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1. INTRODUCTION 

The h e a r  difference equation 

x ( t  + 1) = g( t )  + Cj=, ko)x(r - j), t = 0,1,2 ,... 

is a discrete analog of the famous renewal integral equation [6], [7], [8]. It arises in, 
for example, the study of population dynamics where the asymptotic behavior of 
solutions are of interest (see the application in Sec. 5 below). For linear equations 
the asymptotic dynamics can be studied by the z-transform [9]. However, in many 
applications the equation is nonlinear and the asymptotic dynamics become more 
difficult to ascertain. In this paper we study the existence of periodic solutions 
(including equilibria) of a general class of nonlinear discrete renewal equations. 
Our approach will utilize bifurcation theory and will consider the existence of 
periodic solutions as a function of a real parameter appearing in the equation. 
Specifically, we consider the equation 
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118 J.M. CUSHING 

Here r(A, x )  is nonlinear and of order higher than x near x = 0. The "kernel 
sequence" hkij), the "forcing function" g(X)(t) and the nonlinear term r(X, x) 
depend on a real parameter X. For initial condition x, = 0 and forcing function g = 
u this equation has a triviai periodic soiution, nameiy x = 0. 'we wiii use bifurcation 
theory techniques to obtain nontrivial periodic and asymptotically periodic solu- 
tions tor certain values of A. 

A nonlinear equation with a known solution can be transformed by a simple 
change of dependent variable into one of the form j i)  in which the known solution 
corresponds to the trivial solution x = 0. In this way our results can be applied to 
obtain the bifurcation of periodic solutions from other known periodic solutions 
(e.g. equilibria). An example occurs in the application given in Sec. 5. 

In Sec. 2 it is established that the problem of asymptotically periodic solutions for 
renewal equations can be decomposed, by direct sum means, into two problem: 
that of periodic solutions of a "lin~it equation" and of asymptotically 0 solutions of 
a decoupled equation (Theorem 3). In Sec. 3 both linear and nonlinear limit 
equations are studied and a bifurcation theorems for 1-periodic and 2-periodic 
solutions are obtained (Theorems 8 and 6, .  Bifurcatior, theorems for I-periodic anci 
2-periodic solutions of (1 ) are given in Sec. 4 (Theorems 11 and 10). The bifurcation 
"f asyiripiutii !-PeiiO&L and 2-pe;ii;&i: ;o!a!iun5 is iuilsidired iE Ssc. 1. In set. 
5 an application to age-structured population dynamics is given in which a primary 
bifurcation of nox!:ivia! e~??:!ibria ax!  a secondary bifurcation of nontriviai 
2-cycles is proved as the inherent net reproductive value of the population is 
increased through critical values. 

2. A DIRECT SUM DECOMPOSITION 

In this section we prove a decomposition theorem for asymptotically periodic 
solutions of nonlinear renewal equations of the form 

We have temporarily suppressed the presence of the parameter A. We begin with 
some preliminary definitions and lemmas. 

Let P(n) denote the linear space of real sequences p = b(t)]:="_, of period n 2 
1 (n-cycles) and let Z denote the linear space of real sequences z = { z ( t ) ] z  that 
converge to 0 as t + +m. These spaces are Banach spaces under the supremum 
norm I i .  i 1,. The direct sum A(n) = P(n) $ Z will be referred to as the space of 
asymptotic n-cycles. Each sequence x E A(n) can be written as x = p + z where p 
E Pin) is an n-cycle and z E Z is a sequence converging to 0. A(n) is a Banach space 
under the norm iixii =iipi i o  + iizii,. 

We will look for solutions x = p + z of (2) in A(n) under the assumption that 

A l :  g E Z.  

We will do this by decomposing (2) into equations for p and z .  To obtain equations 
for p E P(n) and z E Z we substitute x = p + z into (2) and equate from both sides 
the periodic terms and the terms asymptotic to 0. In order to carry out this 
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DISCRETE RENEWAL EQUATIONS 119 

procedure we need to determine the P(n)  and Z projections of the terms on the 
right hand side of equation (2). The following lemma does this for the linear term. 

Lemma 1 Assume the kernel sequence k = {k(j)}:=", satisfies 

A2: 0 < llklli = Z,; / k($l < +a. 

Then for p E P(n)  and z E Z 

Proof. The :wo series definmg the sequences in (LZ) and jh) are absolutely 
convergent, both being bounded by the product Illill, Jlpll,. That the sequence in ( a )  
is n-periodic is obvious. The inequality 

and assumption A2 show that the sequence in (b) tends to 0 as r -+ +m, i.e. beiongs 
to Z.  

