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Periodic matrix models for seasonal dynamics of structured
populations with application to a seabird population
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Abstract For structured populations with an annual breeding season, life-stage interactions and

behavioral tactics may occur on a faster time scale than that of population dynamics. Motivated by

recent field studies of the effect of rising sea surface temperature (SST) on within-breeding-season

behaviors in colonial seabirds, we formulate and analyze a general class of discrete-time matrix

models designed to account for changes in behavioral tactics within the breeding season and their

dynamic consequences at the population level across breeding seasons. As a specific example, we

focus on egg cannibalism and the daily reproductive synchrony observed in seabirds. Using the

model, we investigate circumstances under which these life history tactics can be beneficial or non-

beneficial at the population level in light of the expected continued rise in SST. Using bifurcation

theoretic techniques, we study the nature of non-extinction, seasonal cycles as a function of en-

vironmental resource availability as they are created upon destabilization of the extinction state.

Of particular interest are backward bifurcations in that they typically create strong Allee effects

in population models which, in turn, lead to the benefit of possible (initial condition dependent)

survival in adverse environments. We find that positive density effects (component Allee effects)

due to increased adult survival from cannibalism and the propensity of females to synchronize daily

egg laying can produce a strong Allee effect due to a backward bifurcation.
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1 Introduction

The Salish Sea, which consists of the connected marine waterways of British Columbia and Wash-

ington to the east and south of Vancouver Island, is an important region for breeding seabirds.

Protection Island, in the south Salish Sea at the southeast end of the Strait of Juan de Fuca, is

a particularly important breeding area, hosting over 70,000 seabirds [24]. More than 70% of the

seabirds in Washington’s coastal waterways nest on the island [10].
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Glaucous-winged gulls (Larus glaucescens) breed in colonies along the west coast of North Amer-

ica from Oregon to Alaska. Over 2,400 pairs of glaucous-winged gulls nest in a colony on Violet

Point (48◦07’40”N, 122◦55’3”W), a gravel spit on the southeast end of Protection Island [12]. In
the spring, females lay two or three eggs in a clutch at approximately two-day intervals [33]. Par-

ents take turns guarding the territory and incubating the eggs. The semi-precocious chicks hatch

at about 27 days and fledge about six weeks later. Juvenile gulls become sexually mature in four

years, often returning to their natal colony to nest [11]. The Protection Island colony does not

have any ground predators, and the greatest sources of egg loss are due to bald eagle (Haliaeetus

leucocephalus) predation and the cannibalization of eggs by conspecific neighbors [12],[13].

Average sea surface temperature (SST) in the Salish Sea has risen more than 1◦C in the past
few decades [31],[16]. Increases in SST often are associated with a lowered thermocline and lower

plankton levels, leading to food deficits for marine birds [2],[28],[22],[30]. Gulls and other seabirds

in the Salish Sea region are considered sentinels of environmental change [3],[18],[17].

In 2006-2015 our group carried out a study on the Violet Point colony to assess the effect of

climate on reproductive and feeding tactics in glaucous-winged gulls [12],[13],[29]. We showed that:

• A 0.1 ◦C increase in SST was associated with a 10% increase in the odds that an egg was

cannibalized by colony neighbors [12].

• During years of high SST, and hence high cannibalism rates [15], residents in dense parts of

the colony synchronized clutch initiations on an every-other-day schedule [13].

Clutch initiation occurs when the first egg is laid in the nest. We found that the first egg was the

most likely of the eggs in a clutch to be cannibalized and that it tended to be cannibalized on the

day it was laid. We also found that first eggs laid synchronously with other first eggs were less likely

to be cannibalized, suggesting that synchronous clutch initiation is advantageous in the presence of

cannibalism [34].

The causal link between high SST and the two tactics of egg cannibalism and clutch-initiation

synchrony probably is not direct, but likely is mediated by food resource level via the food web.

Smith et al. [29] showed that SST in the early autumn before the breeding season was the best

predictor of egg cannibalism and hatching success in glaucous-winged gulls. Decreased plankton

abundance in early autumn can lead to fewer Pacific herring (Clupea pallasii) larvae in the spring,

a major food resource for glaucous-winged gulls. This hypothesis is consistent with the fact that

zooplankton abundance in October in the North Atlantic is the best predictor of the post-winter

post-metamorphosis larvae of Atlantic herring (C. harengus) [1]. Thus, in this paper we consider

SST a proxy for resource level.

