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Abstract. The Lotka-Volterra competition equations with periodic coefficients 
derived from the MacArthur-Levins theory of a one-dimensional resource 
niche are studied when the parameters are allowed to oscillate periodically 
in time. Specifically, niche positions and widths, resource availability and 
resource consumption rates are allowed small amplitude periodicities around 
a specified mean value. Two opposite cases are studied both analytically and 
numerically. First only resource consumption rates are allowed to oscillate 
while niche dimensions and resource availability are held constant. The 
resulting oscillations in population densities and the strength of the system 
stability as they depend upon crucial relative phase and amplitude differences 
between the species' consumption rates are studied. This leads to a clear 
notion of  "temporal  niche" and of the effects that such oscillations can have 
on competitive coexistence. Secondly, all system parameters are allowed to 
oscillate, although the oscillatory consumption rates are assumed identical 
for both species. The effects on the population density oscillations and their 
averages are studied and the "best" choice of the common, periodic resource 
consumption rate for these two "identical" species competing for similar 
(even identical) niches is considered. 
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1. Introduction 

The vast majority of mathematical models which have been used to describe the 
growth dynamics of populations is based on autonomous equations. Consequently 
these models, in which all model parameters and coefficients are constant in time, 
are really only appropriate for idealized situations in which all biological and 
environmental conditions do not explicitly change in time. It is widely recognized, 
on the other hand, that both inherent biological and physical environmental 
parameters can and in fact often do fluctuate in time and that these fluctuations 
can have significant effects on the dynamics of  the populations [ 16]. Nonetheless 
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it is still true that comparatively very few studies have been made of non- 
autonomous models with explicit time fluctuating coefficients and that virtually 
all "fundamental principles" in population dynamics and ecology are theoretically 
based on autonomous models. A natural question to ask then is to what extent 
such fundamental principles are affected by time dependent fluctuations in model 
parameters. In addition it would be of interest to study the specific effects that 
such fluctuations have on the basic qualitative properties of solutions of specific 
types of model equations. 

In recent years there has indeed appeared a small, but increasing number of 
papers dealing with these questions. Stochastic fluctuations as well as regular 
periodic oscillations in model parameters have been investigated for a variety of 
types of equations for the growth dynamics of various types of populations and 
interspecies interactions. 

With regard specifically to interspecies competition the recognition that peri- 
odic environmental factors can significantly effect competitive coexistence was 
pointed out early in the development of the concept of the ecological niche and 
the principle of competitive exclusion [10]. The idea that environmental fluctu- 
ations, in preventing the attainment of an equilibrium state, can permit the 
indefinite survival of an otherwise competitively inferior species was studied 
analytically via Lotka-Volterra dynamics in [11]. General two species Lotka- 
Volterra equations with arbitrary periodic coefficients were studied using bifurca- 
tion techniques in [4]. It was shown in [4] that the familiar format of four 
alternatives for the classical Lotka-Volterra equations (a positive stable or 
unstable equilibrium or a global attractor on one co-ordinate axis or the other 
[16, p. 179]) whose occurrences depend upon relationships amongst the interac- 
tion coefficients as measures of intra- versus interspecies competition, roughly 
speaking holds up when the coefficients are arbitrary periodic functions of time, 
provided this format is viewed in an appropriate manner by means of bifurcation 
diagrams. The periodic Lotka-Volterra equations were further studied in [13, 14] 
with an emphasis placed on the phase differences between the oscillations in the 
interaction coefficients. 

Existence and stability questions for more general periodic, two species 
competition systems were studied in [7] and for general periodic, n-species 
Kolmogorov systems in [5]. These latter papers deal mainly with the general 
questions of the mathematical existence and stability of positive periodic sol- 
utions, although they do contain some examples which serve to illustrate the fact 
that periodicities in system parameters can induce unexpected results (such as 
stable coexistence when averaged coefficients would predict competitive 
exclusion). 

More detailed analyses of some specialized competition systems can be found 
in [6, 19]. Rosenblatt [19] studies Lotka-Volterra systems under restrictive condi- 
tions using perturbation techniques when the periodicities are of small amplitude. 
This approach allows the derivation of results concerning certain qualitative 
properties of the periodic solutions. In [6] the author studied in detail a model 
of non-Lotka-Volterra type for an exploitive (as opposed to an interference) 
competitive interaction based on Holling II (or Michaelis-Menten) interactive 
dynamics. This work dramatically shows the significant effects of system parameter 
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periodicities in forstalling competitive exclusion under certain conditions, in this 
case the "time sharing" of a prey resource. 

Other papers dealing with certain competition models under the influence of 
a periodic oscillation in some system parameter include [1, 8, 21]. 

The purpose of the present paper is to contribute further to the understanding 
of  the effects on competitive interactions caused by parameter periodicities by 
describing some analytical and numerical results for the Lotka-Volterra model 
with coefficients derived from the McArthur-Levins theory of a one-dimensional 
resource niche. While it is true that Lotka-Volterra dynamics are highly simplistic, 
as is the MacArthur-Levins theory of an ecological niche, it is nonetheless true 
that this theory has had a profound impact on ecological thinking, both theoretical 
and practical, with regard to such fundamental concepts as ecological niche, 
competitive exclusion, limiting similarity, etc. It seems therefore that despite the 
simplicity of  this model it might be of interest to see what effects that periodic 
oscillations in the model parameters . . ,  viz. niche width and separation and the 
resource availability and consumption r a t e s . . ,  might have on these basic concepts 
and principles. 

One can easily make a case for the pe r iod ic . . ,  or at least roughly periodic 
oscillation of  any one of the basic parameters in the MacArthur-Levins theory. 
The biological literature is replete with references to periodic fluctuations such 
as seasonal or daily variations in parameters. Certainly resource availabilities for 
most animals suffer seasonal variations [17, p. 324]. Seasonal variations in niche 
utilization or consumption rates has been observed in both animals [15] and in 
plants [9]. Moreover, resource niche widths can change seasonally [23] as can 
niche positions on a resource spectrum [17]. Further discussions of these matters 
can be found in [17, 18]. 

The basic assumption in this paper will be that the coefficients in the classical 
Lotka-Volterra competition equations are derived from the MacArthur-Levins 
theory of a one-dimensional resource niche in which the basic parameters are 
allowed to suffer small amplitude periodic oscillations about a specified mean. 
Although the assumption that the periodic oscillations are of small amplitude is 
restrictive it is hoped that the analysis and conclusions here will contribute to at 
least a preliminary understanding of the effects of oscillations in the parameters 
of competition models. This assumption is necessary for the perturbation analysis 
carried out below, but although it prohibits the study of large "catastrophic" 
fluctuations in model parameters and their effects it is nonetheless true, as pointed 
out in [19], that to ignore small amplitude oscillations in favor of averaged 
quantities can be misleading. Moreover, as some of the numerical results below 
show, the effects of small amplitude oscillations can and often do persist for 
larger amplitudes. In any case, a study of such small amplitude periodicities 
certainly contributes to the basic understanding of the effects of model parameter 
periodicities in general. 

