Of course the derivative ~0'(t) must exist for the representation (1). 
These formulas imply that the solution of the linear nonhomogeneous system 

u(t) = q~(t) + f '  [A(t, s)u(s)+p(t, s)] ds (NH) 

is given by 

f; 'f: (VC) u(t) = v(t) + U(t, s) -~s p(s, r) dr ds 

o r  

t ' t  r t  ~ s  
(RU) 

for t > a. The formula (VC) is a direct generalization of the variation of 
constants formula for differential equations and may be proved by direct 
verification. In the case p(t, s) ==- A(t, s)q(s), it can easily be seen from (2) that 
(RU) can be rewritten as 

u(t) = v(t) - f t  a R(t, r)q(r) dr. (RU)'  

By integration (P) includes integro-differential equations of  the form 

u'(t) = ~b(t)+ A(t )u+f( t ,  u) + f'a [B(t, s)u(s)+g(t, s, u(s))] ds. 

In this case p(t, s, ~) = p(s, ~) -~ f (s ,  ~)+S~ g(s, r, ~(r)) dr. 
Our purpose is to prove stability results for (L) and for (P) for certain types 

of perturbations p. The allowable perturbation terms here are motivated by 
and are generalizations of certain types which appear often in the theory of 
ordinary differential equations. The results in Theorems 1 and 2 below are 
generalizations of certain theorems for systems of differential equations (see 
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Remark 1) and are proved using (VC). This approach has been taken for integro- 
differential equations under "higher order" type perturbations (see for example 
[3]-[5]); here we consider a broader class of perturbations. The assumptions in 
these theorems are somewhat restrictive for the important class of integral 
equations of convolution type, although they can be applied in this case as is 
shown in the Example given below. For this reason we also offer Theorems 3 
and 4 below which are proved in a manner very similar to Theorems 1 and 2 
except that (RU)'  is used in place of (VC). On the basis of Theorem 1 two 
conjectures of  R. K. Miller [3] can be proved. Theorems 3 and 4 represent 
generalizations of several results in the literature (see Remark 1). For other 
related literature see [6]-[19]. 

In the theory of differential equations (i.e., the case when A and p are 
independent of t) types of perturbations often considered are of the form 
[p(t, s, z)l = [p(s, z)[ < oJ(s) Izl for Iz] < b, where oJ(t) is a function which 
satisfies o J ( t )~  0 as t ~ + c~ or S~-o~ o~ dt < + oo or oJ(t) = const. Roughly 
speaking, we wish to extend these results for differential equations to the 
system (P). That such an extension presents perhaps unexpected difficulties 
because of the variable t in p is illustrated by several counterexamples in Remark 
2 below. 

Our approach and arguments lead us to make the following assumption on 
the perturbation term p. Let l" [ denote any n-vector norm. 

I S~ p(t, s, ~(s))ds is continuously differentiable for t > a, for all 
a > t o and all ~: E S(b), and satisfies 

d f f  p(,, s, ~(s)) (Is < oJ(t) s(~:; a)(t)  

(H3) / for all t >_ a and ~ e S(b) where s(~:; a) (t) = maxo<,<, ]~:(s)[ and 
| co(t)= p+~(t)+y(t) .  Here p = const. >5_0 and ~ ~, are non- 

negative functions bounded on finite intervals which satisfy 

* ~+oo 

~(t)--~Oast--> +oo  and 9' = Jto ~,dt < +oo. 

We will also have occasion to assume 

(p(t, s, 0 = Pl( t, s, 0+p2(s ,  ¢), where pl satisfies (H3) with p --- 0 
(H3) {and P2 is continuous and satisfies the inequality Ip2(s, z)l -< p Izl 

[ for  all s > to and for all z ~ R n such that [z[ < b. 

Note that i f p  satisfies (H3)', then p satisfies (H3). 
We make the following definitions for the general system of Volterra 

equations 

(V) u(t) = ~o(t) + f t  a K(t, s, u(s)) (Is, t > a > to, 

where for each t > s > to the kernel K(t, s, ¢(s)) is a functional on S(b) satis- 
fying K(t, s, O) ==- O. 
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Definitions. Let  N be a normed space o f  vector-valued functions defined 
for  t > t o with no rm I" IN. The zero solution u(t) - 0 corresponding to 9(t) - 0 
is called 

(1) stable on N fo r  a given a > t o if  for  each E > 0 there exists a 8 = 3(E, a) 
> 0 such that  19IN -< 8, ~o ~ N, implies that  each solution u(t) of  (V) exists and 
satisfies [u(t)[ < E for  all t > a ;  

(2) stable on N if it is stable on N for  every a _> to; 
(3) uniformly stable on N if  it is stable on N and 3 is independent  o f  a _> to; 
(4) asymptotically stable on N for  a given a > to i f  it is stable on N for  this 

a > to and if there exists a 3 = 8(a) > 0 such that  to each E > 0 there corre- 
sponds a T = T(, ,  9) >-- a for  which [u(t)[ _< ~ for  all t _> T a n d  ]~olu _< 8; 

(5) asymptotically stable on N if  it is asymptot ical ly stable on N for every 

a >__ to; 
(6) asymptotically stable on N uniformly in a > to if it is asymptot ical ly  

stable on N and 3 in (4) can be chosen independently o f  a > to; 
(7) equi-asymptot&ally stable on N for  a given a >_ t o if T in (4) is indepen- 

dent o f~oEN,  [~o[u -< 3; 
(8) equi-asymptotically stable on N if it is equi-asymptotical ly stable on N 

for  every a >_ to. 

