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A general class of discrete, nonlinear renewal equations containing a real parameter is
studied. Bifurcation theory methods are used to prove the existence of nontrivial periodic
solutions and asymptotically periodic solutions. Fundamental to the approach is the “limit
equation” whose periodic solutions are shown to be asymptotic limits of solutions of the
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in which the bifurcation of nontrivial equilibria and 2-cycles is shown to occur with increasing
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1. INTRODUCTION

The linear difference equation

x(t+ 1) =g@t) + 2o k(G)x(t —j), t=0,1.2,...
x(0) = x;

is a discrete analog of the famous renewal integral equation [6], [7], [8]. It arises in,
for example, the study of population dynamics where the asymptotic behavior of
solutions are of interest (see the application in Sec. 5 below). For linear equations
the asymptotic dynamics can be studied by the z-transform [9]- However, in many
applications the equation is nonlinear and the asymptotic dynamics become more
difficult to ascertain. In this paper we study the existence of periodic solutions
(including equilibria) of a general class of nonlinear discrete renewal equations.
Our approach will utilize bifurcation theory and will consider the existence of
periodic solutions as a function of a real parameter appearing in the equation.
Specifically, we consider the equation

x(t+1)=gN)() + )\Z]'-zo k(jx(t — j) + (7 x) (@), 1=0,1,2...
x(0) = x, (1)
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Here r(\, x) is nonlinear and of order higher than x near x = 0. The “kernel
sequence” Ak(j), the “forcing function” g(A)(r) and the nonlinear term r(\, x)
depend on a real parameter A. For initial condition x, = 0 and forcing function g =
0 this equation has a trivial periodic solution, namely x = 0. We wili use bifurcation
theory techniques to obtain nontrivial periodic and asymptotically periodic solu-
tions for certain values of A.

A nonlinear equation with a known solution can be transformed by a simple
change of dependent variabie into one of the form (1) in which the known solution
corresponds to the trivial solution x = 0. In this way our results can be applied to
obtain the bifurcation of periodic solutions from other known periodic solutions
(e.g. equilibria). An example occurs in the application given in Sec. 5.

In Sec. 2 it is established that the problem of asymptotically periodic solutions for
rencwal equations can be decomposed, by direct sum means, into twe problems:
that of periodic solutions of a “limit equation” and of asymptotically 0 solutions of
a decoupled equation (Theorem 3). In Sec. 3 both linear and nonlinear limit
equations are studied and a bifurcation theorems for 1-periodic and 2-periodic
solutions are obtained (Theorems 8 and 6). Bifurcation theorems for i-periodic and
2-periodic solutions of (1) are given in Sec. 4 (Theorems 11 and 10). The bifurcation
of asymptotic 1-periodic and 2-periodic solutions is also considered i Sec. 4. In Sec.
5 an application to age-structured population dynamics is given in which a primary
bifurcation of nontrivial equilibria and a secondary bifurcation of nontrivial
2-cycles is proved as the inherent net reproductive value of the population is
increased through critical values.

2. A DIRECT SUM DECOMPOSITION

In this section we prove a decomposition theorem for asymptotically periodic
solutions of nonlinear renewal equations of the form

x(t+ 1) = g(0) + 5 _ o k()x(t = j) + r(0)(®),  1=0,1,2,..
x(0) = x, )

We have temporarily suppressed the presence of the parameter \. We begin with
some preliminary definitions and lemmas.

Let P(n) denote the linear space of real sequences p = {p(1)},=" .. of period n =
1 (n-cycles) and let Z denote the linear space of real sequences z = {z(1)},~; that
converge to 0 as 1t — +=. These spaces are Banach spaces under the supremum
norm |i:1l,. The direct sum A(n) = P(n) @ Z will be referred to as the space of
asympiotic n-cycles. Each sequence x € A(n) can be written as x = p + z where p
€ P(n) is an n-cycle and 7 € Z is a sequence converging to 0. A(n) is a Banach space
under the norm iixil =lipliy + 1zl

We will look for solutions x = p + z of (2) in A(n) under the assumption that

Al:geZ
We will do this by decomposing (2) into equations for p and z. To obtain equations

for p € P(n) and 7z € Z we substitute x = p + z into (2) and equate from both sides
the periodic terms and the terms asymptotic to 0. In order to carry out this
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procedure we need to determine the P(n) and Z projections of the terms on the
right hand side of equation (2). The following lemma does this for the linear term.