After the model equations are set up and discussed in Sect. 2, two roughly 
opposite cases are analysed in Sect. 3 and Sect. 4. In Sect. 3 all resource niche 
and environmental parameters are held constant in time while the two competing 
species are allowed to have periodically varying resource consumption rates of 
possibly different phases and relative amplitudes. This case is motivated by an 
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interest in what might be termed a "temporal niche" and how it might promote 
stable coexistence when two species compete for nearly identical (or even exactly 
identical) resource niches. 

In Sect. 4 environmental and resource niche parameters are allowed to 
fluctuate periodically in time while the two competing species are constrained to 
having identical resource consumption rates. The goal is to study the effects that 
such oscillations have on competitive coexistence and on the oscillatory properties 
of the population densities and to see what strategies such "identical" species 
might take with regard to their resource consumption rates in order to promote 
stable coexistence. 

Sect. 5 contains a short summary of results and conclusions. An Appendix 
contains details of some mathematical proofs and derivations. 

2. The model equations 

Based on the MacArthur-Levins theory of  a one-dimensional resource niche 
the coefficients appearing in the Lotka-Volterra system for the densities P1, P2 
of two competiting species 

P'i=Pi(bi-a,P~-aoPfl, l~< i# j~<2  (2.1) 

are given by [2, 12] 

bi=ci f +~ R(p)f(p) ai~=cicj f +f f(p)fj(p) dp" 

Here R is the availability of the resource quantified by the variable p, f is the 
preference function for the resource by the ith species and ci is the ith species' 
resource utilization or consumption rate. The most commonly used preference 
function is Gaussian 

f (p)  = (27r W2) -1/2 e x p ( - ( p  -Di)2 /2  W 2) 

where Di is referred to as the niche location and V¢~ is the niche width. In the 
simplest theory it is assumed that the niche widths are identical W~ = W >  0 and 
that the resource availability is independent of  p so that R(p)-= R > 0. Then it 
turns out that the coefficients in (2.1) reduce to 

b~ = ciR, a o = (4"trW2)-l/2cicjt~ li-jl, t~ := e x p ( - ( d / 2  W) 2) (2.2) 

where d := D~ - D2 measures the niche separation. 
In the classical case when the system parameters R, W, c~ and d are all 

constant in time, in which case the coefficients b~ and ao are also constants, the 
equations (2.1) have a unique positive equilibrium 

P~=- 1/(1 + ~), i = l a n d 2  

which is stable (and globally attracting in the positive or first quadrant Pi > 0) 
provided 

d # O ,  
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i.e. provided the niches are not identical. This is the simplest and most naive 
theoretical support for the principle of competitive exclusion and limiting similar- 
ity, namely that there must be some niche separation in order for the two species 
competitive interaction to be viable (in the sense that a positive, attracting 
equilibrium exists). There is however no theoretical limit to how close the niches 
can be for this two species model, although the stability weakens as d decreases 
to zero (see Fig. 8). For the case of three or more species, a case not considered 
here, there is a positive lower bound on d for the existence of a positive stable 
equilibrium, a fact which is the basis for the celebrated rule-of-thumb that the 
ratio d~ W should be greater than 1 in order to prevent competitive exclusion [12]. 

This paper deals with the system (2.1) when the model parameters R, W, ci 
and /o r  d are periodic functions of time with a common period p. In this case 
the coefficients (2.2) appearing in the Lotka-Volterra system (2.1) are p-periodic 
in time. Such a nonautonomous system does not in general have an equilibrium 
solution and the equilibrium stability analysis upon which the fundamental 
principles mentioned above are based is no longer applicable. In place of a 
positive equilibrium solution one expects to have a positive p-periodic solution 
and instead of a stability analysis based upon the algebraic theory of eigenvalues 
one has instead a more difficult analysis based upon Floquet multipliers or 
exponents. 

The results and techniques in [4, 5, 7] could be applied to these existence and 
stability questions. However, in this paper a different approach based on regular 
perturbation techniques is taken in order to gain more specific and detailed results 
on the qualitative properties of the solutions. For example, of interest will be 
averaged and extremal values of the population density oscillations, phase 
relationships and strength of stability as measured by Floquet exponents and 
how these things depend upon crucial system parameters and their oscillatory 
properties. 

Specifically, it will be assumed that R, W, ci and d are given small amplitude 
periodicities, relative to specified mean values, of the form 

R = R o ( l + e R l ( t ) ) ,  W =  Wo( l+eWl ( t ) ) ,  c,=c~o(l+eC~l(t)) 
(2.3) 

Ro>O, Wo>O, Cio>O 

and, because we wish to allow the case of zero average niche separation, 

d = do+ edl(t). (2.4) 

Here e is a small real and all periodic perturbations have the same period p and 
have zero average 

av[ R1] = av[ Wl] = av[ cil] = aV[ dl] = 0 
- 1  P where av[x]:=p ~oX(t) dr. 

Substituting (2.3)-(2.4) into the coefficients (2.2) one obtains a Lotka-Volterra 
system (2.1) with p-periodic coefficients and with a small parameter e. When 
e = 0 the coefficients are constant and the classical equilibrium and stability 
results described above hold. For e sufficiently small one can apply well-known 
theorems from the theory of differential equations to arrive at the existence and 
stability of  a positive p-periodic solution of (2.1) [3]. In addition, for small e, 
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lower order approximations can be in principle routinely calculated by a standard 
regular perturbation analysis. Since the coefficients (2.2) are analytic in e so are 
the solutions of (2.1) [3]. In particular the positive p-periodic solution has an 
expansion 

Pi( t ) = (1 + 6o)-1+ eyi( t ) + e2 z,( t ) + . .  �9 

60 := exp(-(do/2 Wo) 2) 

(where the dots will always denote terms higher order than those appearing). To 
lowest order the oscillatory properties of P~ are determined by the coefficient Yi 
(or in some cases by zi). These coefficients can be computed by the standard 
procedure of substituting this expansion for Pi into the equations (2.1), equating 
coefficients of like powers of e from both sides of the results and solving in 
recursive fashion the resulting linear nonhomogeneous systems. 

Similar techniques can be used to find lower order terms in expansions of 
the Floquet exponents which are also analytic in e. 

Although straightforward in principal the details of this procedure are 
extremely tedious and involved. In general it is not even clear that should they 
be carried out the complicated results would be particularly amenable to analysis 
and interpretation. In the next two sections this procedure is, however, successfully 
used for two special cases. First the case of periodic (in fact cosinusoidal) 
consumption rates ci with all other parameters held constant is considered. Then 
secondly an opposite case is considered in which the species have identical 
resource consumption rates and the remaining parameters R, W and d are allowed 
arbitrary small amplitude periodicities. 