We point  out  that  the space N, or more  precisely the n o r m  I" IN, may  depend 
on a _> to. Also, for  linear systems (L) it is clear tha t  in the definition of  
asymptot ic  stability on N the constant  3(a) can be taken to be + ~ (i.e., 
asymptotical ly stable linear systems are globally asymptot ical ly stable) and 
consequently the asymptot ic  stability o f  linear systems is automatical ly  uni form 
in a > t o. 

These definitions are equivalent to those made for  ordinary differential 
equations in the case tha t  K and ~o are independent  o f  the variable t. Unlike the 
case of  differential equations,  however, there is a distinction between stability 
of  (V) for a given a > to and stability for  all a > t o and a distinction between 
asymptot ic  stability and equi-asymptot ic  stability on N. (We would like to 
thank R. DeFranco  for his helpful suggestions relating to the latter distinction.) 
Examples  will be given below (after the p roo f  of  L e m m a  2). 

When we speak simply of  the stability of  (V) we mean the stability of  the 
zero solution corresponding to 9 = 0. 

As is shown by familiar results and examples for differential equat ions [21], 
we cannot  in general expect a stability proper ty  of  (L) to hold for  (P) under  
the assumpt ion (H3) without  at  least the assumpt ion  o f  uniform stability on 
R.  = { q~ -~ const.  ~ R" }. Further,  in the case of  differential equations one in 
fact needs stronger assumptions about  (L); for  example,  uniform asymptot ic  
or  exponential  stability (unless p = 0, 7/ = 0). Referring to L e m m a  1 below 
and Remark  1 we see then that  we are justified in assuming that  (L) is at least 
uniformly stable on R,  and also stable on Cl(a ) = {q~(t): ~o~ C~[to, +oo),  
]~o[x = ]~o(a)l + 1~'1o < + ~ }  in order to assert the preservation of  stability on 
an arbi t rary  space N f rom (L) to (P). Specifically, we will prove 

T H E O R E M  1. Assume (HI )  and (H3). Assume (i) (L) is uniformly stable on 
Rn and (ii) (L) is stable on Cl(a) f o r  some a = ao >-- to. There exists a constant 
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Po > 0 such that i f  p < Po (P as in (H3)), then the following conclusions hold. 
(at I f ( L )  is stable on some normed space N for this ao >-- to, then (P) is stable 
on N for this ao >_ to. (b) I f  (ii) holds for a = to, then (P) is uniformly stable 
on a normed space N when (L) is uniformly stable on N. 

Suppose in addition that (L) is asymptotically stable on R, for all a >_ ao and 
that (113)' holds. (c) I f  (L) is asymptotically stable on a normed space N for ao, 
then (P) is asymptotically stable on N for this ao. (d) Suppose (L) is asymptotically 
stable on Rnfor all a >_ to and that (ii) holds for a = to. I f (L)  is uniformly stable 
on a normed space N and asymptotically stable on N uniformly in a >_ t o, then so 
is (P). 

THEOREM 2. (a) Assume that hypothesis (i) is dropped from those of  
Theorem 1 and that y = 0 in (H3) and (113)'. Then the conclusions of  Theorem 1 
hold. (b) Assume that hypothesis (ii) is dropped from those of  Theorem I and 
that p = ~(t) =- 0 in (1-13). Then the conclusions o f  Theorem 1 hold. 

Theorem 2(b) is stated and proved in [6] and is given here only for com- 
pleteness and comparison purposes. Well-known examples for differential equa- 
tions [21] show that Theorem 1 is false if (i) or (ii) is dropped or if (i) is replaced 
by the assumption of stability on R. for every a _> to. 

Example. Consider the following problem as posed by Miller in [4]: 

= Au + f'o B( t - s )u (s )ds+h( t ,  u), t > a u'(t) 

u(t) = f( t) ,  0 < t < a. 

Here h(t, u ) =  o([ul) uniformly in t > 0 near u = 0. Following Miller we 
assume the linearized system ( h - - 0 )  is uniformly asymptotically stable as 
defined by Miller in [4] and that B e LI[0, + oo). This implies that the funda- 
mental matrix U(t) --> 0 as t --> + ~ and U e LI[0, + ~ )  (Theorem 4, [4]). An 
immediate application of the main perturbation result in [4] is that for Iflo -- 
suPo_,__a If(t)l -< a ) , t h e  solution u satisfies lulo -< ~ and lul as 
t--> + oo. Miller conjectures (for h = u 2) but does not prove that 8 can be 
chosen independently of a _> 0. We can confirm this conjecture by using 
Theorem 1. Integrating the integro-differential equation, we find 

