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SUMMARY 

The notion of strong or adjoint stability for linear ordinary differential equations is 
generalized to the theory of Volterra integral equations. It is found that this generaliza- 
tion is not unique in that equivalent definitions for differential equations lead to different 
stabilities for integral equations in general. Three types of stabilities arising naturally are 
introduced: strong stability, adjoint stability, and uniform adjoint stability. Necessary 
and sufficient conditions relative to the fundamental matrix for these stabilities are 
proved. Some lemmas dealing with non-oscillation of solutions and a semi-group pro- 
perty of the fundamental matrix are also given. 

1. Introduction. We wish here to extend the notion of  strong stability for  
ordinary differential equations,  as considered for example by Coppel  [1], to 
systems of  Volterra integral equations 

(I) u(x) = cp(x) + f~ K(x, t)u(t) dt. 

Here K(x, t) is a continuous k × k matrix defined for real x, t _> Xo and ~0(x), 
u(x) are k vectors;  a is a fixed but arbi trary constant  greater than or equal to Xo. 
(The basic theory for  equat ion (I) guarantees that  there exists a unique solution 
defined for  x >_ Xo.) The system (I) contains the initial-value prob lem for  
first-order systems of  differential equations (~ -- const, and K independent  of  x) 
and we desire to generalize the concept  o f  s trong stability so as to contain the 
essential results o f  this theory for  such equations,  as was done in [2] for other  
basic stabilities. Two features will be seen to stand out in this respect. First, the 
space of  allowable "initial funct ions"  9~ plays a significant role, as was found 
in [2] (see also [3]-[7] and the references cited therein, where this feature is 
impor tant  in other approaches  to stability for (I)). Indeed, strong stability on 
too " la rge"  a space of  initial functions is so restrictive that  it rules out the 
dependence of  the kernel K on the variable x (see Theorem 1). As a result, for 
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integral equations strong stability on "smaller" spaces has more interest and 
content. We will emphasize 9 - const, below, although some of the results 
stated are valid on the space of Cl[Xo, + oo), where 19'(x)[ has a finite integral 
on [Xo, + oo). This will be pointed out in context below. 

Second, the notion of strong stability for differential equations does not 
seem to have a unique, "natural" extension to (I) in that equivalent character- 
izations for differential equations lead to different, although related, notions 
of stong stability for (I).-For example, the definition of strong stability given 
by Coppel in [1, p. 51] (who credits the concept to Ascoli [8]) can be used, 
with the necessary modifications for the space of initial functions, for (I); this 
is done in Section 2. This definition can in fact be used for nonlinear Volterra 
equations. However, the equivalent definition for linear equations in terms of 
the adjoint equation (see Cesari [9, p. 45], who calls this notion "restrictive 
stability") or in terms of the fundamental matrix [1, p. 54] generalizes to a 
"weaker" stability for (I) (adjoint stability). Another stability (uniform adjoint 
stability) more or less intermediate to these is possible; both are discussed in 
Section 3. 

We give precise definitions of these three stabilities in Sections 2 and 3, 
each of which generalizes the concept of strong stability for ordinary differential 
equations. Also, we state and prove characterizations of each in terms of the 
fundamental matrix for (I) on an appropriate space of initial functions. These 
results, among other things, are useful in treating perturbed or linearizable 
nonlinear Volterra equations (as in [2]) which we hope to do in future work. 
Although we do not pursue it here, criteria for each of these stabilities relating 
explicitly to the kernel K can be stated by using the representation theorem and 
techniques developed by the authors in [10]-[12]. Finally, we point out that 
some interesting results which we find convenient to state and prove here, 
concerning the oscillation of solutions of (I) (which, of course, is not possible 
for homogeneous differential equations), and a composition or semi-group 
property of the fundamental matrix may be found in Section 2. 

2. Strong stability. As shown in [2] the solution to (I) for a given 9 ~ C~[xo, 
+ oo) has the representation 

(R) u(x) = U(x, a)~(a)+ f~ V(x, s ) ~ ' ( s )  ds, 

where the fundamental matrix U(x, s) is defined as the unique solution to the 
matrix equation 

v(x, s) = I+f  K(x, t)U(t, s) dr; x, s > x o • 

(Integration by parts in (R) leads to a formula for u(x) valid for the larger 
class of ~o e C°[xo, + oo); we will not use this representation here, however.) 
If (I) is an initial-value problem for a system of ordinary differential equations 
which has a fundamental solution Y(x), then U(x, s) is nothing more than 
Y(x)Y-l(s).  The representation (R) may be related to similar representations 
in the literature as in [2]. 