In order to show (c), let E > 0 be arbitrary. Since z E Z there exists an integer T 
= T ( E )  > 0 such that 
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120 J.M CUSHING 

This implies that 

and, since E > 0 is arbitrary, that 

lim k(j)z(r  - j )  = 0: 
r++x ,'O 

This proves ( c ) .  0 
From Lemma 1 we obtain a direct sum decomposition of the linear term on the 

right hand side of equation (2) as follows 

In order to obtain the direct sum decomposition of the entire right hand side of 
equation (2) we need to make some assumptions about the operator r.  Let R ( n  j be 
an open neighborhood of the origin in A ( n )  = P ( n )  @ Z .  Assume that 

A 3  { r: R(n)  + A(n) is a continuous operator 

and satisfies 1 1  r(x) 1 1  = o ( 1 1  x 1 1  ) near x = 0. 

Thus, r(x)  is a sequence in A ( n )  and r(x)( t )  is the rh term, i.e. 
r (x )  = (r(x)(t)):=;. Under assumption A3, for each x E A ( n )  we can write r(x)  = 
r  ( x )  + rZ(x )  where r,(x) E P(n)  and rz(x)  E 2. The projections II,: A ( n )  + P ( n )  and 
Ifz: A ( n )  + Z defined by IIp x = p and II, x = z  are linear and bounded. Since rp(x)  
= II, r(x)  and r,(x) = II, r (x )  we have that 

r,: R(n)  + P(n) is continuous with Ilr,,(x)llo = o (IbII) nearx = o 

rL: R(n) + Z is continuous with Ilrz(x)llo = o ( [ H I )  near x = 0 

Finally, we also assume 

Lemma 2 Assume A3 holds. Then A4 holds if and only if 

Proof. Assume (3) holds and choose any x E R(n) .  Then 
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DISCRETE RENEW.4L EQGrATIONS 

Frnm 
A 

we see that r (x )  - r(p)  E Z. Hence A4 holds. 
Conversely, suppose that A4 holds. For any x E R ( n )  we have 

This implies that 

and hence that r,(x) - r p ( p )  = 0. 0 
Suppose that x = p + z E R ( n )  solves the non!inex discrete renewai equation (2). 

From the assumptions and lemmas above we see that p E P ( n )  must be an n-periodic 
solution of the equation 

r 

p(t + 1 )  = C kQ)p(t - j )  + r,(p)(t), r = 0, tl, r 2  ,... 
] = O  

and z E Z must be a solution of the equations 

By adding the equations (4) and ( 5 )  the converse is easily seen to be true. This 
proves the main theorem of this section. 

Theorem 3 Under the assumptions Al-A4. x = p + z E R ( n )  is an asymptotic 
n-cycle solution of the nonlinear renewal equation (2) if and only if p E P(n)  is an 
n-periodic solution of the "limit equation" (4) and z E Z is a solution of  equations 
(5). 

Notice that the limit equation ( 4 )  for p is decoupled from the equation ( 5 )  for z 
and can therefore be treated as an independent equation to be solved for an n-cycle 
p. This is a direct result of A4 and Lemma 2. Of course, p = 0 is a solution of (4) .  
However, if p = 0,  then equation ( 5 )  reduces to the original renewal equation (2) 
for a solution x = z that tend to 0 as t + +w. While our results below apply to this 
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122 J.M. CUSHING 

case, we are more interested in the case when the limit equation (4) has nontrivial 
n-cycles p E P(n), p f 0, (including the case of nontrivial 1-cycles or equilibria). 

We can apply Theorem 3 to the nonlinear renewal equation (1) with parameter 
X  E n" by repiacing ihe icernei sequence k j i j  by Xkj i j ,  iile furciiig hiiciiuii g(ij by 
g(A)(t), and the higher order term r(x)(t) by r(A,x)(t). We obtain the result that the 
problem of finding asymptotically periodic solutions of the nonlinear renewal 
equation (1) is equivalent to finding periodic solutions p E P(n) of the associated 
iimii equation 

and asymprnrically zero solutions E Z of the equation 

Here it is assumed that 

r = r(A, x): R X R(n) + A(n) satisfies A S A 4  for each A E R, 
uniformly in A on compact subintervals of R and g = g(A): R + A(n) 
satisfies A1 for each A E R. 

3. CYCLES OF THE LIMIT EQUATION 

In this section we consider the existence of nontrivial rt-cycle solutions in P(n) of 
the limit equation (6). We begin with a general theory for linear limit equations 
The kernel sequence k is assumed to satisfy A2 throughout. 