u(t) = ~p(t) + f'a [A + .f; B ( r - s )  dr] u(s) ds + Ira h(s, u(s)) ds, 

- -  t a where ~,(t) - f (a)  + Sa ~o B ( s -  Of(r) dr ds. First we note that the above assump- 
tions on the linearized system imply that it is uniformly stable on both R, and 
Cl(a) (since U is bounded and in LI[0, + ~ )  respectively) and asymptotically 
stable on R, (since U--> 0) for every a _> 0. Further, p =- h(s, u(s)) = o([u]) 
uniformly in s _>_ 0 is easily seen to satisfy (H3)' with Pl = 0 and p < Po if 
b > 0 is taken small. Thus, all the conclusions of Theorem 1 hold. Consider 
the space N(a) = {~ E Cl(a): I~'(t)] ~ 0}. Since N(a) is a subspace of Cl(a ), 
it follows that the linearized and, hence the perturbed system, are uniformly 
stable on N(a). This means there exists a 81 = 81(~) > 0, independent o f  a >_ O, 
such that I oll -< 81 implies lulo -< N o w   o(a) -- f(a) and 9~'(t) = S~ B ( t - r ) f ( r )  
dr. Note that BeLl[O, +oo) implies J~ IB(t-r)l  dr -- SI_a IB(r)l dr-~O as 
t ---> + oo for every a >_ 0. Hence, I~o'(t)l <_ j~ [B(t-r)l dr If[~ ~ 0 and it follows 
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that ¢ ~ N(a) for everya _>_ 0. Moreover, [¢]i -< (l +B*) [fl,, B* = S~ °~ IBi dr. 
Thus, if Ifl. -< 8* = 81/O+B*), then lUlo _< ~. Here 8~ is independent of 
a _ 0. To complete the proof of Miller's conjecture we use part (d) of Theorem 
I. First we need to note that (L) is asymptotically stable on N(a) uniformly in 
a > 0 since it is linear. Hence, (P) is asymptotically stable on N(a) uniformly 
in a _ 0, which is to say that there exists a constant 82 > 0, independent of 
a > 0, such that I~Ii - 82 implies [ul ---> 0 as t ---> + oo. Thus, If], -< 8* = 
82/(1 +B*)  implies [u[---> 0. To sum up: if If] ,  < 8* = min (8*(e), 83) , then 
iulo -< ,  and ]u [ -70  as t---~ +oo;  here 8* is independent of a > 0, as con- 
jectured by Miller. 

In order to present our second set of results, consider the hypothesis: 

(p(t, s, ~:)= A(t, s)q(s, ~), where, for each s > to, q(s, z) is a real- 
(H4) {valued function for s _> to and z ~ R", [z[ < b, which satisfies 

t lq(s, z)l -< ~,(s) lzl, where co(s) is as in (H3). 

In this case our analysis will utilize (RU)'  and hence will require corresponding 
information about R in place of U; that is, we need different stability assump- 
tions on (L) from (i) and (ii) in Theorem 1. Let LC = {~o ~ C°[to, + o~): I~1, = 
I,+o ~ I~01 as < +oo} and Co = {~oe C°[to, +c~):  1~O[o < +oo}. 

THEOREM 3. Assume (H2) and (H4). Assume that (i) (L) is uniformly 
stable on LC and (ii) (L) is stable on Co for some a = ao > to. There exists a 
constant Po > 0 such that i f  p < Po (P as in (H4)) then the following conclusions 
hold. (a) I f  (L) is stable on some space N for a = ao, then (P) is stable on N for 
a = ao. (b) I f  (ii) holds for all a = t o and (L) is uniformly stable on some space 
N, then (P) is uniformly stable on N. (c) Suppose (L) is equi-asymptotically stable 
on LCofor a = ao. l f  (L) is asymptotically stable on a normed space N for a = ao, 
then (P) is asymptotically stable on N for a = ao. (d) Suppose (1.) is equi- 
asymptotically stable on LCo for every a > t o and (ii) holds for a = to. I f  (L) is 
asymptotically dtable on a space N uniformly in a > t o and uniformly stable on N, 
then so is (P). 

Finally, we have 

THEOR EM 4. (a) Suppose that hypothesis (i) is dropped in Theorem 3 and 
that ~ = 0 in (H4). Then the conclusions of  Theorem 3 remain valid. (b) Suppose 
that hypothesis (ii) is dropped in Theorem 3 and that 0 = ~7(t) ==-- 0 in (H4). Then 
the conclusions of  Theorem 3 remain valid. 

Before proving these theorems we need some of the results in the following 
lemmas concerning the connection between stability of (L) on certain spaces 
and U or R. Define L to be the space of q~ measurable in s e [to, t] for all t > to 
for which [~0tL < + ~ ;  LC+ to be those ~o ~ C°[to, + ~ )  for which l~0l + = I~Olo + 
l~olL < + ~ ,  and LCo to be the subspace of LC consisting of those q~ satisfying 
I~(t)[ ~ 0 a s  t --~ + oo. 

LEMMA 1. Assume (H1). (a) (L) is stable on R,  or respectively Cl(a) for a 
given a >__ to i f  and only i f  there exists a constant M(a) > 0 such that I U(t, a)l 
< M(a) for  all t > a or respectively If(t ,  a)[ _< M(a) for  t >_ a and in addition 
sup,_>, S~ [U(t, s)l ds < M(a); (b) (L) is uniformly stable on R,  or respectively 
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Cl(a) i f  and only i f  M is independent of a > t o in (a); (c) (L) is equi-asymptotically 
stable on Rnfor a given a > t o i f  and only if  lU(t, a)[ ~ 0 as t -+ + oo. 