Let N be a set of initial functions contained in C°[xo, + oe). Following 
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Coppel  [1, p. 51], we say that  (I) (or equivalently, that  the null solution corre- 
sponding to 9 = 0) is strongly stable on N if for each ~ > 0 and all a _> x o 
there exists a constant  8 = 3(~) > 0 such that  any solution u(x) of  (I) for 

E N satisfying lu(x*)l -< 8 for  some x* > Xo necessarily satisfies [u(x)l _< E 
for  all x > x o. Here  J-[ is any k-vector  norm. It  is obvious that  strong stability 
implies uniform stability (see [2] or  Section 3 below for  definition), a concept 
which plays a central role in proving the stability of  a small, nonlinear per- 
turbat ion of  (I); see [2]. 

The first result on strong stability of  (I) which we will establish is, roughly 
speaking, that  strong stability on large enough spaces N implies that  the kernel 
K is independent  o f  the variable x. Thus,  for  integral equations (I), only strong 
stability on relatively restricted spaces N is of  interest. 

T H E O R E M  1. Suppose Cm[xo, + oo) c N for some 0 < m <_ + oo and 
that K(x, t) is m times continuously differentiable with respect to x. Then the 
strong stability of  N o f ( l )  implies K is independent of  x. 

In  order to prove  this theorem we first obtain some prel iminary results. 
The solution to a first-order homogeneous  system of  ordinary differential 
equations with nonzero initial value is nonzero for all x >_ Xo (by nonzero 
we mean u(x) ~ O, where 8 is the zero k-vector). This is not true, however,  for  
the more  general system (I) even if ~o is constant.  For  example,  if K(x, t) = t - x 
in (I), then U(x, s) = cos ( s ' x )  and thus u(x) = cp cos ( a - x )  is the solution 
to (I) for any ~o = const. We say then that  (I) is non-oscillatory on N if u(x) ~ O, 
x > Xo, for all ~0 e N, ~o ~ 6. The first l emma is relatively easy to establish. 

L E M M A  1. I f  equation (I) is strongly stable on N, then it is non-oscillatory 
on N for all a > Xo. 

Proof. Suppose that  (I) is not non-oscil latory on N for all a >_ Xo and 
that,  for  some a and ~o e N, ~0 ~ 8, there exists x* _> Xo for which the solution 
to (I) satisfies u(x*) = 8. For  each positive integer n, the strong stability of  (I) 
on N implies that  there exists a 8, > 0 such that  0 = lu(x*)l -< 8. implies 
lu(x)l -< 1/n for  all x > Xo. Thus,  since n is arbitrary,  lu(x)l -- 0 for  all x >_ Xo, 
a contradict ion to ~o ~ 8. 

Our  next two lemmas  concern a semi-group or translation proper ty  of  the 
fundamenta l  matrix U(x, s): 

(P) U(x, s) = U(x, y)U(y, s), x, y, s > Xo. 

L E M M A  2. (a) I f  (P) holds, then (I) is non-oscillatory on E k (k-dimensional 
Euclidean space)for all a > x o. (b) Suppose that C"[x o, + oo) c N for some 
0 < m < + oo and that K(x, t) is m times continuously differentiable with respect 
to x. I f ( I )  is non-oscillatory on N for all a >_ xo, then (P) holds. 

Proof (a) Suppose that  (P) holds and that  for  some a > Xo, ~ e E k, q5 ¢ 6, 
the solution to (I) satisfies u(x*) = U(x*, a) ~ = 6 for some x* > xo. Then  
using (P) we have u(x) = U(x, a) g) = U(x, x*)U(x*, a) ~ = 0 for  all x >_ Xo. 
This contradicts ~ ~ 0. 

(b) Let ~ e E k be an arbi trary k-vector.  Then for arbi trary but fixed s, y > Xo, 
the functions u(x)= U(x, s)% v(x) = U(x, y)U(y, s)~o are the solutions to 
u(x) = q)+ S7 K(x, t)u(t) dt and v(x) = U(y, s)q)+ ~ K(x; t)v(t) dt, respectively. 
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Subtracting these two equations and setting w(x)= u(x)-v(x)  we obtain 
w(x) = f~(x) + S~ g(x ,  t)w(t) dt, where 

¢~(x) = [ I -  U(y, s)]9+ f~ K(x, t)U(t, y)U(y, s)cp dr. 