We have considered several low-dimensional, proof-of-concept population and evolutionary dy-

namic models designed to study the effects of cannibalism on a population’s reproductive timing,

the nature of its dynamics, and its prospect for survival in a deteriorating environment [4], [14], [9],

[32]. Using bifurcation theoretic techniques to study the bifurcation that occurs when the extinction

equilibrium destabilizes, we have established several theoretical possibilities: a cannibalistic popu-

lation can asymptotically persist in a deteriorated environment in which it would go extinct if it

did not engage in cannibalism; reproductive synchrony can be a response to increased cannibalism

activity; and cannibalism can be an evolutionarily stable strategy. Central to these analyses are

backward bifurcations that lead to strong Allee effects [7], which imply initial condition dependent

survival in a deteriorated environment and a “tipping” point for a catastrophic population collapse.
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A discrepancy between the previously studied models and the population dynamics of the gull

populations that motivated them is that those models assume juvenile maturation and adult repro-

ductive synchrony are on commensurate time scales, whereas in gull populations the reproductive

synchrony happens within a breeding season (on a daily time scale) and juveniles take several sea-

sons (years) to reach maturity. Our purpose here is to derive and analyze a model that partially

addresses this discrepancy by applying a within-breeding season projection matrix that is followed

by an across-season projection matrix to account for over-winter mortality and maturation.

The gull model in this paper is an extension and generalization of one studied in [14]. It uses

matrix model methodology to describe the breeding season dynamics of a juvenile-adult structured

population coupled with a projection matrix to account for across season mortality and maturation.

The model, which is derived and studied in Section 3, is an example of a general class of periodically-

forced matrix models that is introduced and studied in Section 2. We show in Section 2 that an

analysis of this class of models can be reduced to the analysis of a scalar map (one dimensional

difference equation). Using bifurcation results for scalar maps, we obtain diagnostic quantities that

determine the existence and stability properties of (seasonally) periodic solutions that bifurcate from

the extinction equilibrium when it is destabilized by parameter manipulation. These results are then

applied to the across-season gull model in Section 3 where we investigate the population dynamic

consequences of cannibalism and reproductive synchrony as changes occur in the environmental

resource availability.

2 A class of periodic matrix models

One use of periodic matrix models is to study seasonal variation in vital rates that occur over time

intervals that are short in comparison to the seasonal cycle (for examples, see [5], [6] [20], [21], [23],

[25], [26]). Here we consider a class of such models in which we separate the within breeding season

vital rates from between breeding rates. Specifically, we consider the periodically-forced matrix

model

̂ (+ 1) =  ( ̂()) ̂() (1)

where ̂() is an -dimensional demographic vector and the projection matrix  ( ̂) is defined by

 ( ̂) =

½
 (̂) for  = 0 1 · · ·   − 2
 for  =  − 1 (2)

extended periodically in  with integer period  ≥ 2, i.e.

 (+  ̂) =  ( ̂) for all  ∈ 

where  := {0 1 2 3 · · · }. Let + denote the non-negative real numbers, 
+ denote the non-

negative cone in -dimensional Euclidean space  and Ω ⊃ 
+ denote an open set that contains


+ .

The matrix accounts for the population dynamics during the breeding or reproductive season

and we refer to it as the within-season projection matrix  The matrix  maps the population

demographic vector from the end of a reproductive season to the start of the next reproductive

season and we refer to it as the across-season projection matrix  The integer  is the period of

the reproductive cycle. Note that  − 1 is the length of the reproductive season. The unit of

time during the reproductive period is chosen by the modeler in an appropriate and convenient
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manner based on relevant life history stages of interest and on important reproductive events,

competitive interactions, survival probabilities, and so on. The  time step taken across seasons

is not necessarily the same unit. For example, during the reproductive season, the time unit might

be a day while the across-season time unit might be several months.

We assume

A1.  = [ ] and  (̂) = [ (̂)] satisfy  ∈ +, rank() = 1, and  : Ω→ +

is twice continuously differentiable for 1 ≤   ≤ .

Our goal is to establish some theorems concerning the asymptotic dynamics of (1) by reducing the

model equations to a scalar difference equation. Key to this reduction is the assumption in A1

that the matrix  has rank 1. This restriction is based on the assumption that the proportion of

individuals in each demographic class is the same at the beginning of every reproductive season.