We note that  asymptotic stability on Rn of  (L) implies its equi-asymptotic  
stability on R n (the converse is obvious) since the ball I~0l _< 3, cp ~ R,, is compact  
and T(% ~) is continuous in cp (by continuity with respect to data). 

Proof. For  the space R, the solution of  (L) is given by v(t) = U(t, a)% 
cp ~ R,. It is clear f rom the definitions that  the stability of  (L) on R,  for  a given 
a > to is equivalent to the uniform boundedness in t > a of  the opera tor  
U(t, a) on R, and that  uniform stability on R, is equivalent to the uniform 
boundedness of  this operator  in t and a for  t > a _> to. This proves (a) and (b) 
for  the space Rn. Further ,  it is clear that  if l U(t, a)[ ~ 0 as t ~ + oo then 
Iv(OI = [u(t, a)~o I -+ 0 as t - +  + oo for  all cp c Rn. Conversely, suppose (L) is 
equi-asymptotically stable on Rn for  an a > to so that  ]~o[ _< 8 = 3(a), ~o c R,, 
implies that  for  any E > 0 there exists a T = T(e) > a such that  I U(t, a)8~ol _< 
for  t > T a n d  for  all q~ERn, I~01 = 1. Thus IU(t, a)] = suPl~l= a IU(t, a)q~l 
e3-~(a) for  t > T(E); that  is, IU(t, a)l ~ 0 as t -+ + oo. This proves the lemma 
for R,. 

Now consider the space C~(a). For  ~v e Cl(a) the solution v(t) of  (L) is 
given by (1). I f  the conditions o f  (a) are satisfied, then clearly Iv(t)[ -< M(a)l~01x 
and (L) is stable on C~(a); and if M is independent  of  a > to, then (L) is uni- 
formly stable on C~(a). Conversely, suppose (L) is stable on Cl(a) fo r  an a > t 0. 
Then a priori (L) is stable on R, and, hence, I U(t, a)[ < M~(a) for  some 
constant  Ml(a) > 0 and all t _> a. Fur thermore,  we have then that  I~a t U(t, 
s)~o'(s) ds I < E, t > a, for  all q~ e Ca(a), I 01, -< 3. It  follows from a result stated 
in [2, p. 261] that sup,>__, ~ [U(t, s)l ds < M2(a ) < + ~ .  This proves (a) for  the 
space Cl(a) with M(a) = max {Ml(a) ,  M2(a)}. If  (L) is uniformly stable on 
Cl(a), then M~ is independent  of  a > to and hence M is independent of  a > to. 

The following results dealing with the resolvent will be useful below. 

L E M M A  2. Assume (HI) ,  (H2), and (H3). (a) (L) is stable on Co .for a given 
a > t o i f  and only i f  there exists a constant M(a) > 0 such that supt_,  Sat 
]R(t, s)l ds <_ M(a); (b) (L) is uniformly stable on Co i f  and only i f  it is stable 

for all a > to with M independent of  a > t o in part (a); (c) i f(L) is stable on LC 
for some a > to then there exists a constant M(a) > 0 such that ess supt___s_>a 
IR(t, s)[ _< M(a); (d) if(L) is uniformly stable on LC then M is independent of  
a > to in (c); (e) i fess  supt>__s>. [R(t, s)l < M(a)for  some constants M(a) > 0 
and a > to then (L) is stable on LC+ for this a >_ to; ( f )  if  M is independent of 
a > to in (e) then (L) is uniformly stable on LC+; (g) (L) is equi-asymptotically 
stable on LCofor a given a >_ to i f  and only/flimt_. + co ess supper., tl IR(t, s)[ = 0. 

Proof (a) The solution of  (L) for  q~ ~ Co is given by (2). Clearly the assumed 
bound on R implies [v(t)l _< (1 +M(a)) ]~[o and consequently the stability of  
(L) for  this a>_ to. Conversely, if (L) is stable on Co for a &  t o , then 
[~'. R(t, s)~o(s) dsl <_ E for  ]~O]o _< 8(a, ~) for  each E > 0 and some 8(a, ~) > 0. 
As before, a theorem stated in Miller [2, p. 61] implies the existence of  the 
desired constant M(a) > O. 

(b) The p roof  is as in (a) where M is independent of  a "_> to (since 3 is 
independent  of  a > to). 
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(C) The unique solution of (L) is again given by (2). We first consider the 
scalar case n = 1. I f  (L) is stable on L C  then for each t > a, v(t) is a continuous 
linear functional on LC for each t > a. Moreover, since ]rio < + oo (for I~0lL 
small) this family of  linear functionals indexed by t _> a is uniformly continuous. 
Also the linear functional defined on LC by ~0(t) for fixed t _> a is continuous 
for almost all t > a and again, by the uniform boundedness principle and the 
fact that I 010 < + 0% this family of  functionals is uniformly continuous. Thus, 
from (2) we see that the family of  linear functionals on LC defined by Ft~ --= 
[.~ R(t, s)qo(s)ds is uniformly continuous for almost all t > a. By the Hahn- 
Banach Theorem, each linear functional F t can be extended (with the same 
norm) to the space L and, hence, for t > a we have a family of  uniformly 
continuous linear functionals F*, t > a, defined on L. For  each t > a the 
Riesz representation theorem tells us that F*~ = S~ R*(t, s)~(s)ds, where, 
because LC is dense in L, we have that R*(t, s) -= R(t, s) almost everywhere for 
t > s > a. Theorem 5 ([22], p. 289) implies that IF,*l = ess supt_>sz, JR(t, s)[ for 
each t > a. But the family F* is uniformly continuous and hence [F,*i --. M(a) 
for some constant M(a) > 0. This proves (c) in the scalar case n = 1. 

