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PERIODIC LOTKA-VOLTERRA SYSTEMS AND TIME
SHARING OF ECOLOGICAL NICHES

J.M. Cushing

1. PERIODIC LOTKA-VOLTERRA SYSTEMS

The Lotka-Volterra system

P} = Py(bj-a) P-a),P), Py = Py(by-ay,Py-ay,P))

with positive, periodic coefficients bi = bi(t) >0 (#0), a5 = a,.(t) >0

was studied in Cushing (1980) where it was shown that to a large extent the dy
of (1) with such periodic coefficients mimics that of the familiar classical ¢
of (1j with positive constant coefficients. With constant coefficients (1) &=
a {un%hue) positive equilibrium if and only if b2 lies in a certain interval ‘
deter@ined by )1 and the aij (namely, the interval with endpoints b1a21/aii‘
and azzbllalz} and this positive equilibrium is stable if and only if 4 =a,,

315851 7 0. In Cushing (1980) it is shown more generally that with positive, |
periodic coefficients (1) has a positive periodic solution if the average of H: 3
lies in a certain interval (whose endpoints are averaged quantities which reduce =
those above for the constant coefficients case) and that this periodic solution
stable if a certain averaged quantity (which reduces to ﬁ/all for constant
cients) is positive.

The purpose of this note is to describe some more specific results for
when the periodic coefficients are derived from the MacArthur-Levins theory and -
relate them to the idea of time sharing an ecological niche.

In the MacArthur-Levins theory of competition for a one dimensional rescu

niche the coefficients in (1) are given by

+o +o
by = wy [l ROIE; (0)do, 3y = wyws [1_ £ (0)F;(0)dp
where wifi(p) >0, It: f(p)dp = 1, is a resource utilization function for spe
i and R(p) is the availability rate of the resource p (Christiansen and Fe
1977, May 1974). The simplest case is when the utilization functions are Gauss

2. = 2
£,(0) = (27W%) exp(o-D;)%/2W
and R(p) = R > 0 is constant. Here W is the "niche width" and d = lDl-Dzl the

"niche separation'. Then
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& o2 2.5 o 2.%
bi =w.R, a,. = wi/{4nw SECH aij 5 Gwiwj/(4nw )

5 (2)
6 = exp(-(d/2W)7) <1

and (1) has a positive, stable equilibrium as long as d/W > 0. Stability is
weakened as d - 0, however, in the sense that the smallest real part of the
eigenvalues of the linearized system is a monotonically increasing function of d/W
which vanishes at d/W = 0 when the niches coincide, (see the final graph in
Section 3 (A = 0) below).

A biological case can be made for time fluctuations and periodicities in any
of the quantities R,W,d and W, Such periodicities in (2) 1lead to a system
(1) which falls within the purview of the general theory in Cushing (1980). In
this note, attention will be restricted to the case when all parameters are constant
except the ws which will be assumed periodic in time. Thus, as in classical the-
ory, the resource availability, niche positions and niche separation are constant in
time. Only resource utilization will vary periodically in time. Specifically, it

will be assumed that
»
Wy o= w(l + Acos wt), Wiysis w(l+Xa cos(wt+y))

0<ixz<1, 0 <al <], 0<y =<

so that the resource utilization functions have the same averages w > 0, but vary
cosinusoidally in time with period 2n/w and with relative amplitudes a and phase
difference y. A rescaling of time (from t to wRt) and of Pi to wPi/R(tl'-Tlv'J:‘Z);E

leads to (1) with the coefficients

11" (1+ xcos wtjz, a,, = (1+ xa cOS{mt+Y))2

5 =14 Aacos(ut+y), A, =2y = §(1+Acos wt)(1l+Ara cos(wt+y)).

b, =1 + )cos yt, a

(3)

=
"

The goal is to describe various properties of the positive periodic solution of (1)
and (3) and its stability as they depend on the parameters A,w,a,y and &§. It
is hoped that this will lead to some insights into the phenomenon of time sharing a
resource niche as well as the effects that these periodicities have on the funda-

mental concepts of competitive coexistence and exclusion and of limiting similarity.

2, SOME ANALYTICAL RESULTS

When the amplitude A is small, regular perturbation techniques can be used
to derive lower order approximations to the positive periodic solution of (1) and
(3). Tedious, but straightforward calculations show that Pi[t) = (1+a)'1 +
lyi[t] + 0(12] where



4, The population mean values are, to lowest order, equal to (1+ 5}_1 and are
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i+l

2y, (0) = (&1*(-1]i+1A2]cos wt + (B;+(-1)7 "B,)sin wt
A, = -[1+a cos y+ua sin Y1/ (1+8) (1+w?)
B, = [-w(1+a cos y) +a sin y]/(1+6) (1+u?)
Ay = -(6-D(E1)a -2 cos v) +ua sin YI/1-1)2+ 6+ 1)%2]
B, = (8-1)[-($53)a sin y+u(1-a cos NI1/06-12 @6+1) %% .