Lemma 1 Assume the kernel sequence k = {k(j)}/-“:‘O satisfies

AZ: O < |lkf, = 25 k()] < +e=.
Then for p € P(n) and z € Z
S N G
(@) { -0 k(G)p(s = ])}r:_m € P(n)
j +x . . ] + o
) {2,:z+1 k(p(r — 1)}t=0 eZ

r B I
(c) {2}4 k(j)z(t — j>}f=0 eZ

Proof. The two series defining the sequences in (a) and (b) are absolutely
convergent, both being bounded by the product ||, [[pllo. That the sequence in (a)
is n-periodic is obvious. The inequality

|2 k@p = | =Pl 2 [KG)

and assumption A2 show that the sequence in (b) tends to 0 as t — +2, i.e. belongs

to Z.
In order to show (c), let € > 0 be arbitrary. Since z € Z there exists an integer T

= T(e) > 0 such that

€
1= T(e) = |z2(n)] = T
1

For t = T(e) we have
[Zj-0 k()zte = Pl = |20 k(e = ()]
=[SO k(e = )G + S k(e = j)z0)

i

€ )
=zl Z;T:(E\H k(t = D+ 7 Do k(= 1)

1nr 1
Hkt
Il 11

=l Sr-riee1 | KO | + W S1_E k()|

= ||Z||0 jj:-T(e)H k()| + €.
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This implies that
O=limsup, .. |2 k(z(t — ) s e

and, since € > 0 is arbitrary, that

lim X k(j)z(r —j) = 0.

—>+x /'T()

This proves (¢). ¢
From Lemma 1 we obtain a direct sum decomposition of the linear term on the
right hand side of equation (2) as follows

! * x t

2 k(Dx(t - =2 k(plt =+ | - X kG)plt - j) + Z k(e — j) }

i=0 i=0 =l =0
\ /

In order to obtain the direct sum decomposition of the entire right hand side of

equation (2) we need to make some assumptions about the operator r. Let {}(n) be

an open neighborhood of the origin in A(n) = P(n) © Z. Assume that

1
n
t

) { r: {{(n) — A(n) is a continuous operator
" |and satisfies || r(x) || = o (|| x || ) near x = 0.
Thus, r(x) is a sequence in A(n) and r(x)(r) is the " term, i.e.
r(x) = {r(x)(®)},Z- Under assumption A3, for each x € A(n) we can write r(x) =
r,(x) + r.(x) where r,(x) € P(n) and r_(x) e Z. The projections II,: A(n) — P(n) and
. A(n) — Z defined by I1, x = p and I, x = z are linear and bounded. Since r,,(x)
= II, r(x) and r(x) = II, r(x) we have that

r,: Qn) — P(n) is continuous with |7, (x)[l, = o (Jx)) near x = o
r.: Q)n) — Z is continuous with |[r.(x)]y = o (|x|) near x = 0
Finally, we also assume
Ad:x=p+zeQn)=r(x) — r(p)eZ.

Lemma 2 Assume A3 holds. Then A4 holds if and only if

o~
93]
~—

rp(x) = r,(p) for aii x = p + z e {k{n).
Proof. Assume (3) holds and choose any x € {}(n). Then

r(x) = ry(x) + r(x)
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= ry(p) + r.(x).

r(x) = 1(p) = r,(p) + rx) = (ry(p) + 1.(p))

= 1.3) ~ 7:(p)

we see that r(x) — r(p) € Z. Hence A4 holds.
Conversely, suppose that A4 holds. For any x € {}(n) we have

rix) — rip) = rp(x) +r.(x) — (rp(p) + rp)) € Z

This implies that
rx) = rpleZ

and hence that r,(x) — r,(p) = 0. ©

Suppose that x = p + z € (){n) solves the nonlinear discrete renewal equation (2).
From the assumptions and lemmas above we see that p € P(n) must be an n-periodic
solution of the equation

p(t+ 1) = X k()p(t — j) + r(p)(@), 1 = 0, 1, £2,... )

=0

and z € Z must be a solution of the equations

2+ ) ={s0) = Sin kOU- )+ o+ DO}

+ > k()2 —j),1=0,1,2,
z(0) = xo — p(0) (5)

By adding the equations (4) and (5) the converse is easily seen to be true. This
proves the main theorem of this section.

Theorem 3 Under the assumptions AI~A4, x = p + z € {U(n) is an asymptotic
n-cycle solution of the nonlinear renewal equation (2} if and only if p € P(n) is an
n-periodic solution of the “limit equation” (4) and z € Z is a solution of equations
(5).

Notice that the limit equation (4) for p is decoupled from the equation (5) for z
and can therefore be treated as an independent equation to be solved for an n-cycle
p. This is a direct result of A4 and Lemma 2. Of course, p = 0 is a solution of (4).
However, if p = 0, then equation (5) reduces to the original renewal equation (2)
for a solution x = z that tend to 0 as 1 — +o°. While our results below apply to this
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case, we are more interested in the case when the limit equation (4) has nontrivial
n-cycles p € P(n), p # 0, (including the case of nontrivial 1-cycles or equilibria).