For the nonscalar case we proceed as follows: take 1. ] to be the vector 
norm Ixl = max Ixil and the matrix norm IMI to be IMI = maxij [m~j[. This 
is no loss in generality by the equivalence of all vector norms on Rn and matrix 
norms on n x n matrices. Then v(s) ~ L if and only if vi(s) e L for each i. Suppose 
ess suPt_>s>, [R(t, s)l is not finite. Then R(t, s) must have a component  rkz(t , S) 
for which ess supt>_s>a [rkm(t , S)] is not finite. I f  we define the extended functional 
on L by S t Rkm(t , s)rp(s) ds, where Rk,,(t, s) = (rij(t, s)) with rij(t, s) ==- 0 for 
(i, j )  # (k, m) and t > s > a, then by the above scalar result this family of  
linear functionals defined on L is not uniformly bounded in t > a. Consequently 
there exist a sequence of unit elements cp~ e L and a sequence h -+ + oo such 
that IS, t, Rkm(t,, s)cpi(s) ds I --> + oo as i -~ + oo. Thus, S, t' R(h, s)~oi(s ) ds, which has 
St. ' R,m(h, s)~ot(s) ds as a component,  must be unbounded as i ~ + oo. This 
proves (c) in the general case. 

(d) I f  (L) is uniformly stable on LC, then the above argument may be 
repeated, and hence M(a) is independent of a > to. 

(e)-(f) For ~o e LC+ the solution v(t) of (L) is given again by (2). I f  R(t, s) is 
essentially bounded by M(a) for t > s > a, then we have the obvious estimate 
Ivlo -< (1 +M(a)) N+ from which follows the stability (and uniform stability if 
M i s  independent o f a  > to) of(L) on LC+. 

(g) Let F~ be the linear functional considered in part  (a) restricted to LC o 
and F* be the extension of F* from LCo to L. I f  (L) is asymptotically stable on 
LCo then arguing as in (c) we can show that ]F*[ = ess sup,>_s_> . IR(t, s)] --> 0 
as t--> + oo. (Here we use the fact that LCo is dense in L.) The converse is 
obviously true from (2). 

At this point we can give an example which illustrates the distinction 
between the stability of  (L) for a given a > t o and stability for all a > t o. We 
take t o = 0 and the kernel A(t, s) to be the solution of (R) with R(t, s) =- t -  2s. 
For this system we have U(t, s) - t s - s 2 +  1 which is bounded in t for s = 0 
but unbounded in t for s ¢ 0. Thus, (L) in this case is stable on R1 for a = 0 but 
unstable for a ~ 0. 
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We also can give an example of a system (L) which is asymptotically stable 
at a = 0 but not equi-asymptotically stable at a --- 0 on the space N = { ~ e Co: 
I~(t)l-~0 as  t - ~  + ~ with norm I~l+ < + ~ } .  With n = 1 and a = 0 we 
set A(t, s) - - 1 in (L), in which case R(t, s) = exp ( s -  t). By I.emma 2(e) this 
system is stable on LC+ for a = 0 and hence on the subspace N. From (2) it is 
easy to show that Iv ( t ) / ->  0 as t --> + ~ for all ~ ~ N, and consequently (L) is 
asymptotically stable on N for a = 0. However, (L) is not equi-asymptotically 
stable on N for a = 0. This can be shown by consideration of the sequence 
~ ~ N defined by 

0; O < t < i - 1  
9,(t) = t - i + l ;  i - 1  < t < i 

1; i < ¢ < i + l  
- t + i + l ;  t > i+1  

for which 19~1 + = 3 for all i. That (L) is not equi-asymptotically stable on N 
follows from the fact that vi(i+ 1) = e -1 - e  -2 = const, for all i, where v~(t) 
is the solution of  (L) corresponding to 9i given by (2). 

Finally, before proving our theorems we make some observations. 
Remark 1. In the case that (L) reduces to a differential system (i.e., A is 

independent of t), uniform stability (and not asymptotic stability) on Cl(a) is 
equivalent to uniform asymptotic (or exponential) stability as defined for 
differential equations. This can be seen from Lemma 1 in the case U(t, s) = 
Y( t )Y- l (s) ,  where Y(t) is a fundamental solution matrix of the homogeneous 
system and from theorems in [23, p. 85] and [24, p. 290]. Thus, in this case, 
Theorem 1 (or Theorem 2(a)) with ~ - y - 0 reduces to a well-known perturba- 
tion result for differential systems (see [21, p. 68] and [25]). Also Theorem 1 
with p = 0, y ~ 0 yields a result of Strauss and Yorke [26]. Theorem 2(b) yields 
another well-known perturbation result (see [21], [27]). An important fact from 
the theory of differential equations is that for perturbations of higher order the 
hypothesis of uniform asymptotic stability cannot be weakened to that of either 
asymptotic stability or uniform stability (for examples, see [21], [27]). This 
points out the importance of stability on Cl(a ) in Theorem 1. The assumption 
of stability on Cl(a ) for a fixed a > t o also appears in perturbation theory for 
differential equations [24]. 