The Floquet exponents of the system linearized at this periodic solution are

2 e 00)

@
i
i

-1+ 0(x), e, = (6-1)/(8+1) +8)

@
L]

8(8) = w’(a®-2a cos y+1)/8(1+w?) + 0(]s-1]).

Of particular interest is the case of very similar niches § ~ 1 (i.e. d/W~ 0).
Bor: 1§ il

-
1 . 2
Pi(t) st A(Al cos mt-+Bl sin wt) + 0(A7)
2
ey v 0(1% + 00%) & - & @+0P) V(a? -2 cos y+ 1% + 003).

Note that e, is the smallest Floquet exponent and hence determines the strength of

2
the stability of the positive periodic solution.
For small amplitude oscillations A ~ 0 and similar niches &~ 1 some con-

clusions which can be deduced from these lower order terms are the following.

1. Since 8(1) > 0 and since 8(1) =0 if and only if y=0, a=1, it is seem
that the presence of periodicities in the resource utilization functions (i = &

decreases e, and hence promotes the stability of the competitive interaction,

except possigly in or near the case of in-phase oscillations (y = 0) of ea
amplitudes (a = 1).

2. Since the maximum of (1) occurs for a =1, y = 7, stability is maximized
when the oscillations of the utilization functions are out-of-phase (y = :Jf:
of equal amplitudes (a = 1).

3. @(1) and hence stability is increased by an increase of amplitude A or
frequence w or relative amplitude a > cos y. Stability decreases with
increasing a e [0,cos v]. /
independent of a, A, w and ¥y. £ - -

5. The amplitude (A%4-B§)5 = [(a2 +2a cos Y‘*l)/lﬁ[l*‘wz)]% of the oscillati
in the population sizes Pi(t) is minimized when y = 7. Thus, in this
too, out-of-phase utilization of resources leads to maximal stability. This
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amplitude is also decreased with increased frequence w, but increased with in-
creased relative amplitude a.

6. When y ~ 0, the amplitude of P1 increases with the phase difference y while
that of P2 decreases with increases in .

7. The population sizes Pi(t) oscillate nearly in-phase, except near y = m.

Any one of these conclusions can be drastically altered if either & »>> 1 or

A>>0 or an~1l and y ~ 0.

3. NUMERICALLY FOUND RESULTS

I have carried out a great many numerical integrations of (1) and (3) for
various parameter values. While corroborating the conclusions above these have also
revealed some other interesting phenomena. The following graphs show a typical plot
of the computed magnitude of the smallest Floquet exponent and the population maxima

and minima as they change with the phase difference vy in resource utilization.
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The monotonic increase in stability with increasing vy 1is however lost as the niches
are brought closer together (& 1is increased) as is shown in the next pair of graphs.
Note not only the drop in system stability, but also the threatened extinction of P,
(because of low population levels) for interactions only slightly out-of-phase

(v « 1), see Figure 2.

For widely separated niches (& ~ 0) the stability dependence on y is
reversed as is shown in the next graph (Figure 3). Thus, being <n-phase is most
advantageous for species with widely separated niches. The next pair of graphs below
show the effects on stability of the amplitude A and how they also qualitatively
change for close versus widely separated niches (Figure 4). All of these computa-

tions were done with frequency w = 1.
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The final graph (Figure 5) shows the effect on stability of changes in the
niches separation to width ratio d/W (for out-of-phase oscillations of maximum
amplitude X = 1) and allows a comparison with similar graphs of the classical case

of constant coefficients X = 0 (see Christiansen and Fenchel 1977, May 1974).

Figure 5

Thus, for frequency w = 1 it is advantageous to periodically, out-of-phase utilize
the resource niches (A =1, y = 7) only for niches sufficiently close together
{d/W 5 2). For frequency w = 3 the graphs for A =1 and A =0 were not found
numerically to cross and hence it appears always advantageous to be out-of-phase.
The ''cross-over' of the graphs for A =1 and X = 0 seems to be a complicated

function of the frequence w.

4. CONCLUSIONS

Holding other parameters constant, we considered periodicities in the re-
source utilization functions of two competing species modeled by the classical
Lotka-Volterra-MacArthur-Levins theory. It was found for small niche separations
(6 » 1) that stable coexistence is enhanced when the periodic oscillations in the
utilization functions are out-of-phase (y = ) and are of maximum amplitude
(A = 1), i.e. the similar niches are 'time shared'. Short periods and large rela-
tive amplitudes also increased stability. These conclusions, however, may drasti-
cally alter and indeed be reversed for widely separated niches (§ v 0).

It was also found that for close niches, small phase differences (y "~ 0) are
disastrous for coexistence (actually worse than in-phase oscillations y = 0), the
species P, whose resource utilization function peaks earliest being threatened

2
with extinction because of very low population levels. This rather unexpected
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result could have importance with regard to the possible evolution of time sharing
in similar niches by two competing species who begin in a state of in-phase resource
utilization. The above result would not allow a continuous evolution of the phase
difference y to an out-of-phase state without threatened extinction of one of the

species.
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