We can apply Theorem 3 to the nonlinear renewal equation (1) with parameter
A € R by replacing the kernel sequence k(i) by Ak{i), the forcing function g(i) by
g(A\)(1), and the higher order term r(x)(¢) by r(A,x)(z). We obtain the result that the
problem of finding asymptotically periodic solutions of the nonlinear renewal
equation (1) is equivalent to finding periodic solutions p € P(n) of the associated
limit equation

p(t+1) =X Z k()p(t = j) + 1, p)(@), 1 =0, %1, %2, (6)

j=0

~~
(=]
S
—
~J
AT e

Here it is assumed that

r = r(\, x): R X {}(n) - A(n) satisfies A3—Ad for each A € R,
AS: j uniformly in N\ on compact subintervals of R and g = g(A\): R — A(n)
satisfies A1l for each A € R.

3. CYCLES OF THE LIMIT EQUATION

In this section we consider the existence of nontrivial n-cycle solutions in P(rn) of
the limit equation (6). We begin with a general theory for linear limit equations.
The kernel sequence k is assumed to satisfy A2 throughout.

3.1 Linear Limit Equations

The Banach space P(n) of n-cycles is finite dimensional and a complex basis is given
by the sequences {p, }," . where the p,,, for j = 0,1,...,n — 1, are the n™ roots of
unity. The n sequences {p;,}; _.. are mutually orthogonal with respect to the inner
product (p,q) = 27} p(1)g*(1). To see this we note that

n—1

<p;'n’ pgn) = 2 [exp (27”(] - s)/n)]l
=0

If j # s, then the n™ root of unity £ = exp (2mi(j — s)/n) # 1 satisfies the equation
y P )

n—1
0=¢-1=¢-1| X & | =E—1) PP

=0
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and hence (pj,.. pl, ) = 0.On the other hand, (p;,., pj,) = n. Any sequence p € P(n) can
be written ‘ '

p(t) = 2?;(} Csp.’m

1 1
= pUp, ®)

Consider first the homogeneous linear equation

LdNenfe N\
KIp\i — j)

o~
k=]
~—

pli+1)=

{

I
7

i

Substltutlng (8) into this equation we see that there is a nontrivial n-cycle solution
if and only if the coefficients ¢, are not all equal to zerc and satisfy the equation
Nyt vl N = N N —
24520 CsPsn — 24;:(! k(J') ZJSTU Csp\'n/
or

D el Pl = Do fes D50 k(G)Pl} P

This is equivalent to

CsPsn = € 24; 0 k(’)psn

or

Cs (p,\'n - le(pm)) - O»S = 07 17'-') n—1
where
k(z) =2 k()z”/
j=0
is the z-transform of the kernel sequence k. From this follows the next lemma.

Lemma 4 Assume k(1) satisfies A2. The homogeneous equation (9) has a nontrivial
periodic cycle solution if and only if the “characteristic equation”

—k(z) =0

has a root 7 = exp(ib) on the unit complex circle for which 8/2w is equal to a rational
number. Specifically, if 62w = m/n and m, n are to lowest terms then (9) has a
nontrivial n-cycle.
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Consider now the nonhomogeneous linear equation

p(t+1)=h() + 2 k()p(t — j) (10)

j=0

where the “forcing sequence” h = {h(1)},”° . is n-periodic, i.e. h € P(n). A substitu-
tion of (8) into this equation results in the equations

¢s (Pn — k(pe)) = s =0,1,...,n— 1

for the coefficients ¢, where the A, are the coefficients associated with the forcing
sequence A, i.e.

n—1

h(1) = 2 hypi,.

-0
S=u

Define the set

Sy = 15| P = klp,) = 0}.
The Fredholm-type alternative in the next lemma follows immediately.

Lemma 5 Assume k(t) satisfies A2 and h € P(n). Write

n—1

h(t) = Z kg,

s=0

(a) If the homogeneous equations (9) has no nontrivial n-cycle solutions, then the
nonhomogeneous equation (10) has a unique n-cycle solution

nil h
0= (——i ) \
P s=0 Psn — k(psn) P

(b) Suppose the homogeneous equations (9} has nontrivial n-cycle solutions. Then
the nonhomogeneous equation (10) has n-cycle solutions if and only if the forcing
sequence h is orthogonal to all of the nontrivial n-cycle solutions of (9). For such h
the nonhomogeneous equation (10) has infinitely many n-cycle solutions given by

5,

Ch
p(t) = ESES,, C:pin + EJ'ES,l ( SA ) p;n
Psn — k(psn)

¢, arbitrary for all s € S,
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only one of which

h, ’
p =2 (———) Pon
SES, \pm - k(pxn)/

.-?‘
..S'
3
3
>

i coiis socveloc
is orihogonal io the nonirivial homogeneous n-cycles of the

(9). ’

sHONUC PAUANNN
cnenlt equaiion

3.2 Nonlinear Limit Equations

We will restrict our attention to n = 2 and n = 1 cycles. Assume that r = r(\, x) :
R X {{n) - A(n) and g= g()\‘) satisfy AS. We are iiiterested in the cxistence of
nontrivial perlodlc solutions of the nonlinear limit equation (6). Here the higher
order term 7, = rp()\, x) 1 R X }(n) — P(n) is continuous and satisfies Ir,(X, p)l, =
o(iply) near p = 0 uniformly on compact \ intervals. By L "rma 3 we nced only
consider r, restricted to an open neighborhood Q,,(n) ot p = 0 in P(n). Specifically,

set

& (n) = {pePn) L(p. 0) e Q).