3.1 Linear Limit Equations 

The Banach space P(n) of n-cycles is finite dimensional and a complex basis is given 
by the sequences {pJ,],"=_, where the p,,, for j = O,l, ..., n - 1, are the nth roots of 
unity. The n sequences {p~],"=-, are mutually orthogonal with respect to the inner 
product (p ,q )  = xyld p(t)q*(t). To see this we note that 

If j f s. then the nth root of unity 5. = exp (21~i(i - s)ln) # 1 satisfies the equation 
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DISCRETE RENEWAL EQUATIONS 123 

and hence ip,',,, p:, j = 0. On the other hand, ip~,,, p~,,i = n.  Any sequencep E P ( n )  can 
be written 

Consider first the homogeneous linear equation 

Substituting (8) into this equation we see that there is a nontrivial n-cycle solut~on 
if and ~ n ! y  if ?he c~effidenrs C ,  are not all equal to zero and satisfy rhe equaiion 

This is equivalent to 

where 

is the z-transform of the kernel sequence k. From this follows the next lemma. 

Lemma 4 Assume k ( t )  satisfies A2. The honzogeneous equation (9) has a nnntrivial 
periodic cycle solution if and only if the "characteristic equation" 

has a root z = exp(i8) o n  the unir complex circle for which 0 1 2 ~  IS equal to a rariotlal 
number. Specifically, if 8/2n = m/n and m ,  n are to lowest terms then (0) has a 
nontrivial n-cycle. 
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124 J.M. CUSHING 

Consider now the nonhomogeneous linear equation 

where the .'forcing sequence" h = !h(t)]r:x _", is n-periodic, i.e. h E P(n). A substitu- 
tion of (8) into this equation results in the equations 

for the coefficients c, where the h, are the coefficients associated with the forcing 
sequence h,  i.e. 

Define the set 

Sn = { S  :I p,, - k(psn) = 0 )  

The Fredholm-type alternative in the next lemma follows immediately. 

Lemma 5 Assume k( t )  satisfies A2 and h E P(n). Write 

(a) If the homogeneous equations (9) has no nontrivial n-cycle solutions, then the 
nonhomogeneous equation (10) has a unique n-cycle solution 

pit) = i ( ht ) ~ : n  
S = O  Psn - k(Psn> 

(b) Suppose the homogeneous equations (9) has nontrivial n-cycle solutions. Then 
the nonhomogeneous equation (10) has n-cycle solutions if and only if the forcing 
sequence h is orthogonal to all of the nontrivial n-cycle solutions of (9).  For such h 
the nonhomogeneous equation (10) has infinitely many n-cycle solutions given by 

c, arbitrary for all s E Sn 
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DISCRETE RENEWAL EQUATIONS 

only one of which 

3.2 Nonlinear Limit Equations 

We will restrict our attention to n = 2 and n = 1 cycles. Assume that r  = r(A, x) : 
R x Rjnj + A(n)  and g = g(hj satisfy A 5  'CVe are inieresied in thc existence of 
nontriviai periodic soiuiions of tiie iiuiilinear h i i  equatioii (6). Here the higher 
order term r, = r,@, Y) : _R X bZ(n) -+ P ( n )  is continuous and satisfies IrJA, p ) l ,  = 
o(lpi,j near p = O uniformiy on compaci X inirrvals. 3ji Lsiiiirra 3 wc E C C ~  only 
consider r_ restricted to an open neighborhood f l , , (n )  of G, = 0 in P(n). Specifically, 
set 

First of all, to find 2-cycle solutions p E P(2) of equation (6) we substitute 

into the equation, equate coefficients of the independent cycles ( 1 )  and ((-I)'), and 
thereby obtain a system of two nonlinear algebraic equations 

c ,  = hk(l)c ,  + h,(A, c , ,  c,) 

-c,  = hk(- l )c ,  + h,(A, c , ,  c,) 

for the real coefficients 

Here h,  and h, are the coefficients of the 2-cycle r,(X, p),  i.e. h ,  and h, are defined 
by 

The equations (11) can be written in the form 
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where 

J.M. CUSHING 

A fundamental tenet of bifurcation theory is that nonzero solutions of equation 
j i2j  can bifurcate from c = 0 only at the eigenvalues of the linearized equation (this 
fn!!nws essentiz!!y frnm the imp!icit functinn thenrem), which in this case are the 

two real numbers A = li&i j and -iik(-ij .  The associated eigenvectors are the 
standard hasis vectors ei  and e, respectively. Since we are interested in the 
bifurcation of 2-cycies (and hence a nonzero component c,) we are interested in the 
second of these two eigenvaiues. 