We have in mind a scenario in which all individuals, regardless of their demographic class at the end

of a reproductive season, will, if they survive to the start of the next reproductive season, mature

and be reproductive adults at the start of the next reproductive season. If, in the model, there are

several classes of adults (based, for example, on behavioral or physiological states), then the adults

are distributed throughout these classes randomly with the same proportions (probabilities) at the

beginning of every reproductive season.

Clearly the extinction equilibrium ̂() = 0̂  ∈ , is solution of (1). By a nontrivial -cycle of

(1) we mean a periodic solution of period  (i.e. ̂ (+ ) = ̂ () for all ) that is not the extinction

equilibrium. By a non-extinction -cycle we mean a nontrivial -cycle ̂ () such that ̂ () ∈ 
+

for each . If, on the other hand, -cycle ̂ () is not in 
+ some all  then we refer to ̂ () as a

non-feasible -cycle.

The asymptotic dynamics of a -periodically-forced difference equation can be analyzed by

means of the ( − 1) composite equation (which is time autonomous). An equilibrium (or fixed

point) of the composite equation corresponds to a -periodic cycle of the original periodic equation

(and vice versa). Moreover, the stability properties of the -cycle are the same as the stability

properties of the fixed point of the composite. Our main goal in this section is to show that under

A1 the composite equation associated with (1)-(2) reduces to a scalar (one dimensional) difference

equation and to draw some conclusions about the existence and stability of -cycles from the scalar

equation.

The demographic vector at the beginning of each season is ̂ () for  ∈  By assumption A1,

the range of the matrix  is one dimensional or, in other words, the columns of  are non-negative

multiples of a vector

̂ = col () ∈ 
+\{0̂}

which we can assume satisfies
X
=1

 = 1 (3)

We can then write

 = [ 1̂ 2̂ · · · ̂ ]  ≥ 0 (not all 0). (4)

By (2), ̂ () ∈ 
+ lies in the range of  for  ∈ \ {0} and therefore

̂ () =  () ̂  ∈ \ {0} (5)
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for a scalar  () ≥ 0 Regardless of the initial condition ̂ (0), the vectors in the sequence ̂ () 

̂ (2)  ̂ (3)  · · · — that is, the demographic population vector at the beginning of each season,
after the first — are all multiples of ̂ Therefore, in studying the model there is no loss in generality

in assuming the initial condition ̂ (0) is a multiple of ̂ :

̂ (0) = ̂ (6)

From (3) follows

 =

X
=1

 (0)

and that  is the initial total population size.

Applying (1) for  = 0 1 2      − 1 we obtain the sequence
̂ (0) = ̂

̂ (1) = (̂ (0))̂

̂ (2) = (̂ (1)) (̂ (0))̂

̂ (3) = (̂ (2)) (̂ (1)) (̂ (0))̂

...

̂ () =

Ã
=0Y
−1

 (̂ ())

!
̂ for  = 1 · · ·   − 1

where
=0Y
−1

 (̂ ()) := (̂ (− 1)) · · · (̂ (1)) (̂ (0)) 

Define

 () :=

=0Y
−2

 (̂ ())  (7)

Then at the end of the first season, the population vector is ̂ ( − 1) =  ()̂ and at the

beginning of the next season the population vector is

̂ () =  ()̂

The vector  () ̂ is a multiple of ̂ say

 () ̂ =  () ̂ (8)

and thus

̂ () =  ()̂

The matrix model equation (1)-(2) maps an initial condition ̂ at the beginning of a season to

another multiple of ̂, namely  ()̂, at the beginning of the next season,  steps later.

The sequence of demographic vectors at the beginning of the  season ̂ () =  () ̂, which

is given by the ( − 1) composite map of (1) with initial condition (6), satisfies the difference
equation

̂ ((+ 1) ) =  ( ()) ̂ ()
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where the sequence  () is given by the scalar recursion formula (difference equation)

 (+ 1) =  ( ()) ()   ∈  (9)

Thus  () is a measure of the per season population growth rate. Note that (3) implies that  ()

is the total population size at the beginning of each season.

Since stability and instability properties of a period  orbit of a  periodically-forced map are

equivalent to the stability and instability properties of the associated equilibrium (fixed point) of

the (−1) composite map, we can study the existence and stability of -cycles of the periodically-
forced matrix model (1)-(2) by studying the existence and stability of equilibria of the (autonomous)

scalar equation (9). The fixed point  = 0 of (9) corresponds to the extinction equilibrium of model

(1)-(2) and a positive fixed point corresponds to a non-extinction -periodic cycle.