First of all, to find 2-cycle solutions p € P(2) of equation (6) we substitute

p(t) = c; + cp( - 1)
into the equation, equate coefficients of the independent cycles {1} and {(—1)'}, and
thereby obtain a system of two nonlinear algebraic equations
¢, = ML)y + b\, ¢, )
—c, = MN(—1)c, + hy(A, ¢, ) (11)

for the real coefficients

¢; = (M), ¢; = 6 (M).

Here h, and h, are the coefficients of the 2-cycle r,(\, p), i.e. h; and h, are defined
by

r,(\ ¢

P

+o(=1)) = hy(h o ) + Iy oy, 0)(=1)

1
1

The equations (11) can be written in the form

c=ALe + h(), ¢ (12)
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/‘A(l) 0 \
L:\ 0 w12(1)}
( Vo)

| e, 1€
h(\, ¢) = \—ﬁz(x, él,éz))’c N \C;) '

A fundamental tenet of bifurcation theory is that nonzero solutions of equation

(12) can bifurcate from ¢ = 0 only at the eigenvalues of the linearized equation (this
follows essentially from the implicit function theorem), which in this case are the
two real numbers A = 1/k(1) and —1/k(—1). The associated eigenvectors are the

standard ham vectors e; and e, respectively. Since we are interested in the
bifurcation of 2-cycles ( and hence a nonzero component ¢,) we are interesied in the

second of these two eigenvalues.
If we assume that 12(1) # /:( —1), then for A = —1//’2( 1) the linear operator L
has a geometrically simple characteristic value of —1. This implies that for this value

of A the lmeanzed hmlt equation

pr+1) =N 2 k()p(r = j) (13)

j=0

has one independent nontrivial 2-cycle solution. These facts, together with [h(X, ¢)|
= o(l¢|), imply that a bifurcation result of Rabinowitz ([10], Corollary 1.12) is
applicable to the equations (11). This theorem implies the existence of a continuum
of nontrivial solutions (X, ¢) € R X R? of (11) that bifurcates from (A, ¢) = (—1/

IE(—l), 0) and connects either to the boundary of the domain of h(A, ¢) or to the

other bifurcation point (A, ¢) = (1/k(1), 0). Locally the continuum is tangential to
the eigenvector e, and hence consists of 2-cycles that are not l-cycles. We
summarize these results in the following theorem.

Theorem 6 Assume that r and g satisfy A5 with n = 2 and that k satisfies A2. Assume

further that k(—1) # 0 and k(1) # —k(—1). There exists a continuum C(2) of pairs
(N, p) € R X P(2) where p is a nontrivial 2-cycle solution of the limit equation (6). The

continuum C(2) bifurcates fromp = 0 at A = —1k(—1) and connects either to the

boundary a(R X 1,(2)) or to the point (\, p) = (1/k(1), 0) (if k(1) # 0).
If Q (2) is unbounded then the boundary a(R X Q) (2)) contains the point at .

< rage i maccihia that tha hifiircnting onn f ...... m I “cannacic ta oo™

l uuo lll Lllib Lady, ll 1D PUbblUlC tiiat tne UlLul\«auus CULIUITUUILL UL ) LCULLIICULWL U

i.e. is unbounded in R X £,(2). In particular, this is true if P(2) = Q,(2),ie.1, 1s

globally defined on P(2), and k(1) = 0.
While in a neighborhood of the bifurcation point the continuum C(2) consists of
2-cycles that are not 1-cycles (equilibria), the entire continuum might not consist of
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such 2-cycles. This, for example, would not be the case when the second alternative
(that the continuum connects to the point (A, p) = (1/k(1), 0)). Often in applications
the second aiternative for the bifurcating continuum can be ruled out by making use
of special features of the equations. Here is an example.

Corollary 7 Suppose the assumptions of Theorem 6 hold and that r,(0, p) = O for ali
pe Q2 If k(1) and —k(—1) are nonzero and have opposite szgns then the
bifurcating continuum C(2) in Theorem 6 connects to the boundary 3(R X ,(2)). In
particular, if Q,(2) = P(2) the continuum C(2) is unbounded in R X P(2).

Proof. If the continuum connects both points (A, p) = (—1/k(—1), 0) and (1/k(1), 0)

then there would exist a nontrivial 2-cycle solution p of equation (6) for the

mtermedxate value A = 0. However, (0, p) = 0 and equation (6) with A = 0 impiy
= (), a contradiction.