If we assume that k(1) # -k(-I) ,  then for A = -I/&-1) the linear operator L 
has 1 genmetrica!!y simp!e characteristic vaiue of - i .  Tnis impiies that for this value 
of A the linearized limit equation 

has one independent nontrivial 2-cycle solution. These facts, together with Ih(A, c)l 
= o(lc1). imply that a bifurcation result of Rabinowitz ([lo], Corollary 1.12) is 
applicable to the equations (11). This theorem implies the existence of a continuum 
of nontrivial solutions (A, c) E K x I?' of (11) that bifurcates from (A, c) = (- l i  

k(-I), 0) and connects either to the boundary of the domain of h(A, c) or to the 

other bifurcation point (A, c) = (l/k(l),  0). Locally the continuum is tangential to 
the eigenvector e, and hence consists of 2-cycles that are not 1-cycles. We 
summarize these results in the following theorem. 

Theorem 6 Assume that r and g satisfy A5 with n = 2 and that k satisfies A2. Assume 

further that k(-1) # 0 and k(1) # -&-I). There exists a continuum C(2) ofpairs 
(A, p )  E R X P(2) where p is a nontrivial 2-cycle solution of the limit equation (6). The 

continuum C(2) bifurcares from p = 0 at A = -1ik(-1) and connects either to the 

boundary a(R X flp(2)) or to the point (A, p )  = (l/k(l),  0) (if k(1) + 0). 
If flp(2) is unbounded then the boundary a(R X flp(2)) contains the point at m. . . Ti. . -  .- eL:- ---- .* .- ----:ii, +C,r tl.- C:f...-n-t:-m ,.r,-t;-..l~m Pl?\ d L ~ n - - o r r ~  +r\ -r" 

I UUS, 111 LIUJ Laac;, IL la puaalulr; ulai LUG uuulbarlllg LULILLIIUUILL L\L, ~ U L M ~ L L ~ D  LU -- , 
i.e. is unbounded in R X flp(2). In particular, this is true if P(2) = fLp(2), i.e. rp is 

globally defined on P(2), and k(l)  = 0. 
While in a neighborhood of the bifurcation point the continuum C(2) consists of 

2-cycles that are not 1-cycles (equilibria), the entire continuum might not consist of 
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DISCRETE RENEWAL EQUATIONS 127 

such 2-cycles. This, for example, would not be the case when the second alternative 
(that the continuum connects to the point (A,p) = (1/&(1), 0)). Often in applications 
the secnnd alternative fur the bifurcating continuum can be ruled out by making use 
of special features of the equations.   ere is an example. 

Corollary 7 S1~ppose the assumptions of Theorem 6 hold and that r,(O, p )  = 0 for aii 
p E Rp(2). If ((1) rznd -&(-I) are nonzero and have opposite signs, then the 
bifurcating continuum C(2) in Theorem 6 connects to the boundary a(R X aP(2 j j. In 
particular, if flJ2) = P(2) the continuum C(2) is unbounded in R X P(2). 

Proof. If the continuum connects both points (A, p) = (-1/i(-I), 0) and (1/&1), 0) 
then there would exist a nontrivial 2-cycle solution p of equation (6) for the 
intermediate value A = 0, However, rp(O, p) = 0 and equation (6) with A = 0 impiy 
p = 0, a contradiction. 

A similar approach to that above can be iaken to obttaiii a bif~rcating continuum 
of 1-cycles jeqriilibria) of eqution (6). A 1-cycle p(t) = c solves equation (6) if and 
only if c satisfies the equation c = ~ k ( l ) c  + rJA, cj. This equation has the (12) 
with Ec = L(l)c and h(X, c) = rJX, c) ,  tz  hi& the Rahinnwit7 results apply (Since 
L has only one eigenvalue in this case, the second alternative is ruled out.) We 
obiaiii :he fd!a:ving here rn .  0 

Theorem 8 Assume that r and g satisfy AS with n = 1 and that k satisfies A2. Assume 
further that i(1) # 0. There exists a continuum C(1) of pairs (A,p) E R x P(l )  where 
p is a nontrivial equilibrium solution of the limit equation (6). The continuum C(1) 
bifurcates from p = 0 at A = 1/k(1) and connects to d(R X flp(l)). In particular, if 
a,(l) = P(l)  then C(l) is unbounded in R X P(1) .  

The critical bifurcation values A = -1/k(-1) and A = 1li;ji) are those vaiuzs ai 
which the linearized limit equation (13) has nontrivial 1-cycle (equilibrium) or 
2-cycle solutions respectively. 