3. Periodic consumptions rates and the temporal sharing of a niche 

The great diversity of means by which species reduce interspecies' competition 
in order to prevent competitive exclusion can be roughly classified into three 
categories: the consumption of different resources, the exploitation of different 
habitats and activity at different times [16, p. 190]. Although the latter means is 
often thought to occur less frequently in nature than the first two, it is nonetheless 
widespread and it can be crucial in the viability of some competitive interactions 
[17, Chap. 13]. 

In this section the time sharing of a resource niche will be analysed using the 
Lotka-Volterra-MacArthur-Levins model (2.1)-(2.2) by assuming that the 
resource consumption rates c~ have small amplitude cosinusoidal periodicities 
while all other model parameters are held constant. In other words, R1 -= W1 - dl --- 
0 in (2.3) and (2.4) so that 

c l = c ( l + e c o s w t ) ,  c 2 = c ( l + e a c o s ( w t + y ) )  

c > 0 ,  l > e > 0 ,  w : = 2 7 r / p > O ,  

R = R o ,  W =  Wo, d = d o .  

(3.1) 

Here y and a, satisfying 0<~ y~< ~- and 0 ~  < a ~  < l /e ,  are the crucial phase and 
relative amplitude differences in the oscillations of the consumption rates el 
and c~. 
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Note that it is also assumed that both species have the same average consump- 
tion rate Cio = c. 

The number  of  parameters  appearing in the equations can be reduced by 
rescaling time from t to cRot and the populat ion density units from Pi to 
cPi(R~4~W2o) -1/2. Then the equations to be considered reduce to (2.1) with 
coefficients 

b l= l+ecos to t ,  b2=l+eacos( to t+y)  

a l l= ( l+ecos to t )  2, a22=(l+eacos(tot+y))  2 
(3.2) 

a12 = a21 -- 6(1 + e cos wt)(1 + ea cos(tot+ y)) 

6 = 6o = exp(- (2do/Wo)  2) = e x p ( - ( 2 d / W ) 2 ) .  

Using standard perturbation techniques with the small parameter  e as 
described in the previous section, one can (after straightforward but tedious 
calculations) arrive at the following e-expansions for the positive p-periodic 
solution of  (2.1) with coefficients (3.2): 

P~(t) = (1 + 6o)-1+ eye(t) + . . .  

yg(t) -- �89 + ( -1) ' -1A2)  cos tot + (B1 + (-1)~-1B2) sin tot] 

A1 = - (1  + a cos 3' + toa sin y) / (1  + 6o)(1 + to2) 

B1 = ( - to(1  + a cos y) + a sin y) / (1  + 6o)(1 + to2) (3.3) 

A2 = - ( 6 o -  1)(6o+ 1)-2(A (1 - a cos y) + ea sin y) / (A2+ to2) 

B2 = ( 6 o -  1)(6o+ 1)-2(-Aa sin 3,+ to(1 - a cos y) ) / (A2+ toE) 

A ----(60-1)/(6o+1).  

The Floquet exponents associated with this solution have the expansions 

e 1 = - - 1 +  . . .  , e 2 = A + 0 e 2 + .  �9 . .  

Since 0 <  60< 1 and hence -1  < ;t < 0  it follows that to lowest order in e the 
exponent which determines the strength of the stability of the solution (3.3) is 
e2. Moreover,  since 60 and hence A depend only on the constant niche dimensions 
do and Wo, the effects on the stability of  the competitive interaction due to the 
oscillatory properties of  the consumption rates (namely due to the parameters a, 
3' and to) are determined by the second-order coefficient 0. 

An explicit formula for 0 is very complicated and difficult to get, but inasmuch 
as the concern here is with two species utilizing a similar (if not identically the 
same) niches we can use the lowest order term in a 60-expansion of 0 for 6 o -  1 
(which corresponds to niche separation d o - 0 ) :  

0 = - - t o 2 ( a 2  - -  2a cos 3' + 1)/8(1 + to2) + . . .  

where the dots now denote terms of higher order in 16o- 11. Furthermore to lowest 
order in 16o-11 the coefficients A2 and/32 in yi vanish. Thus for similar niches 
we have the approximate  expansions 

Pi(t) ~I+(A1 cos tot+B1 sin tot)e +.  � 9  e 2 ~  0 o e 2 +  �9 �9 �9 



388 J.M. Cushing 

where 

Oo = - w 2 ( a 2 - 2 a  cos y +  1)/8(1 +w 2) 

A, = - (1  + a cos 3' + wa sin 7)/2(1 + ¢o 2) 

B, = ( -w(1  + a cos 7) + a sin y)/2(1 + ~o2). 

These formulas allow for an analysis of the oscillatory properties of the solution 
P~ and the strength of its stability as they depend upon the oscillatory properties 
of the consumption rates as expressed by the parameters a, 3' and w. 

(a) The first observation to make is that 

0o<0 if (a, y) # (1, 0) and 0o=0 if(a ,  y) = (1, 0). 

In the first case e2 < 0 when e # 0 is small enough (whereas e2 = 0 when e = 0, 
i.e. in the absence of oscillations in the consumption rates). 

Thus we conclude that /f there is some difference in the periodic utilization of  
the resource niche, that is to say, if  there is either a nonzero phase difference ( y ¢ O) 
or if  there is a difference in amplitudes ( a #: 1), then small amplitude periodicities 
in the resource consumption rates of  the two species result in increased stability. 

This conclusion is of course valid only to lowest order in ~. Moreover for 
fixed e > 0 it may not hold in the case of nearly identical resource consumption 
rate periodicities (a, 7 ) -  (1, 0), for in this case 0o ~ 0 and higher order terms in 
the e-expansion of the Floquet exponent e2 can dominate. Indeed the numerical 
results contained in the graphs of  Fig. 1 show in fact that in the case considered 
there either an increase or a decrease in stability can occur due to consumption 
rate periodicities depending upon the relationship of the other parameters. 

It is interesting and perhaps counterintuitive to find that for the parameter 
values in Fig. l(b) the competitive interaction is more stable when the consumption 
rates are exactly in-phase ( y = O) than when they are slightly out-of-phase ( y -  0). 
This was typically found to be the case in numerical solutions when the niche 
separation do was small. 

(b) 0o and hence stability is maximum when y = rr (for fixed a and w). Thus, 
as was undoubtedly intuitively expected, maximal stability occurs when the con- 
sumption rates are fully out-of-phase, i.e. when the two species "time share" the 
niche. Stability is not only maximal in this case but it is considerably stronger 
than when consumption rates are held constant (e = 0). 

(c) If  the resource consumption rates are totally out-of-phase (3' = or) then 
0o and hence stability is increased if the relative amplitude a is increased. See 
Fig. 2. 

Thus i f  their resource niches are similar (even identical) two competing species 
can increase the stability of  their interaction and hence minimize the possibility of  
competitive exclusion by making their temporal utilization of  the niches as different 
as possible. This theoretical result supports the general principle of competitive 
exclusion in the sense that species risk competitive exclusion when utilizing 
similar "niches" if one includes temporal utilization dimensions (here y and a) 
as well as the resource niche dimensions d and W in the definition of "niche." 