A similar approach to that above can be taken to obtain a bifurcating continuum
of 1-cycles {equilibria) of equation (6). A 1-cycle p(f) = c solves equation (6) if and
only if ¢ satisfies the equation ¢ = Nk(1)c + r r,(X, ¢). This equation has the form (12)
with Lc = £(1)c and h(A, o) = A\, ) to ‘thh the Rabinowitz results apply. (Since

L has only one elgenvalue in ‘this case, the second alternative is ruled out.) We
obtain the following theorem. O

ing theorem.
Theorem 8 Assume that r and g satisfy A5 with n = 1 and that k satisfies A2. Assume
further that 12(1) # 0. There exists a continuum C(1) of pairs (A\,p) € R X P(1) where
p is a nontrivial equilibrium solution of the limit equation (6). The continuum C(1)
bifurcates from p = 0 at \ = 1/k(1) and connects 1o o(R X Q,(1)). In particular, if
Q,(1) = P(1) then C(1) is unbounded in R X P(1).

"The critical bifurcation values A = —1/k(~1) and X = 1/k(1) are those values at
which the linearized limit equation (13) has nontrivial 1-cycle (equilibrium) or
2-cycle solutions respectively.

4. CYCLES AND ASYMPTOTIC CYCLES

We return now to the nonlinear, discrete renewal equation (2). In this section we
consider the existence of both periodic and asymptotically periodic solutions of this
equation.

A solution x = p + z € A(n) of equation (2) is n-periodic if and only if z = 0. By
Theorem 3 z = 0 will then solve the equations in (5), which happens if and only if
the forcing function and the initial condition are given by

g(t) = 221 k(p(t — ) = rp)(1)
xy = p(0) (14)

By Theorem 3, p € P(n) must solve the limit equation (4). One such solution is of
course p = 0, in which case g = 0, x, = 0 and hence x = 0. On the other hand, if
0 # p € P(n) is a nontrivial periodic solution of the limit equation (4), then it will
also be a solution of the renewal equation (2) if the forcing function and the initial
condition are chosen by the formulas (14). We arrive at the following basic result.
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Theorem 9 A periodic sequence x = p € P(n), p # 0, solves the nonlinear renewal
equation (2) if and only if p solves the limit equation (4) and the forcing function and
the initial condition are gzven by (14)

This theorem relates the exisience of noniriviai #- perxoalc solutions of a
nonlinear renewal equation to that of its limit equation. In the preceding section we
considered the existence of nontrivial periodic solutions of limit equations as a
bifurcation phenomenon for the cases n = 2 and n= 1 Theorem 6 together with

renewal equation (1)

Theorem 10 Assume that r and g satisfy AS with n = 2 and that k satisfies A2.
Assume also that k(=1) # 0 and k(1) # —k(—1). Then there exists a continuum of
(A, p, & x,) € R X Q,(2) X Z X R where x{(t) = p(t) is a nontrivial 2-cycle solution
of the discrete renewal equation (1) with parameter value \, with forcing function
given by

g = N 220 k(Hp(t = 1) — r(Ap)(1) (15)
and with initial condition

x, = p(0). (16)

This continuum bifurcates from the (X, p, g, o) =

globally in the sense that the pairs (\, p) taken from

the boundary 8 (R X ) (2)) or to the point (}\ p) = (1/k(1), 0) (if k(l) # 0).
With regard to the allternatlve in the last sentence of this theorem, Coroilary 7
implies that the continuum connects to the boundary 3 (R X Q,(2)) if r,(0, p) = 0
for all p € Q(2) and if k(1) and —k(—1) are nonzero and have opposite signs.
Theorem 8 together with Theorem 9 above, gives a bifurcation-like result for
nontrivial equilibria of the renewal equation (1).

eithe

EE
(%)
> O
=
:S

Theorem 11 Assume that r and g satisfy AS with n = 1 and that k satisfies A2.
Assume also that k(1) # 0. Then there exists a continuum of (\, p, g, X,) € R X (,(1)
X Z X R where x(t) = p is a nontrivial equilibrium solution of the discrete renewal
equation (1) with parameter value \, with forcing function given by (15), and with
initial condition given by (16). This continuum bifurcates from the (\, p, g, xo) = (1/
ko(1), 0, 0, 0). I exists globally in the sense that the pairs (A, p) taken from the
continuum connect to the boundary 4 (R X Q (1)).

Periodic solutions are, of course, asymptotically periodic. There can also exist
other asymptotlcally perlodlc solutions of equation (2) for appropnate forcmg
functions and initial conditions. We describe below a result that characterizes the
set of forcing functions and initial conditions (g, x;) lyving in a Z X R neighborhood
of the periodic cycle produced by the forcing function and initial condition (14).
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Let F denote the set of pairs (f, y,) € Z X R for which the linear renewal equation

VPR 2

AN — oray o NV I-( 3\ —_ 7
yu~i) =R + 2up-0 KUY i

y(0) =y, 17)

t—=0,12,..

Yy Ly &

has a solution in y € Z. The set F contains at least the pair (0. 0) and is easily seen
to be a linear subspace of Z X R. The solution operator § defined by S(f.y,) = yis
continuous (bounded) as a linear operator mapping F to Z.