Also, if y - ~ - 0 in Theorem 4(a) we obtain a result due to Strauss [11, 
which is itself a generalization of a result of Miller, Nohel and Wong [11]. 

Remark 2. Here we offer some counterexamples which perhaps lend some 
necessity to the strength of assumption (H3) and/or (H3)' on the perturbation 
term p. If  n = 1 and A = - 1, then (L) is uniformly asymptotically stable as a 
differential equation or equivalently stable on Cl(a) for all a. If  we take p = ~ u 
sin ( t - s ) ,  then the solution u of(P)  with a = 0 and 9 - c = const, has Laplace 
transform Lu = c(s2+ l)/(s 3 + s 2 + ( 1 - ¢ ) s +  1). It is easy to show (using the 
Routh-Hurwitz criterion) that for all small E > 0 the denominator has two 
complex conjugate roots in the right half-plane, and hence that u is unbounded 
for any initial function c. Consequently, in marked contrast to the case when 
p is independent of t, perturbations p satisfying lp(t, s, u) l < Elu [ for arbitrarily 
small c uniformly in t > s > to do not in general preserve stability even when 
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the unper turbed system (L) is exponential ly stable. The same example,  only 
wi thp  = u exp ( t - s )  o r p  = u exp ( s -  t), shows that  the integrability on [0, + ~ )  
or  the tending to zero in either variable t or  s (holding the other  variable fixed) 
is not  sufficient for  preservat ion of  stability. 

Finally we give a higher-order  example to illustrate that  even for  exponenti-  
ally stable linear systems stability is not  preserved under per turbat ions  satisfying 
p(t, s, u) = o(lul) near  u = 0 uniformly in t > s > to. This is again in marked  
contrast  to the case of  differential equations.  Again let a = 0 and A = - 1 and 
take p(t, s, u) = p*(t, S)U 2, where p*(t, s) = c(t)+ S~ c(r) dr. Here c(t) is any 
differentiable function defined for  t > 0 satisfying 0 < c(t) < M,  c E LI[0, + oo), 
and lim supt_. + ~o c(t) > 0. Under  these condit ions p*(t, s) is bounded  uniformly 
in t > s > 0 and hence p = o([u[) uniformly in t >__ s > 0. The  per turbed 
equat ion 

(3 )  u(t) = ~  -- f t  0 12(8)as -t- f t  0 p*(t, S ) u 2 ( s )  ds, Rt, 

as pointed out, has a l inearization which is exponential ly stable (hence, is 
uniformly and asymptot ical ly stable on R1 and stable on Cx(a) for  every a >__ 0) 
and satisfies all hypotheses of  Theorem 1. We now show that  this per turbed 
equat ion (3) is unstable on R1. The equat ion (3), f rom (VC), is equivalent  to 
the equat ion 

/~' _ d 8" 
u(t) = ~oe-'+e-' jo e '~ joe(,, r),'(,) dr a. 

or, by the way p* was chosen, to the equat ion 

(4) u(t) = ~0e-t+ c(t) f t  ° u2(s) ds. 

Let w(t) = u(t)/c(t). Then w(t) = ~oe-'/c(t) + ~'0 c2(s)w2(s)ds, and clearly w(t) 
> 0 for all t >_ 0 and ~o > 0. Moreover ,  clearly l im inf,_, + ~ w(t) > 0 and hence 
w(t) > 8 > 0 for  all t > 0 and some constant  8; i.e., u(t) >_ 8c(t) > 0 for  t > 0. 

t 2 F r o m  (4), u(t) >_ 82c(t) So c (s) ds > 0, t >__ 0. N o w  note that  

+ 0o _>_> lim sup c(t) f t  ° c2(s)ds = b > 0, 
t'-* + co 

for  otherwise b = 0 would imply c(t) ~ O, contrary  to the way in which c(t) 
was chosen .  Thus,  for  all ~0 > 0 we have lim sup,_~ + ~o u(t) > 82b > 0. The  
constant  82b being independent  o f  ~ implies that  (3) is unstable. (In fact, if c(t) 
is chosen so that  c2¢ Ll[0, + ~ ) ,  then b = + 0o and solutions u(t) are un- 
bounded,  for  ~o > 0.) 

Proof o f  Theorem 1. (a) We first prove that  (P) is s table off N for  the given 
a = ao > to if  (L) is; tha t  is, for  any E > 0 satisfying ~ < b we wish to show 
that  for this ao the solution u(t) of  (P) exists and satisfies lu(t)l -< ~ for  all 
t _> ao provided that  I~IN -< 8 for  some 8 = 8(~, ao) > 0. 