(d) If  there is some difference in the periodic utilization of the resource (i.e. 
if (a, 3') # (1, 0)) then 0o and hence stability increases with an increase in the 
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Fig. 1. (a) The unique positive 2~--periodic solution of the Lotka-Volterra system (2.1) with coefficients 
(3.2) was computed numerically with parameter  values a = w = 1.0, 6 = 0.9 (i.e. d~ W = 0.6492) and 
e = 0.5. The magni tude  of the stability determining Floquet exponent  e2, having been calculated 
numerically from the linearization at the computed 27r-periodic solution of (2.1), is plotted against 
the resource consumption rate phase difference 11. The graph clearly shows maximal  stability occurring 
at Y = 7r (totally out-of-phase consumption rates). It is also seen that stability is always greater with 
periodic consumpt ion rates (e = 0.5) than with constant consumption rates (e = 0). 

(b) This graph is the same as that in (a) with the same parameter  values except that the niches 
are closer together: 6=0 .98  (i.e. d~ W=0.2843) ,  Again maximal  stability occurs at 3 , =  7r. In this 
case, however, there is a region (0 < 7 < 1) of  weakened stability when the consumption rates are 
only slightly out-of-phase. This is accompanied by a significant drop in the populat ion density levels 
of  P2 (see Fig. 5), Such regions were found to be typical when d~ W~O. The drop in lezl becomes 
very exaggerated as d / W ~  0 

.20 

./0 

a P b 

.5 

, d 
0.'5 I'. 0 I. 5 

, d 
0.5 1.0 1.5 

Fig. 2. The graph in (a) shows the predicted increase in stability with an increase in the relative 
amplitude a. Numerical  calculations were done with w = 1, 8 = 0.9 (i.e. d / W  = 0.6492), e = 0.5 and 
9' = rr in (2.1)-(3.2), In (b) is shown the maxima and minima of  the population density oscillations. 
The dashed lines are for Pz and the solid lines for P1 
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Fig. 3. The magnitude of  the stability deter- 
mining Floquet exponent e 2 for the lineariz- 
ation of (2.1)-(3.2) at the unique positive p- 
periodic solution for parameter values a = e = 
1.0, y =  ~r and ~ =0.9 (i.e. d/W=0.6492) 
increases with increasing frequency ~o is the 
consumption rate periodicity. Also seen is an 
accompanying decrease in the population 
density oscillation 

frequency to. Changes  in strength of  stability for extreme values to - 0 and to - +oo 
are however  small .  The m a x i m u m  sensitivity o f  stability to changes  in frequency 
to occur  near  a unique finite value (here co = 3 -1/2 in the scaled units o f  time t 
u s e d  a b o v e ) .  

M o r e o v e r  i n  t h i s  c a s e  s t a b i l i t y  is i n c r e a s e d  w i t h  a n  i n c r e a s e  i n  t h e  a m p l i t u d e  

e o f  t h e  p e r i o d i c i t i e s  ( p r o v i d e d  e -  0).  

0.2 

0. /  

0.4 

0.3 

d W  : .  . 

/ 
, , , ~ i ~ ~ , I 

0.5 1.0 d/w=/.~ 
0.5 1.0 

Fig. 4. The magnitude of the stability determining 
Floquet exponent e 2 for the linearization of  (2,1)-(3.2) 
at the unique positive 2r solution for para- 
meter values a = to = 1.0, 3/= 7r is plotted against the 
consumption rate amplitude e for two different niche 
separation-to-width ratios. Also see Fig. 7 
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(e) With  regard  to the  p o p u l a t i o n  dens i ty  osc i l la t ions  themselves ,  the ampl i -  
t ude  (to lowest  o rde r  in e) 

(A~+BZ)a/2=�88 COS y +  1) ' /2 (1+w2)  - ' / 2  

is m in imized  for  7 = ~- (a  and  ~o he ld  fixed). 
Thus fully out-of-phase resource consumption rates not only maximally enhance 

stability in the sense of providing the most negative Floquet exponent but also in 
the sense of providing population density oscillations of minimum amplitude. 
M i n i m u m  a m p l i t u d e  dens i ty  osc i l la t ions  p r e s u m a b l y  he lp  to p reven t  ext inc t ions  
due  to pe r i od i ca l l y  d a n g e r o u s l y  low p o p u l a t i o n  dens i ty  levels. 

Note  tha t  for  smal l  do in Fig. 5(b) one spec ies '  p o p u l a t i o n  dens i ty  level d rops  
d a n g e r o u s l y  low for c o n s u m p t i o n  rates s l ight ly  ou t -of -phase .  This is a c c o m p a n i e d  
by  a w e a k e n e d  s tabi l i ty  as found  above  (see Fig. l ( b ) ) .  These  facts were typ ica l ly  
found  for  do close to zero in numer ica l  in tegra t ions  and in fact  can be very 
exaggera t ed  for  do m a d e  very near  or equal  to zero. 

This suggests that for very similar or identical resource niches competitive 
exclusion is seriously threatened when consumption rates are slightly out-of-phase. 
It is better to be in-phase than slightly out-of-phase (but best to be totally out-of- 
phase). Note  tha t  it is P2, the species  whose  c o n s u m p t i o n  rate peaks  first (i.e. 
the  species  which  is the  "ea r l i e s t "  in the niche) ,  which is t h rea t ened  with 
ext inct ion.  

(f) The  lowest  o rde r  Fou r i e r  coefficients A1, B1 do not  s imul t aneous ly  vanish  
except  when  (a, 3') = (1, 7r). Thus,  unless  the  resource  c o n s u m p t i o n  rates osci l la te  
ou t -o f -phase  wi th  equal  ampl i tudes ,  the  p o p u l a t i o n  densi t ies  osci l la te  near ly  
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Fig. 5. The maxima and minima of the positive 2~--periodic solutions P1 and P2 of (2.1)-(3.2) are 
plotted against the phase difference 7 in the resource consumption rates for parameter values a = to = 1 
and e = 0.5. (a) is for 8 = 0.90 (i.e. d~ W= 0.6492) and (b) is for 6 = 0.98 (i.e. d~ W= 0.2843). The 
solid lines are the extrema for P1 and the dashed lines are the extrema for P2. The Floquet exponent 
e2 for these two cases are plotted in Fig. 1. The horizontal line is the equilibrium value P1 = P2 = 1 / ( 1 + 8) 
for the non-oscillatory case e = 0 and is shown for comparison purposes. Note the low level of P2 
when 3' is near 1 
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,3 

2 
Fig. 6. The phase difference between the components P~ and 
P2 of the positive 2~r-periodic solution of (2.1)-(3.2) with 
a = ~ o = l ,  e=0 .5  and /}=0.9 (i.e. d/W=0.6492) is plotted 
against the phase difference 3' of the resource consumption 
rates. The components P1 and P2 are seen to be in-phase until 
the consumption rates become nearly out-of-phase at which 
point P1 and P2 quickly move out-of-phase also 
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Fig. 7. The magnitude of the stability 
determining Floquet exponent e 2 of  
the linearization of  (2.1)-(3.2) at the 
positive 2~r-periodic solution for para- 
meter values a = t o  =1 and e =0.1054 
(i.e. d/W=3.0) is plotted in (a) 
against the phase difference 3' in the 
resource consumption rates (with e = 
0.5) and in (b) against the amplitude 
e (with 3'= ~r). Compare these plots 
for two "widely separated" niches to 
those in Fig. 1 and Fig. 4 for closer 
niches 

in-phase. On the other hand, "the numerical results in Fig. 6 show that when 
(a, y ) -  (1, ~r) the densities oscillate nearly out-of-phase. 