Given a p € P(n), define the operator G(p): F — Z X R by

M 2

k()p(t = j) — r. @ + S¢yo)), Yo + P(O)

i

Gp): (fy)) = | O+

+

i=1

Theorem 12 Assume k satisfies A2 and that r satisfies A3-A4. Thenx =p + z € A(n)
is an asymptotically n-periodic solution of the nonlinear renewal equation (2) if and

only if the pair (gx,) lies in the range of the operator G(p) where
p € P(n) solves the limit equation (6)
and
z = S(f, o) where (f.y,) is a pre-image of (8. Xo)
(ie., (g, %) = GO)f. %))

Proof. Suppose x = p + z € A(n) is an asymptotically n-periodic solution of the
nonlinear renewal equation (2). By the decomposition Theorem 3 we know that p
€ P(n) solves the limit equation (4) and that z € Z solves the (5). If we define (f,yo)
€ Z X R by the expressions

f) = g(t)— X1 kK(Gp(t = j) + 1. (p + 2)(0)
Yo = %o — p(0) (18)

then it follows that y = z solves the linear equation (17). Thus z = S(f, yo)- It follows
that

g(t) = Oy + 27 kG)pt — ) = 1. (p + S(Fyo)) (O
xp =yt p0)
or in other words that (g, x,) = G(p)(f, Yo)-

Conversely, suppose p € P(n) solves the limit equation (4) and z = S(f, yo) where
(g. xo) = G(p)(f, yo)- Then by the definition of the solution operator S, z solves the
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linear equation (17) with forcing function f and initial condition that satisfy (18).
When (18) is substituted into (17) we find that z solves equation (5). The
decomposition Theorem 3 implies that x = p + z solves the nonlinear renewal
equation (2) <.

This theorem shows that the set of pairs (g, x) for which the nonlinear renewal
equation (2) has a solution asymptotic to a given n-periodic solution p of the limit
equation (4) is identical to the range of the operator G(p): F — Z X R. The next
theorem gives conditions under which the operator G(p) is a homeomorphism in a
neighborhood of the point (fy,) = (0. 0) e Z X R, i.e. under which 9., ,,G(0) is
invertible. The proof is omitted since it is virtually identical to the proof of
Corollary 4.3 in [4] (using z-transforms [9] in place of Laplace transforms).

Recall that k(z) denotes the z-transform of the kernel sequence k(j). We need the
following assumption.

k(z) has no roots on the unit circle |z = 1 and a finite
A6: § number v of roots z; satisfying |z| > 1. Each root z
has finite (algebraic) multiplicity m; > 0

Define the expression

P =z- (- k)Tl (Z * Z)
i=1

2=
As in [4] it can be proved from the assumption

A7 k_(z) is the z-transform of a sequence k_(j)
. satisfying I k I, = X [k_())] < +

that the solution operator S is continuous (bounded) on F and that the following
theorem holds.

Theorem 13 Assume k satisfies A2, A6, and A7. Assume that r satisfies A3-A4
and r, = r,(x): Q(n) — Z is continuously Fréchet differentiable in x and d,r (0) = 0.
Then for each sufficiently small solution p € P(n) of the limit equation (4) the
operator G is a homeomorphism from a neighborhood of (f, y;) = (0,0) € Fto a

neighborhoodofG(p)(0, 0) = (2;;,“ k(GHp(t — ) — r:(p).p(O)) €eZ X R.

This theorem shows that the “size” of the set of forcing functions and initial
conditions (g, x;) that give rise to asymptotically n-periodic solutions of the
nonlinear renewal equation (2) is, locally near the n-periodic sclution producing
pair (g, x,) given by (14), the same as that linear subspace Z for the associated linear
renewal equation (17). The theorem only applies for n-periodic solutions p of
sufficiently small norm Ipl,. It applies, however, to those 2-periodic and equilibrium

solutions lying on the bifurcating continua of Theorems 6 and 8 lying near the
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bifurcation point. Thus, there will actually be a bifurcating family of asymptotically
periodic solutions in the case of these two theorems. Note that if the limit equation
(6) is autonomous in the sense that integer translates of solutions are solutions then
Theorem 13 can be applied to each translate to obtain a bifurcating family of
asymptotically periodic solutions.

5 AN APPLICATION

We consider an application to a discrete renewal equation that serves as a model for
the dynamics of a biological population. Suppose the population is divided into age
classes of equal (unit) length. Let b(¢) = 0 denote the birth rate per unit time, i.e.
the number of individuals born (and surviving to the next census) per unit time into
the youngest age class. If m(j) = 0 is the number of offspring of an individual of age
j, w(j) € [0, 1} is the probability that a newborn reaches age j, and s € [0, 1} is the
probability that a newborn survives to the first census, then sm(j)w(j}b(r — j) is the
number of newborn contributed by all individuais of age j during the time interval
(¢, t + 1] that survive to be counted at time ¢ + 1. Thus, if b,,(r) denotes the number
of newborns produced by the initial pupulation, we have

bt + 1)y =b, (1) + 2 sm(ym(b(t — ), 1=0,1,2,....
j=0

This is a linear discrete renewal equation. (This equation can also be derived from
the well known Leslie matrix model for age-structured populations). Fertility and
survival rates are not, in general, independent of population size, however. If a vital
statistic such as m{j) or w(j) depends on pepulation density in some way then the
equation becomes nonlinear.