4. CYCLES AND ASYMPTOTIC CYCLES 

We return now to the nonlinear, discrete renewal equation (2). In this section we 
consider the existence of both periodic and asymptotically periodic solutions of this 
equation. 

A solution x = p + z E A(n) of equation (2) is n-periodic if and only if z = 0. By 
Theorem 3 z = 0 will then solve the equations in (9, which happens if and only if 
the forcing function and the initial condition are given by 

By Theorem 3, p E P(n) must solve the limit equation (4). One such ~wiuiioii is of 
course p = 0, in which case g = 0, x, 0 and hence x = 0. On the other hand, if 
0 Z p E P(n) is a nontrivial periodic solution of the limit equation (4), then it will 
also be a solution of the renewal equation (2) if the forcing function and the initial 
condition are chosen by the formulas (14). We arrive at the following basic result. 
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128 J.M. CUSHING 

Theorem 9 A periodic sequence x = p E P(n), p # 0, solves the nonlinear renewal 
equation (2) if and only i fp  solves the limit equation (4)  and the forcing function and 
the initial condition are given by (14).  
TL:- .L ---A- - - l - L - -  l m a  LIIGUIGIII  I G I ~ L C S  iiie ertisierice ol' noniriviai n-periodic soiuiions o i  a 

nonlinear renewal equation to that of its limit equation. In the preceding section we 
considered the existence of nontrivial periodic solutions of limit equations as a 
bifurcation phenomenon, for the cases n = 2 and n = 1. Theorem 6,  together with 
I-L n -L 
IIIGUIGIII  Y ~ ~ U U V C ; ,  gives a bifurcation-iike resuit for nontriviai 2-cycies of the 
renewal equation (1). 

Theorem 10 Assume that r and g satisfy A5 with n = 2 and that k satisfies A2. 
Assume also that & - I )  # 0 and & I )  # - & - I ) .  Then there exists a continuum of 
(A, p, g ,  xu) E R X flp(2) X Z X f! where x(t) = p( t )  is u" nonirivial2-cycle solution 
o f  the discrete renewal equation ( 1 )  with pururneter valzte A. with forczng function 
given by 

and wirh initial condifion 

This continuum bifurcates from the ( A ,  p, g, x0) = ( - I / & - l ) ,  0, 0,  0). It exists 
 glob^!!:, I,? the sense thg? ?he pairs (A, p )  tskel: fism the continuum connec: ci:he; :o 
the boundary a ( R  X f l  (2 ) )  or to the point (A, p )  = (1/&1) ,  0 )  (if k(1)  Z 0). 

With regard to the aaernative in the last sentence of this theorem, Corollary 7 
implies that the continuum connects to the boundary d (R X flp(2)) if rJ0. p )  = 0 
for all p E ap(2)  and if k(1) and -k(-1) are nonzero and have opposite signs. 

Theorem 8, together with Theorem 9 above, gives a bifurcation-like result for 
nontrivial equilibria of the renewal equation (1). 

Theorem 11 Assume that r and g satisfy A5 with n = 1 and that k satisfies A2. 
Assume also that k(1) # 0. Then there exists a continuum of (A, p, g, x,) E R X fl,(l) 
x Z X R where x(t) = p is a nontrivial equilibrium solution of the discrete renewal 
equation (1) with parameter value A, with forcing function given by (15),  and with 
initial condition given by (16). This continuum bifurcates from the (A, p, g, x,) = (11 
& ( I ) ,  0, 0, 0). It exists globally in the sense that the pairs (A, p) taken from the 
continuum connect to I ~ P  boundary 3 jR x % ( I ) ) .  

Periodic solutions are, of course, asymptotically periodic. There can also exist 
other asymptotically periodic solutions of equation (2)  for appropriate forcing 
fidndions coii&~ioiis. Tvve describe below a resii]i characierizes 
set of forcing functions and initial conditions (g, x,) lying in a Z X R neighborhood 
of the periodic cycle produced by the forcing function and initial condition (14). 
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DISCRETE RENEWAL EQUATIONS 129 

Let F denote the set of pairs (f, yo) E Z x R for which the linear renewal equation 

has a solution in y E 2. The set F contains at least the pair (0. 0) and is easily seen 
to be a linear subspace of Z X R. The solution operator S defined by Swy,) = y is 
continuous (bounded) as a linear operator mapping F to 2. 