Any of the above conclusions can radically alter if the niches are far apart 
<< 1 or if the amplitude e > 0 is large or if the temporal niches are nearly identical 

(a, ~) - (1, 0). 

/.0 

0.5 

J%l 

�9 J 

' I I I 

/ 2 ~ 
d/W 

Fig. 8. The magnitude of the stability 
determining Floquet exponent e 2 of  the 
linearization of  (2.1)-(3.2) at the positive 
p-periodic solution for a = e = 1 and 3, = 
~- is plotted against the niche separation 
to width ratio d~ W. The dashed line is 
the magnitude of  the stability determin- 
ing eigenvalue of the equilibrium of the 
classical autonomous case of  nonoscilla- 
tory parameters (e = 0) 



Periodic Lotka-Volterra competition equations 393 

For example in Fig. 7 where the niche separation is relatively large maximal 
stability does not occur at y = 7r but on the contrary at y = 0. In that example it 
is more advantageous for the competing species to have in-phase rather than 
out-of-phase resource consumption rates. 

Figure 7(b) shows the relationship of the strength of  stability to the amplitude 
e. Out-of-phase resource consumption rates are stabilizing for similar niches, but 
are destabilizing for niches sufficiently separated. This is further illustrated in 
Fig. 8 in which strength of  stability is plotted against niche separation (or more 
precisely the niche separation to width ratio) and is compared to the classical 
autonomous case of no periodicities e = 0 [2, 12]. 

4. Periodic niche dimensions 

In the preceding section all environmental and resource niche parameters R, d 
and W were held constant in time while the effects of  periodic resource consump- 
tion rates were studied. In this section an opposite case will be considered in 
which R, d and W are allowed to oscillate in an arbitrary periodic manner while 
the resource consumption rates, although not necessarily restricted to be constant 
in time, will be required to be identical for both species c := c~ = c2. The situation 
then is that in which two identical, competing species (identical in the sense that 
they have identical resource consumption rates) find themselves in a periodic 
environment. The goal is to see what effects these environmental periodicities 
have on the stability of the competitive interaction and on the resulting population 
density oscillations. We will also see what "best"  resource consumption rate c 
the two species might adopt in order to enhance their mutual coexistence (i.e. 
to avoid competitive exclusion). 

When cl = c2 = r in the MacArthur-Levins coefficients (2.2) the Lotka-Volterra 
system of  equations (2.1) becomes symmetric 

p'i=p~(eR-c2(4~W2)-~/2pi-6c2(4~-W2)-l/zpj) , l<~i~j<~2. 

This system (which is different from the symmetric system studied by Rosenblat 
in [19]) has the form of  that studied in the appendix. The mathematical results 
there imply that this 'system of equations has a unique, globally attracting positive 
p-periodic solution and that this solution has the form P1 = P2 = P where P is 
the unique positive p-periodic solution of  the periodic logistic equation 

P ' = r P ( 1 - P / K )  (4.1) 

where 
r:=cR, K:=R(4crW2)I/2/c(I+8). (4.2) 

Furthermore the Floquet exponents are given by 

el = - p  av[cR], e2 = - p  av[c2p(1 - 6)(4~W2)-1/2]. (4.3) 

Suppose now that the system parameters are subjected to small amplitude 
periodicities of  the form (2.3)-(2.4) with 

c,(t) =-- c2(t) ---- C(t):= Co(1 + ew(t)) 
(4.4) 

Co>0, av[w] =0.  
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Then the logistic coefficients (4.2) have e-expansions 

r ( t ) = r o + e r l ( t ) + ' " ,  K ( t ) = K o + e K l ( t ) + e Z K 2 ( t ) +  " ' "  

ro := coRo, rl:= c o R o ( w + R O ,  Ko:-- Ro(4"rrW2)l/2/co(l+8o) 
K~ := Ko( W~ + g l  - w - 81(1 + 8o) -1) 

/(2 := Ko(R,  W, - ( W~ + g l ) ( w  + 8~(1 + 80) -1) + w 2 

-Ji- (w81 - -  82)(1 + 8o)-X + 62(1 + 80)-:) 

where 

(4.4) 

8 = 8 0 +  ~81  -~ e 2 8 2 - t  - "  �9 �9 

8o:=exp( - (do /2Wo)2) ,  8 , : = 8 o d 2 ( W , - d l / d o ) / 2 W ~ .  

Standard regular perturbation procedures yield, from the coefficients (4.4), a 
solution 

P(  t ) = Ko(1 + ex~( t ) + eZx2( t ) + . . . )  (4.5) 

of the logistic (4.1). The coefficients Xl, x 2 , . . ,  are found by substitution into 
(4.1) and a solving of the linear equations obtained by equating coefficients of 
like powers of e from both sides. 

The Floquet exponents (4.3) have e-expansions 

e~ = -pcoRo - p a v [  wRx] ~ 2 + . . .  
(4.6) 

e2 = -pKoc2o(1 - 8o)(47rW~) -1/2 + ~e 2 + ' ' "  

for a coefficient qs yet to be calculated. 
Our concern here will be with the case d o - 0 ,  i.e. with the case when the 

niches are close together in the sense that the average niche separation is zero. 
In this case the stability determining exponents, i.e. the one with the smallest 
magnitude, is clearly e2 since 6 o - 1  and e -  0. 

If  ~o denotes the coefficient 0 in e2 when do= 0, then to lowest order the 
unique positive periodic solution is stabilized if ~o < 0 and is destabilized if ~o > 0. 
This coefficient turns out to be 

t)o = -coRo  av[ d2( t ) ]/ 8 W 2, 

which satisfies 0o < 0 if d~ # 0. 
We see then that this analysis implies the reasonable result that any periodicity 

in niche separation o f  niches which on average are identical enhances stability. 
Moreover, the analysis shows that to lowest order, periodic oscillations in niche 
separation dominate system stability in that the oscillatory terms W~, w and Ra 
do not appear in 0o. 