We will consider, in our application, one special case called the “Easterlin
hypothesis”, namely that the fertility of an individual depends on the density of its
own age class. This assumption means mi(j) is a function of b(r — j) and since the
usual assumption is that density effects are deleterious m(j) should be taken as a
decreasing function of b(t — j). Thus, we consider

m(j) = p(NFb = ), A0) =1

where f R — R is a nonnegative, twice continuously differentiable, decreasing
function of its argument on a neighborhood of the origin. Here p(j) = 0 is the
“inherent” age specific fertility rate (i.e. the fertility rate at low densities) which we
normalize by writing

u() = Bo()
d() =0, X o()=1 (19)

The constant B > 0 is the “inherent net reproductive value”, i.e. the expected
number of offspring per individual per life time [5].
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It is a natural assumption that b, (f) = 0 has compact support. In any case, we
assume that

lim b, (1) = 0. (20)

tovix

With these assumptions our model equations become

bt +1) = b®) + B S SGIF (bt — ) bt — )1 =0.1.2,..

=0

b(0) = by = 0. (1)

x(1) = (1) A = B. g1 = b, (1), k(j) = b())

A

r(N(0) = —h 2 () (1 = Fx(e = D)) x(r = ).

j=u

5.1 Equilibria

We begin by looking for equilibrium solutions. Clearly (21) has the “trivial”
equilibrium b(t) = 0 for forcmg function and initial condition glven by (b,,(1), bO)

= (0,0). To find a bifurcating continuum of nontrivial (positive) equilibria we will

utilize Theorem 11.

Under the assumptions (19) and (20) the assumptions Al and A2 hold. It is easy
to see that on a neighborhood of the origin in A(#n) the higher order term r satisfies
A3 (uniformly on compact A = B intervals). For the periodic part of r we have

OB = -\ 3 6G) (1 — £t — ) plt — ). 22)

j=0

an operator that is easily seen to satisfy A4. Also we have

rN(0) = =N 2 () (1 = fx(t = PN x(t = j) + X 2 &)

j=0 j-0

A= fpt - p—)

or

W0 = —N S 60) [ (ol 1) plt ~ ) — F e = 1)) 3t ~ )]

j=0

+AZ O =)+ N 2 () (A~ fp(e—))) pt = j).

j=0 j=1+1
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That r,(\, x)(1) € Z follows from

and the following lemma. That r_ is also continuous (bounded) on a neighborhood
of the origin in A(n) (uniformly on compact A =  intcrvals) is easy to see

Lemma 14 [f k(j) satisfies A2 and if 7 € Z, then 2, k(j)z(t — j)eZ

i=0

Proof. Given an arbitrary € > 0 let T = T(€) = 1 be an integer so large thatt = T(¢)
implies

=0

i=Tey

Zol= - and > ki)l = ——
(U 2||k||| - AV lel’!in
For + = T(¢) we have from
T(e)—1
Ek(l)z(z—j > k(zt — j) + 2 k(I)Z(f*])
=0 =0 j=1te
the inequalities
| Tie) €
Ek(z)z(t M= W, 2 Z ko) + il ko) <- tITe
I F4

which in turn imply

t
0=limsup | > k(jz(t —j)| =e

t=+% [j=0

Since € > 0 is arbitrary, it follows that lim_, ., 2/, k(j)z(t — j) =

We have verified that r satisfies assumptions A3 (uniformly on compact A=
intervals). To show that r satisfies the required assumption A5 we have only left to
show that r satisfies A4. For any real A = B it follows from the definition (22) of r,,
that (3) holds and therefore, A4 follows by Lemma 2.

Note that by the normalization (19)

k(1) = () = = $() = 1.

j=0

We can now apply Theorem 11 to the model equation (21) to obtain a continuum
of (B, b(¢), b,,(t), by) € R x C(1) X Z X R that bifurcates from (1, 0, 0, 0) such that
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b(r) is a nontrivial equilibrium solution of (21) with forcing function b,,(t), initial
condition b, and inherent net reproductive value B. Since r is globally defined,
Q,(1) = P(1) and the components (8, b(¢)) from the continuum connect to « in R
X C(1).

Note that the bifurcation occurs at the critical value B = 1/k(1) = 1 where each
individual is expected to exactly replace itself during its life time.

We know from the theory in Sec. 4 that the nontrivial equilibria b{t) = b, # 0
from the bifurcating continuum are solutions of the limit equation

b(t+1) =B X d()HAb(r— bt —j), 1 =0,1,2,...