Given a p E P(n), define the operator G(p): F -, Z X R by 

Theorem 12 Assume k satisfies A2 and that r satisfies A3-A4. Then x = p + z e A(n j 
is an asympfctically n-periodic mlrttinn o f t h ~  nonlinear renewal equation (2) if and 
only if the pair (g,xo) lies in the range of the operator G(p)  where 

p E P(n)  solves the limit equation (6) 

and 

Proof. Suppose x = p t z E A(n) is an asymptotically n-periodic solution of the 
nonlinear renewal equation (2). By the decomposition Theorem 3 we know that p 
E P(n) solves the limit equation (4) and that z E Z solves the (5). If we define Cf,yo) 
E Z X R by the expressions 

then it follows that y = z solves the linear equation (17). Thus z = S(f, yo). It follows 
that 

or in other words that (g, x,) = G(p)Cf, yo). 
Conversely, suppose p E P(n) solves the limit equation (4) and z = SCf, yo) where 

(g, x,) = G(p)Cf, yo). Then by the definition of the solution operator S, z solves the 
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130 J.M. CUSHING 

linear equation (17) with forcing function f and initial condition that satisfy (18). 
When (18) is substituted into (17) we find that z solves equation (5). The 
decomposition Theorem 3 implies that x = p + z solves the nonlinear renewal 
equation (2) 0 .  

This theorem shows that the set of pairs (g, x,) for which the nonlinear renewal 
equation (2) has a solution asymptotic to a given n-periodic solution p of the limit 
equation (4) is identical to the range of the operator G(p): F + Z X R. The next 
theorem gives conditions under which the operator G@) is a homeomorphism in a 
neighborhood of the point Cf,y,) = (0, 0) E Z x R, i.e, under which av, ,,,,G(O) is 
invertible. The proof is omitted since it is virtually identical to the proof of 
Corollary 4.3 in [4] (using z-transforms [9] in place of Laplace transforms). 

Recall that k(z) denotes the z-transform of the kernel sequence ku). We need the 
following assumption. 

i ( z )  has no roots on the unit circle lzl = 1 and a finite 
number v of roots z, satisfying 121 > 1. Each root z, 
has finite (algebraic) multiplicity m, > 0 

Define the expression 

As in [4] it can be proved from the assumption 

k ( z )  is the z-transform of a sequence k - 0 )  
satisfying I I  k-ll , = z;=̂ , Ik-(j)l < + x  

that the solution operator S is continuous (bounded) on F and that the following 
theorem holds. 

Theorem 13 Assume k satisfies A2, A6, and A7. Assume that r satisfies A3-A4 
and r, = r,(x): n (n)  + Z is continuously Frechet differentiable in x and d,r,(O) = 0. 
Then for each sujjiciently small solution p E P(n) of the limit equation (4) the 
operator G is a homeomorphism from a neighborhood of Cf, yo) = (0, 0) E F to a 
neighborhoodofG(p)(O, 0) = (xy=;=,+, k(j)p(t - j) - r(p).p(~)) E Z X R. 

This theorem shows that the "size" of the set of forcing functions and initial 
conditions (g, x,) that give rise to asymptotically n-periodic solutions of the 
nonlinear renewal equation (2) is, locally near the n-periodic sdutic:: prcducing 
pair (g, x,) given by (14), the same as that linear subspace Z for the associated linear 
renewal equation (17). The theorem only applies for n-periodic solutions p of 
sufficiently small norm Ipl,. It applies, however, to those 2-periodic and equilibrium 
solutions lying on the bifurcating continua of Theorems 6 and 8 lying near the 
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DISCRETE RENEWAL EQUATIONS 131 

bifurcation point. Thus, there will actually be a bifurcating family of asymptotically 
periodic solutions in the case of these two theorems. Note that if the limit equation 
( 6 )  is atnr?nmnus in the sense that integer translates of solutions are solutions then 
Theorem 13 can be applied to each translate to obtain a bifurcating family of 
asymptotically periodic solutions. 

5 AN APPLICATION 

We consider an application to a discrete renewal equation that serves as a model for 
the dynamics of a biological population. Suppose the population is divided into age 
classes of equal (unit) length. Let b( t )  r 0 denote the birth rate per unit time, i.e. 
the number of individuals Goiii (aiid smviving to the next census) per unit time into 
the ymngest age r!as If mci) 2 0 is the number of offspring of an individual of age 
j, ?rV) E [0, is the probability that a newborn reaches age j, and s E [O, 11 is the 
probability that a newborn survives to the first census, then snzu)n(j')b(t - j )  is the 
nnmber of newborn contributed by aii indiviciuais of age j during the time interval 
( t ,  t  + 11 that survive to be counted at time t + 1. Thus. if bJr)  denotes the number 
oi newborns produced ~y rhe iniiiiil piipiiidtii;~, .:;s hacc 

This is a linear discrete renewal equation. (This equation can also be derived from 
the well known Leslie matrix model for age-structured populations). Fertility and 
survival rates are not, in general, independent of population size, however. If a vital 
statistic such as m u )  or depends on popdation densitv J --- in - - - - - -  w m e  way then the 
equation becomes nonlinear. 