On the other hand, periodic oscillations in W, w and /or  R do have an effect 
on the oscillatory properties of the population densities. The coefficients xi in 
the solution (4.5) are given by the unique periodic solutions of the linear non- 
homogeneous equations 

x~ + roXl = roK1 (4.7) 

x'2 + rox2 = roK2-  ro( K~ - x~)2+ ror~( K~ - x~) 
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where for do = 0 (and hence 6o = 1, 8, -- 0 and ~2 = - ( d , / 2  Wo) 2) 

K, = Ro Wozrl/2( W1 + R, - w)/  Co 

/(2 = Ro W0"/7"/2(R1 Wl - -  ( Wl + R1) w + w 2 - �89 

The amplitude and phase of x,, and hence of P to lowest order, is determined 
through Eq. (4.7) by K1. The phase of xl is consequently never exactly that of 
K, (i.e. of K to lowest order), although it approaches that of K, for large to. 
The amplitude of x, is always less than that of K1 also. If  we take as the "most 
stable" competitive interaction the one with minimum amplitude oscillations in 
population densities, then the best choice for the two species is to consume the 
resource periodically according to the formula 

W = R 1 -[- W l . (4.8) 

Then K, and hence x~ vanish identically and P = Ko(1 + e2x2 + ' "  ") where 

x'2 + roX2 = roK2 (4.9) 

K2 = Ro WoTr '/2( R,  W, + d~/ 8 Wo) / Co. (4.10) 

With regard to the average population density we see that av[K,] = 0 and 
consequently av[x,] = 0. Thus there is a second order change in average population 
density due to parameter periodicities. Under the condition (4.8) this change in 
average is determined by K2: 

av[x2] = av[K2] = Ro WoTrl/2(av[Rl W1] + av[dl2]/8 Wo)/Co. 

In conclusion, a competitive interaction of  two identical species (Cl =- c2) compet- 
ing for identical averaged niches (do = O) is made more stable by any periodic 
oscillation in niche separation and the resulting population density oscillations are 
maximally damped in amplitude if  the resource consumption rate is periodic and is 
taken to be the sum of the periodicities in the resource availability and the niche 
width (4.8). In this case an increased average population density is attained by 
having a periodic oscillation in niche width which is in-phase with the periodic 
oscillation in resource availability (av[RlW~]> 0). Furthermore, the periodic 
oscillation in niche separation not only increases stability but also the average 
population density (av[d~] > 0 hence av[x2] > 0). 

These conclusions are illustrated by the results of numerical integrations 
graphed in Figs. 9-12. These graphs were drawn from many integrations of the 
periodic logistic (4.1)-(4.2) with the assigned periodicities 

w= rc cos(wt + 7c), Wl = rw cos(wt + yw) 
(4.11) 

R, = rR cos(wt + YR), d~ = ra cos wt. 

Finally consider briefly the case of nearly zero average, but a nonoscillatory 
niche separation d o - 0 ,  d,-= 0. In this case the coefficient ~0 in the stability 
determining Floquet exponent (4.6) vanishes for do = 0 and hence in order to 
determine the effects on stability of the periodicities in the system parameters 
the first nonzero term in a do-expansion of tp must be calculated. If again (4.8) 
is assumed to hold (so that the amplitude of the population density oscillations 
is minimized), computational simplicity results and it turns out that 

0 = -d2Roco av[ W~-3Ra  W, + R2]/8 W o + " "  
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Fig. 9. The magni tude of the stability 
determining Floquet exponent  e 2 of  the 
system (2.1) with coefficients (2.2)-(2.3) 
under  the cosinusoidal periodicities 
(4.11) is plotted against the amplitude 
e. Here the average niche separation d o = 
0 (with r a = 1) and the niche dimensions 
are nonoscillatory rw = rR = 0  with 
averages W o = 0.2, R o = 5.0. The 
resource consumption rate is also con- 
stant Co= 1.0, re =0 .  The period is 2zr 
(to = 1). This graph shows a strengthened 
stability with increased amplitude in the 
niche separation periodicity 

where the dots denote terms of order d 3. Stability is enhanced by the periodic 
parameter oscillations in this case if 

av[ Wl 2 - 3R~ W 1 " [ -  R 2] > 0 (4.12) 

whereas stability is weakened if the opposite inequality holds. 
For example, stability is enhanced if only one of the two parameters R or W 

oscillates (i.e. if W1 ~ 0, R1 ~ 0 or vice versa). "Enhanced" means here that 
stability is stronger (e2 is more negative) in the presence of the periodicities 
(e > 0) than without periodicities (e---0). 

Very roughly speaking (4.12) implies that an out-of-phase relationship 
(av[R1W1]<0 or a large relative amplitude difference) between R and W 
enhances system stability while an in-phase relationship weakens stability. 
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Fig. 10. The extrema of the positive 2~'- 
periodic solution P1 = P2 = P of (2.1) 
with coefficients (2.2)-(2.3) under  the 
cosinusoidal periodicities (4.11), to = 1, 
are plotted against the consumption rate 
phase Yc- Here d o = 0  , r a = l ,  Wo=0.2 , 
r w = l  and Ro=5 ,  r R = I  with e=0 .2 .  
The phases are (relative to the cosine 
oscillation o f  the niche separation d~ = 
cos t) Yw = 0  and 7g = -~r /2 .  Note that 
the min imum oscillation in populat ion 
density P occurs very near the theoreti- 
cally predicted consumption rate phase 
Y c = - ~ r / 4  when w = R  1+W1.  The 
equilibrium density when no oscillations 
are present ( e = 0 )  is shown for com- 
parison 
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Fig. 11. The extrema of the positive 2or-periodic solution P1 = P2 = P of  (2.1) are shown for the same 
coefficients as in Fig. 10 except that Yc = - ~ ' / 4  while the relative amplitude r c of  the consumption 
rate is varied. The minimum "amplitude of the population density oscillation occurs very near the 
theoretically predicted value r c = 21/2 where w = W~ + R 1. Note again that the average density is 
greater than the equilibrium density when no oscillations occur (e = 0). 

M o r e o v e r  P = g o ( l + e 2 x 2 +  ' '  .) w h e r e  x2 s a t i s f i e s  (4 .9)  w i t h  K2  g i v e n  b y  

(4 .10)  w i t h  d~-= 0. T h u s  

av [x2 ]  = Ro Wozr 1/2 a v [ R 1  W1]/ Co 

a n d  a n  i n c r e a s e  i n  a v e r a g e  p o p u l a t i o n  d e n s i t y  r e s u l t s  i f  a v [ R 1  W1] > 0. 

I n  s u m m a r y ,  / f  two identical species (Cl -= c2) share nearly identical niches 
(do ~ O) whose separation does not oscillate ( d l  =- 0) and they do so with a periodic 
consumption rate (4 .8)  selected to minimize the amplitude of  their population density 
oscillations, then the effects on stability and on the average population density are 
determined by the phase relationship and by the relative amplitudes of  the periodicities 
in resource availability R and niche width W. The effects on stability and on average 
population density are opposite: that which increases stability (i.e. an out-of-phase 
relationship) decreases average population density and vice versa. 

T h e s e  c o n c l u s i o n s  a r e  i l l u s t r a t e d  in  F i g s .  12 -14 .  