=0

Therefore, in this example, an algebraic equation for the nontrivial equilibria is
obtainable, namely

1=BAb.)

Thus, b, = £ 1(1/8) for 8 > 1. It follows from (21

i

bifurcating continuum C{1) in this example c

i

e explicitly given by the formulas

A1) =1 — 3L, (). The

-
ir

3

(B, b(), bis(t). bo) = | BS (UB), 1 — Z (), f'(1/B) | forB>1.  (23)

j=0

5.2 2-cycles

To illustrate the use of Theorem 10 we consider a special case of the model equation
(21) in which the nonlinearity f in the fertility rate has the Ricker form

fixy=e¢c>0.
In this case the bifurcating continuum C(1) of equilibria (23) is
(B, b(1), by(t)bg) = | B,InB, 1= X &()),InB | forB>1
j=0
If equation (21) is “centered” on these equilibria by defining
x()=b(r) —Inp
one obtains the equation of the renewal form (1) with

A=1-Inp

fNO = b+ S 60)

j=t+1
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k() = ()
r(N)(x) = 2 (e = Dx(t — ).

j=0

It is straightforward to show that A5 is satisfied. Theorem 10 implies the existence
of a bifurcating continuum of nontrivial 2-cycles provided the fertility kerneli
satisfies the conditions

S(-1D=Z ()~ #0, -1 (24)
j=0
hold. The critical bifurcation value A = —1/$(—1) corresponds to the critical

inherent net reproductive value given by

B,=exp| 1+ !
o(—1)

As an example, consider the case when fertility is a geometrically decreasing
function of age, that is to say when &(j) is proportional to & for some constant a
satisfying 0 < a < 1. The normalization (19) then specifies

&) = (1 — a)d.

The z-transform $(z) = (1 — a)z(z — a) ' yields $(=1) = (1 —a)(1 + a)~!'>0and
the required conditions (24) hold. The critical bifurcation value in this case is

2
Bcr:exp<1_a>'

As a second example, consider a case of delayed fertility due to a maturation
period, after which fertility is again a geometrically decreasing function of age, as
described by the fertility kernel

o 0 forj=0,1,....m—1
®nl) = (1 -ayd™ forj=m,m+1,..

Here the integer m = 1 is the maturation age. This fertility kernel satisfies the
normalization (19). Moreover, the z-transform is $,.(z) =0 —a)z' "z~ a)” ' and
hence §,,(—1) = (=1)"(1 — a)(1 + a)”!, which is easily seen to satisfy the
conditions (24) for all integers m = 1. The critical bifurcation value of A = 1 — In
B in this case is determined by

1 +1
- =,

RISV 1-a

cr
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This gives the critical inherent net reproductive value of

2
B., = exp (I—) whenm = 2,4,6,...
—-a

For m = 1, 3, 5.... no 2-cycle bifurcation occurs in this case.

Since fis globally defincd the bifurcating continuum of 2-cycles connects to = (i.e.
is unbounded) in R X P(2). Thus, either the set of parameter values § (the
“spectrum”) or set of 2-cycles (or more specifically the norms of the 2-cycles) from
the bifurcating continuum must be unbounded (or both). It follows directly from
the model equation (21) that if the spectrum $ values bounded then so is the set of
2-cycle norms. This contradiction implies that in fact the spectrum must be an
unbounded interval. Moreover, it cannot contain the point B = 0 for this would
imply there exists a nontrivial 2-cycle solution of (21) when B = 0, which is clearly
impossible. Thus, the spectrum is an interval containing the bifurcation point 8., >
1 which is unbounded above. In particular. it follows that 2-cycle solutions exist at
least for all B > 3,

We have seen in these examples a common scenario in population models,
namely a primary bifurcation of nontrivial equilibria (from the extinction state
represented by the trivial equilibrium) at a critical value of the inherent net
reproductive value § equal to 1 followed (possibly) by a secondary bifurcation to a
nontrivial 2-cycle at a larger critical value of 8 [1], [2], [3]

6. CONCLUDING REMARKS

In the paper we have dealt with the existence of n- periodic and asymptotically
periodic solutions of the discrete renewal equauon {1). We did by using bifurcation
theory techniques and relating equation (1) to its limit equation (6). The main
bifurcation results, Theorems 10 and 11, are for the case of n = 2 (2-cycle) and n
= 1 (equilibria) only. If the linearized limit equation (13) has a nontrivial n-cycle for
some integer n = 3 it remains an open question as to the nature of the resulting
bifurcation for the nonlinear renewal equation (1). Most likely there will bifurcate
a continuum of aperiodic solutions (lying on an “invariant” loop in a suitable phase
space) and asymptotically aperiodic solutions as is known to occur for maps in
general [11].

In this paper we did not study any stability properties of the bifurcating cycles.
Locally, near the bifurcation point, a natural conjecture is that stability is related to
the direction of bifurcation, but this remains an open question.
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