From our assumptions it follows that ~ ~ Cm[xo, + 0O) and hence ~ ~ N. But 
it is assumed that (I) is non-oscillatory on N for a -- s and consequently the 
fact that u(y) = v(y) or w(y) = 6 implies w(x) = 6, x >_ Xo. But ~ E E k was 
arbitrary and consequently U(x, s) = U(x, y)U(y, s), x >_ Xo. Since y and s 
were also arbitrary, we find that (P) holds. This proves the lemma. 

Note that if (P) holds, U(x, s) is invertible for all x, s _> Xo. In fact, letting 
s = x in (P), we find that U- l (x ,  y) = U(y, x) for all x, y _> Xo. 

In the case of ordinary differential equations, U(x, s) = Y(x)Y-~(s),  and 
(P) obviously holds. That a converse is true is contained in the next lemma. 

LEMMA 3. Suppose that K(x, t) is continuous in x, t > Xo. I f  (P) holds, 
then K(x, t) is independent of  x. 

Proof. Let ~ ~ E k and a >__ Xo be fixed, but arbitrary. Once again u(x) = 
U(x, a)qo solves (I) for x _> Xo. Since (P) holds, we have u(x) = U(x, y)U(y, a)~o 
for any y >_ xo and hence u(x) also solves the equation u(x) = U(y, a)~o+ 
Sy K(x, t)u(t) dt, which when subtracted from (I) yields 0 = [ I - U ( y ,  a)]qo+ 
~ K(x, t)u(t) dr. This equation is valid for all x, y >_ Xo ; thus, if x* >_ Xo is 
arbitrary, we find that Sa y [K(x, t ) -K(x* ,  t)]u(t) dt = 8 for all x, x* > Xo and 
for all y _> Xo. This implies that [K(x, t ) -K(x* ,  t)]u(t) = 8 for all t >_ a or in 
particular for t = a that [K(x, a ) -K(x* ,  a)]qo = 0. But qo E E k is arbitrary so 
that K(x, a) = K(x*, a), and inasmuch as a >_ Xo and x, x* _> Xo are arbitrary, 
the lemma is proved. 

Proof of  Theorem 1. Under the hypotheses of Theorem i, the strong stability 
on N of (I) implies (by Lemmas 1 and 2) that (P) holds. The theorem then is seen 
to follow from Lemma 3. 

We now wish to establish necessary and sufficient conditions for strong 
stability on certain spaces in terms of the fundamental matrix U. The results 
of the following theorem generalize to (I) the characterization of strong stability 
for ordinary differential equations as given in [1, p. 54]. The necessary condition 
(a) is of the type useful in studying nonlinear perturbed equations (see [1]-[5]). 
The sufficient condition (b) can be used to establish conditions for strong 
stability relating directly to the kernel K(x, t) as for example is done in [10] 
and [12] for other stabilities; as this is straightforward, we will not state any 
general results of this kind here. 

Let j] U[] = suPl¢l=l lU~:  I. 

THEOREM 2. (a) I f ( l )  is strongly stable on N, where E k c N, then U(x, s) 
is invertible for all x, s > Xo and there exists a constant L > O, independent of  
s and x, for which 

(2.1) IIU(x,s)]l < L, HU-X(x,s)H < L, x , s  > Xo. 

(b) Conversely, i f  U- l (x ,  s) exists for all x, s >__ Xo and (2.1) holds for some 
L > 0 independently of  x, s > Xo, then (1) is strongly stable on E k. 
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Proof. (a) If  (I) is strongly stable on E k, then (by Lemma 1) (I) is non- 
oscillatory on E k for  all a > Xo. Thus, U(x, a) is invertible for  all x, a >_ Xo, 
for  if U(x*, a*)~o* = (5 for some x*, a* _> xo and 9" ~ E k, 9" ~ O, then u(x) = 
U(x, a)9* is a solution to (I) with 9 = ~0", a = a*, for  which u(x*) = 0, con- 
trary to (I) being non-oscillatory. Fixing Co > 0, let 3 o > 0 be as in the defini- 
t ion of  strong stability. For  arbitrary but fixed x*, a > Xo, consider u(x) = 
U(x, a )U- l ( x  *, a)~, where ~ is any vector in E k for  which I~1 -< 8o. Since this 
u(x) solves (1) with cp = U - l ( x  *, a)~ and u(x*) = ~:, we conclude f rom the 
strong stability of  (I) that ]U(x, a )U- l ( x  *, a)EI -< Co for all x > Xo. Since ~, 
[~[ _< 3o, is arbitrary this means II U(x, a )U- l ( x  *, a)[I _< L, L = %/80, where, 
f rom the definition of  strong stability, 8o, and hence L, is independent of  a 
and x* as well as x. Putting respectively x = a and x* = a in this estimate, we 
obtain the bounds of  (2.1). 