.25 

I I I 

-,3 -2 -/  / 2 3 /1' 

Fig. 12. As in Figs. 10 and 11, e =0.2, 
d0=0,  rd=rw=rR=l, Wo=0.2, co = 
1 and R o = 0.5. Here however Yw = 0 
and the consumption rate oscillation 
is chosen so that w = RI+  W 1. Thus 
r~ = (2(1 +cos  yR)) 1/2 and yc = 
Tan 1 sin y R / ( l + c o s  YR). The 
average population density is maxim- 
ized when R and Ware in-phase (YR = 
0) at which point, however, stability is 
minimized 
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Fig. 13. Unlike in Figs. 9-12 the average niche separation here is not zero but  d o = 0.5. Also the niche 
separation is constant  in t ime r a = 0. Other parameter values in the oscillations (4.11) are r w  = rR = 1, 

Y w  = 0 and w = R 1 + W1, i.e. r c = (2(1 + cos 7R) )  1/2 and 7c = Tan-~ sin y ~ / ( 1  + cos 7R). The parameter 
averages are W o = 0.2, R o = 5.0 and  c o = 1.0. The ampli tude is e = 0.5. As theoretically predicted the 
graphs show an inverse relationship between the average density and the system stability with 
max imum stability occurring roughly when R 1 and W 1 are out-of-phase (7a = ~),  The upper  dashed 
line shows the nonoscillatory (e = 0) eigenvalue for comparison to the Floquet exponent  while the 
lower dashed line shows the equilibrium density when e = 0 for comparison with the average oscillatory 
density 
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Fig. 14. As in Fig. 13 the niche separ- 
ation is held constant  d o = 0.5, r a = 0 

and the oscillation in the consumpt ion 
rate is chosen so that w = R t +  W 1. 
Parameter values are e = 0.5, Wo = 0.2, 
r w  = 1, Yw = 0, R o = 5, TR = 0 and c o = 
1, r c = l + r R ,  To=0. Here R t and W1 
have relative amplitudes r R and are 
in-phase when r R > 0 and out-of-phase 
when r a < 0. The d a s h e d  lines are the 
equilibrium levels when e =0 .  The 
condition (4.12) predicts enhanced sta- 
bility when e ~ O  when I rR l>21/a ,  

which is roughly true in the graph. The 
analysis predicts a decreased average 
density for r R < 0  and an increased 
average for r R > 0, which holds true in 
the graph except for "large" relative 
amplitudes r R > 1 

5. Concluding remarks 

T h e  c l a s s i c a l  L o t k a - V o l t e r r a  e q u a t i o n s  w e r e  u s e d  i n  t h i s  p a p e r  t o  s t u d y  t h e  e f f e c t s  

t h a t  t i m e  p e r i o d i c  o s c i l l a t i o n s  i n  m o d e l  p a r a m e t e r s  h a v e  o n  a t w o - s p e c i e s  c o m p e t i -  

t i v e  i n t e r a c t i o n .  T h e  c o e f f i c i e n t s  w e r e  t a k e n  t o  b e  t h o s e  o f  t h e  s i m p l e s t  c a s e  f r o m  

t h e  M a c A r t h u r - L e v i n s  t h e o r y  o f  a o n e - d i m e n s i o n a l  r e s o u r c e  n i c h e .  T h u s ,  
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Gaussian resource preference functions were used with equal standard deviations 
or "niche widths" W and the resource availability R was assumed independent 
of resource type. If  either W or R or if either the niche separation d or the 
resource consumption rates ci are allowed to fluctuate periodically in time, then 
the corresponding Lotka-Volterra system has time periodic coefficients. As a 
result the classical equilibrium analysis and its results are no longer applicable. 

In place of the fundamental questions concerning the existence and stability 
of positive equilibria, one now has the mathematically more difficult questions 
concerning the existence and stability of positive periodic solutions. Recent 
general theorems and techniques [4, 5, 7] can be applied to these fundamental 
questions or, in the case considered here of small amplitude periodicities, standard 
small parameter perturbation techniques also yield existence and stability. In the 
latter case, these regular perturbation techniques can also yield specific results 
concerning the properties of the solution and its stability as they depend on the 
properties of the periodicities in the model parameters. In Sects. 3 and 4 such 
an analysis is carried out for two restricted and roughly opposite cases. 

First, if species consumption rates oscillate periodically (in Sect. 3 
cosinusoidally) while all other system parameters are held constant in time, it 
was found that the stability of the competitive interaction for two species compet- 
ing for an identical (or nearly identical) resource niche is always increased, at 
least when there is some difference in their "temporal niche," i.e. if either there 
is a phase or a relative amplitude difference in their resource consumption rates. 
For any relative amplitude difference maximal stability occurs when the consump- 
tion rates are totally out-of-phase, as might be expected. 

What is perhaps unexpected is that minimal stability does not always occur 
when the consumption rates are exactly in-phase, but for very similar niches 
(average separation nearly zero) typically occurs for consumption rates slightly 
out-of-phase. In addition, in this situation the species whose consumption rate 
peaks earliest is threatened with drastically low population density levels 
(maximum and minimum). 

This latter result might have implications with regard to the possible evolution 
of temporal niche sharing. For, if two similar species sharing a niche in-phase 
attempt to avoid competitive exclusion by adopting a time sharing out-of-phase 
resource utilization strategy this could not be done by small adaptive changes in 
the phase difference without first passing through a slightly out-of-phase stage 
which would be even more threatening to coexistence. Or, put another way, if 
one species wishes to eliminate its competitor it should put its consumption rate 
slightly out-of-phase with that of its competitor (and, in the case considered here, 
so that it peaks later). 

Other properties of the population density oscillations and their stability are 
also studied in Sect. 3. In particular it is pointed out that the conclusions reached 
above may be drastically altered or even reversed without the basic assumption 
that the parameter periodicities are of small amplitude or if there is no difference 
in the temporal niches. For example, if the niche separation is large enough then 
it is best not to have periodic consumption rates, but to hold consumption rates 
constant in time or if periodic consumption rates are required then it is more 
stabilizing to be in.phase rather than out-of-phase. 
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Secondly, the case of periodic environmental and niche oscillations was 
considered in Sect. 4 under the assumption that the species are identical in the 
sense that they have the same resource consumption rates and that they are 
competing for an identical (or nearly identical) niche. It was found that in this 
case system stability is dominated to lowest order by the periodicities in niche 
separation in that any such oscillation is stabilizing while any periodicity in any 
other system parameter has no effect (to the same order). Moreover, when there 
is a periodic oscillation in niche separation a further stabilization can be attained 
by choosing the common species resource consumption rate to be oscillatory 
with a periodicity which is a sum of those in the resource availability and the 
niche width. This has the effect of minimizing the amplitude of the oscillations 
in population densities. 

On the other hand should the niche separation not oscillate in time the 
situation becomes a good deal more complicated. The species can still minimize 
the amplitude of their density oscillations by choosing their resource consumption 
rates as a sum of the periodicities in niche width and resource availability, but 
the strength of the system stability as measured by Floquet exponents depends 
in a non-straightforward way on the relative phase and amplitude differences 
between these two periodic environmental parameters. It can be said nonetheless 
that the analysis roughly indicates that an out-of-phase relationship between 
niche width and resource availability is stabilizing while an in-phase relationship 
is destablizing. There is, however, a trade-off in that an out-of-phase relationship 
leads to lowered average population densities (while an in-phase relationship 
leads to higher averages). 