Let  M1 and M2(ao) be as in L e m m a  l(b) and l(a) respectively (cf. (i) and 
(ii)). Suppose p < Po = 1/M2(ao). Then  there exists a small constant  O > 0 
such that  pM2(ao)+ 0 < 1. Referring to (H3) we choose T = T(E, ao) > to so 
large tha t  

< M1 f ;  y(s) ds+M2(ao) max l:7(s)l _< 0/4. 0 
s>_T 
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First we show that u(t) exists and can be made small on the finite interval 
[ao, T], provided that l~o[N is chosen small. (If T < no, then this step of the proof  
is not needed.) From (VC), (H3), and (P) we have that u(t) satisfies 

(P)' u(t) = v(t) + U(t, s)P(s) ds, 
aO 

where P(s) = d(S~ ° p(s, r, u(r)) dr)/ds for as long as u(t) exists for t~ [no, 7]. 
That u(t) exists for some t > ao was assumed at the outset. Note that v(t) exists 
for all t > ao by (VC). From (H3) we have the estimate 

(5) Ie( )l -< g3s<ao; u) 

where M3 is a positive constant such that [oJ(s)[ _< M3 for s s [a 0, T] (w(s) is 
bounded on finite intervals by (H3)). This estimate (5) holds for those s for 
which u(s) exists. From (P)' we have that 

f '  s(u; ao) (s) ds, lu(t)] _< lv(t)l + MM3 a ° 

and, by maximizing both sides over the interval [a o, t], that 

< s(u; no) (t) < s(v; no) (T )+MMa f t  0 S ( U ,  n o )  (s) ds, 
ao 

which implies by Gronwall's lemma that 

(6) lu(t)[ < s(u; no) (t) < s(v; no) (T) exp (MMa(T- to))  

for those t e [ao, T] for which u(t) exists. By the assumed extendability property 
of  solutions of (P) it is true that so long as [u(t) I < b the solution u(t) can be 
continued as a solution of (P). From (6) and the fact that the assumed stability 
of (L) on N implies s(v; no) (T) can be made small for lg[N small, it clearly 
follows that for 19IN small u(t) exists on [no, T] and is small. Specifically, choose 
61 = 6t(e, no) > 0 so small that 

(7) s(v; no) (T) < E rain (1, (4Mam2(ao))-lO) exp (M1m3(to-  T)). 

Then  from (6) we have [u(t)[ < e < b for as long as u(t) exists on [ao, T] which, 
as pointed out, implies u(t) exists on the whole interval [a o, T]. In addition, this 
choice of 61 implies from (6) that 

(8) lu(t)l < ¢ min (1, (4MaM2(ao))-iO), t ~ [no, 7]. 

Since ]u(T)[ < E, u(t) actually exists beyond T. We wish now to show in 
fact that lu(t)l < E for all t > ao if k0[u is small enough. Specifically, choose 
62 = 62(~, no) > 0 such that Iv(t)l < ~0/4 for all t > ao and for I~l~ -< 62. 
This is possible by the assumed stability of (L) on N at a o. Set 6 = min (81, 62) 
and assume that 19]u < 3. For purposes of contradiction suppose that there 
exists a first point T' such that T < T' < + oo for which lu(T')[ = E. From 
(H3) and 

(9) u(t) = v(t) + U(t, s)P(s) ds + U(t, s)P(s) ds 
" a 0 
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for t e [T, T'] we obtain the estimate 

f lu(t)l -< ,o/4 + IU(t,s)l~(s)dss(u;ao)(T) 
a o 

+ ~ f'r IV(t' s)l b,(s) + , # ) + p )  ds, 

or, from (7) and (8), 

]u(t)J < e0/4 + M3M2(ao),(4MaM2(ao))-I 

< ,(30/4+pM2(ao)). 

Thus, for all t e IT, T'], lu(t)l < , (0+M2(ao))  < ,, which in particular implies 
the contradiction lu(T')l < 4. 

Thus, if IrelN -< ~ = ~(,, ao) we have that [u(01 < ,  for all t __. ao; i.e., (P) 
is stable on N for this ao. 

(b) If  hypothesis (ii) holds for a = to, then M2(ao) in the above argument 
can be replaced throughout by M2(to). It is easily seen then that 8 in the above 
argument is independent of ao > to. 

(c) Suppose now that (L) is asymptotically stable on N for a = ao and that 
(H3)' holds. We wish to show that (P) is also asymptotically stable on N for 
a = ao. But by definition, asymptotic stability on N implies stability on N and 
we have already shown (P) preserves stability on N if p < 1/M2(ao). (Note: 
(H3)' implies (H3).) Consequently, we need only show that, for a = ao, 
lu(t)l ~ 0 as t --* + oo provided only that [rein is small enough. 