We will consider, in our appiicarion, one special case called the "Easterlir, 
hypothesis", namely that the fertility of an individual depends on the density of its 
own age class. This assumption means mQ) is a function of b(t - j) and since the 
usual assumption is that density effects are deleterious mu)  should be taken as a 
decreasing function of b(t - j ) .  Thus, we consider 

where f: R -+ R is a nonnegative, twice continuously differentiable, decreasing 
function of its argument on a neighborhood of the origin. Here PO') 2 0 is the 
"inherent" age specific fertility rate (i.e. the fertility rate at low densities) which we 
normalize by writing 

The constant P > 0 is the "inherent net reproductive value", i.e. the expected 
number of offspring per individual per life time [ S ] .  

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
A
r
i
z
o
n
a
]
 
A
t
:
 
2
3
:
0
5
 
9
 
F
e
b
r
u
a
r
y
 
2
0
0
9



132 J.M. CUSHING 

It is a natural assun~ption that b,,,(t) r 0 has compact support. In any case, we 
assume that 

lim h,,,(tj = 0. 
t . ' *  

With these assunlptions our model equations become 

h(t + 1) = b,,(t) + p C +(j)f(b(t - j)) b(r - j), t = 0, 1, 2 ,... 
1=0 

aiiu 

r&r j(tj = -A C (b(jj (i - f (x(t - ;jj) .tit - jj. 
] = i l  

5.1 Equilibria 

We begin by looking for equilibrium solutions. Clearly (21) has the "trivial" 
equilibrium b(t) = 0 for forcing function and initial condition given by (b,,(t), b,,) 
= (G,Gj. To find a ;ifmcatiiig coiiiiiiiiiiiii "f iioilii-j"iai (p"s,i,"ej -we 
utilize Theorem 11. 

Under the assumptions (1 Y) and (20) the assumptions A1 and A2 hold. It is easy 
to see that on a neighborhood of the origin in A(n)  the higher order term r satisfies 
A3 (uniformly on compact A = P intervals). For the periodic part of r we have 

an operator that is easily seen to satisfy A4. Also we have 
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DISCRETE RENEWAL EQUATIONS 

That r,(h,  x ) ( t )  E Z follows from 

and the following lemma. That rz is also continuous (bounded) on a neighborhood 
of the origin in A(n j  (uniformiy on compact X = 8 ii;:crvals) is easy to see. 

1 

Lemma 14 If k 6 )  satisfies A2 and z f  z E Z ,  then k( j )z ( t  - j )  E Z 
1=0 

Proof. Given an arbitrary E > 0 let T = T ( E )  L 1 be an integer so large that r 2 T ( E )  
implies 

For i 2 T(t) we have from 

the inequalities 

which in turn imply 

Since E > 0 is arbitrary, it follows that lim,,,, XI=,, kG)z(t - I )  = 0 . 0  
We have verified that r satisfies assumptions A3 (uniformly on compact X = P 

intervals). To show that r satisfies the required assumption A5 we have only left to 
show that r satisfies A4. For any real h = /3 it follows from the definition (22) of r,., 
that ( 3 )  holds and therefore, A4 follows by Lemma 2. 

Note that by the normalization (19) 

We can now apply Theorem 1 1  to the model equation (21) to obtain a continuum 
of (p, b(t ) ,  b, ,( t) ,  b,,) E R X C ( 1 )  X Z X R that bifurcates from (1,0,0,O) such that 
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h(t)  is a nontrivial equilibrium solution of (21) with forcing function b,,(t), initial 
condition b,, and inherent net reproductive value P. Since r is globally defined, 
aJ1) = F(1)  and the components ( P i  h ( t ) )  from the continuum connect to cc in R 
x C'(1). 

Note that the bifurcation occurs at the critical value P = llk(1) = 1 where each 
indi~vidual is expected tc! ttxxtly rep!ace itself during its life time. 