We have seen that the simplest classical model of two species competition, 
the Lotka-Volterra system (2.1), becomes nontrivial to analyse if the coefficients 
are allowed to be periodic in time. Even the simplest form for these coefficients 
derived from the MacArthur-Levins theory of a one-dimensional resource niche 
leads to analytically intractable equations without further simplifying assump- 
tions. It is hoped that the analysis of the two simplified special cases studied 
here and the results obtained from it contribute in some way to the fundamental 
understanding of the effects that time periodic oscillations in system parameters 
can have on the basic theory of competing species. 

Appendix 

Consider the symmetric system 

P ~ = P i ( a ( t ) - f l ( t ) P ~ - ~ ( t ) P j ) ,  l<~i~j<~2 (A.1) 

where ~,/~ and ~: are all positive periodic, continuous functions of a common period p. Associated 
with this system is the periodic logistic equation 

P'= P(a (  t) - (fl( t) + ~( t) )P). (A.2) 

Note that a solution P of (A.2) either never vanishes or is identically zero. Similarly each component 
Pi of  a solution pair of  (A.1) either never vanishes or is identically zero. 

Theorem 1. (i) I f  P solves (A.2) then P1 =- 1°2 =- P solve (A.1). 
(ii) Assume that ~(t) <~ fl( t)  for all t, but ~ ~ ft. I f  PI, P2 are positive periodic solutions of  (A.1) 

then P1 =- P2 and P ~  P1 solves (A.2). 
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Proof Part (i) is trivial. To prove (ii) let P1, P2 > 0 be periodic solutions of  (A.1). If  the equation 
i = 1 in (A.1) is divided by P~ and the result averaged over one period, then one gets (because P~ is 
periodic) the result 

av[a] = av[flP 1 + soP2]. 

From this equality and the assumption ~: ~</3 (~: ~/3)  it follows that 

av[a] < av[fl(P1 + P2)]. (A.3) 

Let x = P~-P2  and subtract the two equations in (A.1). This leads to 

x ' : ( a ( t ) - f l ( t ) ) x ,  ~ := /3 (P I+  P2) (A4) 

It follows that either x --- 0 or x is never zero. In the latter case, one can divide (A.4) by x and average 
the result to obtain (because x is periodic) 

av[a]  = av[~] = av[/3 (P, + P2)], 

which is a contradiction to (A.3). Thus it must be the case that x-=0 or in other words that Pa ~ P2. 
That P ~  P, then solves (A.2) is trivial. 

The periodic logistic (A.2) can be integrated in closed form and it is rather easy to show that it 
has a unique positive periodic solution [20]. This fact yields the following result for (A.1). 

Corollary 1. System (A.1) has at least one positive periodic solution. I f  ~( t) <~/3( t) for all t, but ~ ~ /3, 
then (A.1) has a unique positive periodic solution. This solution satisfies P1 =- P2 where 1°1 and Pe satisfy 
(A.2). 

With regard to the stability of the positive periodic solution we have the following result. 

Corollary 2. I f  ~(t ) <~/3 ( t ) for all t, but ~ ~ /3, then the unique positive periodic solution of  (A. 1) is 
globally attracting (in the positive quadrant). 

Proof Theorem 1 and the facts discussed above concerning the periodic logistic (A.2) imply that 
(A.1) has exactly four nonnegative solutions: 

P I ~ P 2 ~ 0  and PI-=0, P2-=/3 and PI-=/3, P2---0 and PI=-Pe=-P 

where P > 0, /5 > 0 are the unique positive periodic solutions of the periodic logistic (A.2) and 

/3 '=/3(~ -8 /3 )  (A.5) 

respectively. 
The null solution P1 ---- P2 -= 0 is clearly unstable since the linearized Floquet exponents are both 

av[a]  > 0. 
The axis solutions P1 -= 0, P2 -=/3 and P1 -=/35, P2---- 0 are also unstable. To see this consider the 

latter solution (the former being treated similarly). The linearized coefficient matrix is lower triangular 
with diagonal entries a -2 /3 /3  and a-st/3. From (A.5) it follows that 

av[~ - 8t  3] = 0. 

Thus the two Floquet exponents are 

av[a - 2fl/3] = -av[/3/3] < 0, av[ a - s¢/3] > av[a -/3/3] = 0. 

The latter inequality implies instability. 
It now follows from the results of  de Mottoni and Schiaffino [7] that the remaining periodic 

solution Pa -= P2 -= P > 0 is globally attracting. 

The next and final theorem gives formulas for the Floquet exponents of  a positive periodic solution 
of  (A.1). 
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Theorem 2. I f  P~ =- Pz =- P > 0 is a periodic solution of (A.1), then the Floquet exponents of the linearizea 
system associated with this solution are 

- p  av[a] ,  - p  av[(/3 - ~P)]. 

That at least one positive periodic solution exists is guaranteed by Corollary 1. If  ~(t) ~</3(t) for 
all t, but ~ ~/3, then it is unique and the two Floquet exponents in Theorem 2 are negative, as is 
consistent with the global attractivity guaranteed by Corollary 2. 

Proof The linearization of (A.1) at ,~ --- "~ ~- P is 

x '=e( t )x+d( t )y  

y'= d( t)x + e( t )y (A.6) 

e:=a-(2/3+lj)P, d:=-~P. 

By adding these equations and then subtracting them, one finds that 

(x+y) '=(e+d)(x+y) ,  ( x - y ) ' = ( e - d ) ( x - y )  

and hence 

(fo x~-y=(Xo+Yo) exp (e •  ds (A.7) 

where x o = x(0), Yo = y(0). The Floquet multipliers are the eigenvalues of the normalized fundamental 
solutions matrix Y(t) evaluated at t = p. The fundamental solution matrix Y(t) has columns generated 
by the solutions for which Xo = 1, Yo = 0 and x o = 0, Yo = 1 respectively. The eigenvalues are the roots 
of the quadratic 

m 2 - t r  Y(p)rn+det Y(p). 

A straightforward calculation using (A.7) shows that 

tr Y(p) = exp(p av[e + d])  + exp(p av[ e - d]) 

det Y(p) = exp(2p av [e]). 

The eigenvalues or Floquet multipliers then turn out to be 

m = e x p ( p  av [e+ d ] )  and exp(p a v [ e - d ] ) .  

From (A.2) follows, since P > 0, 

av[a]  = av[(/3 + ~)e].  

Consequently from (A.6) 

av[e + d] = av[t~ - 2 ( 3  + ~:)P] = -av[ct]  

av[e - d] = av[a -2fiR] = av[(/3 + ~)P] - 2  av[/3P] 

= -av[(/3 - ~)P] 

and the theorem is proved. 
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