(b) Conversely, the solution to (I) for  q~ e E k is U(X) ----- U(X, a)% x > Xo, 
or u(x) = U(x, a )U- l (x  *, a)u(x*) for  arbitrary x* > Xo. For  given ~ > 0, 
choose 3 = EL -2. Then, if lu(x*)l _< 8 for some x* _> Xo, we have [u(x)[ < 
IIU(x, a)l l ' l lU-l(x  *, a)ll'lu(x*)[ _< L28 = E for  x _> Xo and (I) is strongly 
stable on E k. 

As an example of  a strongly stable equation (I) and of  a utilization o f  
Theorem 2 we consider the scalar (k = 1) equation with ~o ~ E 1 and K(x, t) = 
a(x)b(t) for  continuous scalar-valued functions a(x) and b(x), x > Xo. Using 
the formula U(x, s) = 1 +a(x) S~ b(t) exp (St a(z)b(z) dz) dt, which follows f rom 
the techniques used by the authors  in [10] and [12], we easily see that some 
simple criteria which imply the strong stability of  (1) on E 1 are: 0 < b(x) and 
0 < a(x) < A for  x _> xo and some constant A > 0; and B = S+o°~b(x) dx < 
+ ~ .  Indeed, under these conditions, 1 < U(x, s) < AB exp (AB) < + ~ for 
all x, s _> xo. For  more general kernels one can use the representation formula  
for U(x, s) in [11]. 

3. Adjoint and Uniform Adjoint Stability. For  ordinary differential equations, 
condition (2.1) is equivalent to the boundedness of  both Y(x) and Y - l ( x ) ;  
thus, Theorem 2 generalizes the characterization of  strong stability in [1, p. 54]. 
Because of  this, strong stability for  linear differential equations is equivalent to 
the simultaneous stability of  the equation and its adjoint  (see [9, p. 45] in this 
context). The boundedness of  both Y and Y - l ,  however, is perhaps more 
appropriately interpreted in the context of  integral equations (I) as the bounded- 
hess of  U(x, s) in x for  fixed s and vice versa. This leads one to consider a not ion 
of  strong stability for  (I) in terms of  such a boundedness property for U(x, s), 
which, it turns out, is different f rom that  defined above in Section 2. Such a 
definition, of  course, would only be applicable to linear equations, and inasmuch 
as we hope in future work to consider nonlinear Volterra equations, we first give 
a (8, ~)-definition and then prove the characterization in terms of  U(x, s) in the 
following theorem. 

Let N _c CO[x0, + ~ )  be a normed space o f  initial functions with norm 
II" IIN- In [2] the fol lowing definition was made:  (I) is stable on N if  to ¢ > 0 
there exists a constant 8 = 8(a, e) > 0 such that H~OlIN -< 8 implies [u(x)] < E 
for  all x > a. If  8 is independent of  a > Xo, then (I) is said to be uniformly 
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stable on N. We say that (I) is adjointly stable on N if it is stable on N and if to 
any E > 0 and any x* > Xo there corresponds a constant 8 = 8(E, x*) > 0 
such that IIq~llN < 3, ~o ~ N, implies lu(x*)l _< ,  for all a >_ xo. 

T H E O R E M  3. (a) I f ( l )  is adjointly stable on N for which Ekc_ N, then 
there exist constants L(s), M(x)  > 0 such that 

(3.1) IIU(x,s)ll <_ Z(s) forx  > Xo, IlU(x,s)ll < M ( x ) f o r s  > x o. 

(b) If(3.1) holds for some constants L, M, then (1) is adjointly stable on E k. 
Proof. (a) That  adjoint stability of  (I) implies the existence of  the required 

constant L(s) follows from the existence of  such a constant for stable equations 
on E k [2]. F rom the definition of  adjoint stability, u(x) = U(x, s)% ~o E E k, 
satisfies lu(x)] <_ , for [el - 3 -- 3(,, x)  for all s >_ Xo. But [U(x, s)~: I < E for 
all I~:1 < 3, s > Xo, implies II U(x, s)II -< M, where M = e/3(,, x). 

(b) The existence of  M and L implies the bounds lu(x)[ < L(a)[~ol, x >__ Xo; 
lu(x)l <_ M(x)[~l ,  a > x o for all ~o ~ E k. These clearly imply adjoint stability. 

That  adjoint and strong stability are different stabilities will be pointed out, 
together with other relationships between all these various stabilities, in 
Section 4. 