By Lemma l(c) we have that IU(t, s)l ~ 0  as t ~  +oo for each s _> ao. 
Let 81(ao) be the constant in the definition of asymptotic stability of (L) on N 
and ~2(~) the constant in the definition of stability of (P) on N. Set 8(ao) = rain 
(81(ao), 82(b/2)). Then ]reJs - 8(ao) implies that jv(t)l ~ 0 and that u(t) exists 
and is bounded by b/2 for all t > ao. For purposes of contradiction, suppose 
that lim sup ,-.+~o lu(t)[ -- u* > 0. Assume p < 1/4M2(ao). Using (H3)' we 
choose T >__ a o so large that 

(10) (b/2) (M2(ao) max IV(s)[ + M  t f ~  y(s)  ds) < u * / 3  
s > T  

and so large that in addition 

(11) lu(t)l -< O-Xu *, t >_ T, 

where 0 is some fixed constant, 3/4 < 0 < 1. Note that pM2(ao)O -1 < 1/3. 
From (H3)' and from (P)' for t _> T we have 

f r  Iv(t, s)l Ie(s)l ds + f'T ]u(t ,  s)l [u(s)l ds [u(t)[ < Iv(t)[ + 
a o 

f'~ Iv(t, ~)1 (,~(~) + y(s)) ds. + (b/2) 

Thus (10) and (11) imply that 

fr  IU(t, s)] IP(s)l ds+u*/3+ M2(ao) O-lu*. lu(t)l--< lv(/)l + ,o 



On Preserving Stability of Volterra Integral Equations 129 

Let t ~ + oo. Then Iv(01 ~ 0  and by the Lebesgue dominated convergence 
theorem Sro I U(t, s)l IP(s)l as ~ o. (P(s) is bounded on [ao, T] by (H3)'.) 
Consequently we find that 0 < u* < u*/3+M2(ao)O-~u * < 2u*/3, a contra- 
diction. Hence, u* = 0 and (P) is asymptotically stable on N for this ao. 

(d) If  (L) is asymptotically stable uniformly in a > t 0, then 8 in part (c) 
above is independent of a = ao, and hence the proof of (c) as given yields the 
fact that (P) is asymptotically stable uniformly in a > to. 

Proof of  Theorem 2. The proof of part (a) is exactly as the above proof  of  
Theorem 1 except that in (9) we have ~,* = 0, which follows from (8) with 
9,(s) = 0. The reason hypothesis (i) of Theorem 1 can be dropped in this case 
is that the uniform bound on I U(t, s)l is no longer needed. This same remark in 
the proof  of the preservation of asymptotic stability of (P) above holds. For  the 
proof  of part (b) see [6]. 

Proof of  Theorem 3. The idea of the proof  is exactly that of the proof  of  
Theorem 1 except that we begin with the following integral equation for the 
solution u(t) of (P) which arises from (RU)':  

(12) u(t) = v(t) - f '  R(t, s)q(s, u(s))ds, t > 
a o . 

a 0 

(a) Given E > 0 sufficiently small we choose T = T(~) _> to so large that 
1~7(t)] _< ~ for t > T (see (H4)). The proof breaks into two parts as does the 
proof  of Theorem 1. First we show that u(t) exists and satisfies lu(t)l < ,  for 
t ~ [ao, T] provided that I~IN - 81 for some 81 = 81(e, ao) > 0. Since this 
step is very much like the corresponding step in the proofs of Theorem 1 (and 
is essentially a continuity-with-respect-to-data argument on finite intervals), we 
omit its details. 

By the continuation property of solutions to (P) we know that for I~IN -< 81 
we have that lu(t)l < ,  for t e [ao, T ' )  for some T '  > T. We wish to show 
T ' =  + ~ and proceed to do this as above by a contradiction argument. 
Suppose T '  > T is the first point for which lu(T')l = ,. We estimate u(t) by 
using (12) on t e [T, T'] where lu(t)t -< , :  

_< Iv(t)[ + faro IR(t, s)[ Iq(s, u(s))l ds + f t  r [R(t, s)[ Iq(s, u(s))[ ds lu(t) l 

< s(v;ao) (t) + [R(t, s)llq(s, u(s))l as 
aO 

+ M(p+,)s(u; T)(t) + M yT (s) ds, 

where M is the larger of the two constants appearing in Lemma 2(a) and 2(d). 
In a manner similar to the proof of Theorem 1 it can be shown that for I~0[N < 
82(~, ao) we have for all t _> t o 

s(v; ao) (t) + I R(t, s) l [ q (s, u(s)) I ds _< ½~m - 1 exp ( -  mM~,*), 
ao 

where m = ( I - M ( p + O )  -1. Here e and Po (with p < pO) have been chosen so 
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small that  0 < m < + oo. Consequently, maximizing over IT, t] both sides o f  
the inequality, we arrive, after some manipulations, at 

s(u; T)  (t) < m , ( 2 m ) - t  exp ( - mMy*)  + m M  ftr ~(s)s(u; T)  (s) ds 

for  t ~ [T, T'] .  An  application o f  Gronwall ' s  lemma leads immediately to 
s(u; T) (t) < ~/2 for t ~ [T, T'] ,  which obviously implies the contradict ion 
[u(T')[ < , for I IN -< 82. Thus, for I IN -< 8 = rain (81, 82) we have lu(t)l < 
for all t _> ao if E and Po are small enough. This proves that  (P) is stable on N 
at a = ao. 

(b) As usual, par t  (b) follows f rom the p roof  o f  (a) with M, and hence 8, 
independent o f  a > to. 

(c)-(d) Starting f rom (13) and using L e m m a  2 we can prove parts (c) and (d) 
exactly as parts (c) and (d) of  Theorem 1 were proved with U replaced by R. 
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