We know from the theory in Sec. 4 that the nontrivial equilibria b(t)  = b, # 0 
from the bifurcating continuum are solutions of the limit equation 

Therefore, in this example, an aigebraic equation for the nontriviai equiiibria is 
obtainabie, namely 

Thus, h ,  = f ' ( I !@)  for g > I .  It follows from (21) that h,,,(t) = 1 - XI,, d(i). The 
bifurcat--- L V I I L ~ I I u u I I I  ---+ .-....- L ( I )  C / I  in this example can be exp!ici:!y given by the formulas 

To illustrate the use of Theorem l G  we consider a special case of the model equation 
(21) in which the nonlinearity f in the fertility rate has the Ricker form 

In this case the bifurcating continuum C(1) of equilibria (23) is 

If equation (21) is "centered" on these equilibria by defining 

one obtains the equation of the renewal form (1) with 
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DISCRETE RENEWAL EQUATIONS 

It is straightforward to show that A5 is satisfied. Theorem 10 implies the existence 
of a bifurcating continuum of nontrivial Zcycles provided the fertility kernel 
satisfies the conditions 

hold. The critical bifurcation value A = -I/&-1) corresponds to the critical 
inherent net reproductive value given by 

As an example, consider the case when fertility is a geometrically decreasing 
function of age, that is to say when +(j) is proportional to d for some constant a 
satisfying 0 < a < 1. The normalization (19) then specifies 

The z-transform h(z) = (1 - a)z(z - a)-' yields h(-1) = (1 - a)(l + a)-' > 0 and 
the required conditions (24) hold. The critical bifurcation value in this case is 

As a second example, consider a case of delayed fertility due to a maturation 
period, after which fertility is again a geometrically decreasing function of age, as 
described by the fertility kernel 

0 for j = 0, 1, ..., m - 1 
""'I = {(I - forj = m,  m + I, ... 

Here the integer m r 1 is the maturation age. This fertility kernel satisfies the 
normalization (19). Moreover, the z-transform is h,(z) = (I - ajzl-"(z - a)-' arid 
hence &,(-I) = (-1)'"(1 - a)(l + a)-', which is easily seen to satisfy the 
conditions (24) for all integers m r 1. The critical bifurcation value of A = 1 - In 
p in this case is determined by 
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136 J.M. CUSHING 

This gives the critical inherent net reproductive value of 

2 
Po = exp (-) whenrn = 2,4, 6 ,... 

1 - a  

For m = i. 3, 5.. . . no 2-cycle bifurcation occurs in this case. 
sincefis g:oballj: d f.---l +I. 

L'F. . . . - -+;--  ---+;-..,,- -f 7 -., 2 IULU ULC v i ~ u ~ c a r i ~ l ~  cullruluulli UL i - c r ~ l e ~  C O ~ K I ~ C ~ S  to ( k .  
is unbounded) in R x P(2). Thus, either the set of parameter values P (the 
"spectrum") or set of 2-cycles (or more specifically the norms of the 2-cycles) from 
the bifurcating continuum must be unbounded (or both). It follows directly from 
the model equation (21) that if the spectrum P values bounded then so is the set of 
2-cycle norms. This contradiction implies that in fact the spectrum must be an 
unbounded interval. Moreover, it cannot contain the point P = 0 for this would 
imply there exists a nontrivial 2-cycle solution of (21) when P = 0, which is clearly 
impossible. Thus, the spectrum is an interval containing the bifurcation point PC, > 
j which is iinbofixided above. In partici;lr;r. it fo!lows that 2-cycle solutiofis exist at 
least for all p > PC-, 

We have seen in these examples 2 c m x w r  xe11arin i11 p ~ d z t i m  models, 
namely a primary bifurcation of nontrivial equilibria (from the extinction state 
represented by the trivial equilibrium! ai a c i i i i d  vahie of the iiiherent net 
reproductive value P equal to 1 followed (possibly,) by a secondary bifurcation to a 
nontrivial 2-cycle at a larger critical value of P [I], [2], [3]. 

6. CONCLUDING REMARKS 

In the paper we have dealt with the existence of n-periodic and asymptotically 
periodic soiutions of the discrete renewai equation j i  j. 'Ne did by wing ' i i f i i~afo i i  
theory techniques and relating equation (1) to its limit equation (6). The main 
bifurcation results, Theorems 10 and 11, are for the case of n = 2 (2-cycle) and n 
= 1 (equilibria) only. If the linearized limit equation (13) has a nontrivial n-cycle for 
some integer n r 3 it remains an open question as to the nature of the resulting 
bifurcation for the nonlinear renewal equation (1). Most likely there will bifurcate 
a continuum of aperiodic solutions (lying on an "invariant" loop in a suitable phase 
space) and asymptotically aperiodic solutions as is known to occur for maps in 
general [ l l ] .  

In this paper we did not study any stability properties of the bifurcating cycles. 
Locally, near the bifurcation point, a natural conjecture is that stability is related to 
the direction of bifurcation, but this remains an open question. 
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