The boundedness of  both Y and Y-1 for differential equations may also 
be stated as the boundedness of  Y(x )Y- l ( s )  for  all x, s _> x o. Thus, we are 
also naturally led to a third concept of  stability, which also generalizes the 
notion of  strong stability for differential equations, in terms of  the boundedness 
of  U(x, s) on the quadrant  x, s > Xo. This concept will also turn out to be 
distinct f rom strong stability defined in Section 2. Once again we begin with a 
(8, ,)-definition because of  its wider range of  applicability. We say (I) is uniformly 
adjointly stable on N provided to e a c h ,  > 0 there exists a constant 3 = 3(E) > 0 
(independent of  a > Xo) such that llq~J[N < 3, ~o ~ N, implies lu(x)[ < , for all 
x, a > Xo. This definition differs f rom that of  uniform stability of  (I) in that in 
the latter case lu(x)l is to be small (independently of  a > Xo) for all x _> a, 
whereas for  uniform adjoint stability it is to be small for  all x >__ Xo. 

T H E O R E M  4. (a) I f  (I) is uniformly adjointly stable on N, E k ~_ N, then 
there exists a constant L > 0 such that 

(3.2) II U(x, s)I) <- L for all x, s >_ Xo. 

(b) I f  a constant L > 0 exists such that (3.2) holds, then (I) is uniformly 
adjointly stable on E k. 

Proof. (a) F rom the definition of  uniform adjoint stability, I U(x, a)go[ _< , 
for  I~ol _ 3(,), ~o ~ E k, and for all x, a _> Xo. This implies I1U(x, a)II --- L = ,/3 
for  x, a > x o. 

(b) The existence of  L such that (3.2) holds implies [u(x)] _< Lifo I, ~0 e E k 
for all x, a > x o, which implies uniform adjoint stability because of  the inde- 
pendence of  L on x and a. 

We note that all three stabilities defined here are equivalent to (and, hence, 
generalize) strong stability for  ordinary differential equations and that the three 
theorems (Theorems 2, 3, 4) generalize the characterization theorem for strong 
stability in terms of  the fundamental  solution (see Coppel [1]). 
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We also point out that the conclusion of part (b) of Theorem 4 can be 
strengthened somewhat from that of uniform adjoint stability on E k to the 
larger space of functions in Cl[xo, + ~ )  with finite norm II~ollN = ko(a) l+ 

-/'GO r Sxo I~ ° (s)l ds. Thus, on this space, the bounds appearing in this theorem con- 
stitute necessary and sufficient conditions in terms of the fundamental matrix 
U(x,  s) for uniform adjoint stability. Likewise, in Theorem 3 (b), if the first 
bound L is independent of s for x >_ s > Xo, then (I) is adjointly stable on this 
larger space. The proofs involve minor changes from those given above. The 
remarks preceding Theorem 2 concerning the utility of these types of results 
also apply to Theorems 3 and 4. 

4. Remarks. We conclude with a few remarks concerning the relationships 
among the various stabilities discussed on the space E k. Uniform stability 
implies stability on E k, as is obvious from their definitions. That the converse 
is false is illustrated by examples from the theory of ordinary differential 
equations [1]. (These two stabilities are equivalent for convolution kernels 
K = K ( x - t )  because in this case U =- U ( x - s ) ;  see [2].) Since uniform stability 
on E k is characterized by the boundedness of U(x, s) on the "infinite triangle" 
x _> s >_ Xo, it is immediate from either the definitions or from Theorems 2 and 
4 that both strong stability and uniform adjoint stability on E k imply uniform 
stability on E k. However, examples from the theory of ordinary differential 
equations show that uniform stability does not imply strong stability and, 
hence, inasmuch as adjoint, uniform adjoint, and strong stability for (I) all 
"collapse" to strong stability for the special case of differential equations, 
uniform stability on E k implies none of these on E k. The example mentioned 
above with K(x ,  t) = t - x  and U(x, s) = cos ( x - s )  shows that (I) may be 
either adjointly or uniformly adjointly stable on E k but not strongly stable on 
E k. Thus, we have the following implications for the indicated stabilities on E k : 

strong =~ uniform adjoint =~ uniform =~ stable 

uniform adjoint =~ adjoint =~ stable. 

All indicated implications have false converses. There remain two possible 
implications left unsettled: does adjoint stability imply uniform stability and 
does adjoint stability imply uniform adjoint stability? We conjecture that the 
former is true while the latter is false; however, we have not been able to prove 
or disprove either. 
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