To study the scalar equation (9), we need to analyze the scalar function  () that defines it.

From the across season projection matrix  define the vector

̂ := col () 

From (8) we obtain ̂ () ̂ = ̂ () ̂ and hence

 () =
̂ () ̂

̂ ̂


(The superscript  denotes the matrix transpose.) Since

̂ =
¡
1̂

 ̂ 2̂
 ̂ · · · ̂

 ̂
¢
= ̂ ̂ ̂

we obtain a formula for the scalar map (9)

 () = ̂ () ̂. (10)

It follows from assumption A1 that  () is twice continuously differentiable on an open interval

containing 1+ and satisfies  () ≥ 0 for  ≥ 0. Note that the inherent (i.e. density-free) population
growth rate is

 (0) = ̂ (0) ̂ = ̂ −1 (0) ̂. (11)

The equilibrium  = 0 of the difference equation (9) corresponds to the equilibrium ̂ = 0̂

of (1). A straightforward application of the linearization principle to the difference equation (9)

shows that  = 0 is locally asymptotically stable if  (0)  1 and is unstable if  (0)  1. It is not

straightforward in general, however, to relate  (0) explicitly to the model parameters appearing

in the matrix equation (1). Nonetheless, by choosing a model parameter appearing in (1) and

studying its effect on  (0)  we can derive some general facts about the existence and stability of

non-extinction -cycles as they depend on the chosen parameter.

2.1 Local bifurcation of non-extinction -cycles

Let  be a parameter in the matrix  and write  =  ( ̂) and  =  ( ̂) in (1) and (2).

The components of the composite matrix (7) also depend on  which in turn means the population

growth rate  =  ( ) does as well. Accordingly we re-write (9) so as to indicate the dependence

on  :

 (+ 1) =  (  ()) ()   ∈  (12)
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where

 ( ) = ̂ ( ) ̂

The equation for a nontrivial equilibrium  6= 0 of (12) is
 ( ) = 1 (13)

If  is an equilibrium of the scalar equation (12), then we call ( ) ∈ 2 an equilibrium pair. If

  0 is an equilibrium, then we say ( ) is a positive equilibrium pair. If   0 we say ( ) is a

negative or unfeasible equilibrium pair. If  is a locally asymptotically stable (unstable) equilibrium

of equation (12), then we say ( ) is a stable (unstable) equilibrium pair.

Note that ( ) = ( 0) is an extinction equilibrium pair of the scalar equation (12) for all

values of . If ̂ () is the nontrivial -cycle of the matrix model equation (1)-(2) that corresponds

to an equilibrium pair ( )   6= 0, of (12), then we call the pair  and ̂ () a non-extinction or

unfeasible -cycle pair if   0 or   0 respectively. Furthermore, if ( )   6= 0, is a stable (or
unstable) equilibrium pair of (12), then the associated -cycle pair  and ̂ () of the matrix model

equation (1)-(2) is stable (or unstable).

The central biological question of extinction or survival focuses on the extinction equilibrium

pair ( 0) of the scalar equation (12) and its stability properties, and therefore (by the linearization

principle) on the sign of  ( 0)− 1. We focus on the destabilization of the extinction equilibrium
by assuming that there is a value of  = 0 at which  ( 0) − 1 changes sign. In the assumption
below we use  to denote partial differentiation and a super-script “0” to denote evaluation at

( ) = (0 0), for example

0 :=
 ( )



¯̄̄̄
()=(00)

and 0 :=
 ( )



¯̄̄̄
()=(00)



A2. Suppose  is a parameter appearing in the entries  =  ( ) of the matrix

 =  ( ) in A1. Assume  ( ) are twice continuously differentiable in  on

an open interval containing a parameter value 0 such that  (0 0) = 1 and 0 6= 0
Furthermore, assume 0 6= 0.

By applying Lemma 1 in the Appendix to the scalar difference equation (12), we obtain the following

Theorem 1, which describes the bifurcation alternatives for the corresponding non-extinction -cycle

pairs ( ̂ ()) of matrix equation (1)-(2) at the parameter value  = 0 in A2 where the extinction

equilibrium destabilizes. The theorem assumes 0  0 in A2. If 0  0 in A2, then the results

described in Theorem 1 remain valid, but with inequalities reversed.

Theorem 1 Assume A1, A2 and that 0  0 The extinction equilibrium pairs ( 0̂) are locally

asymptotically stable for  / 0 and unstable for  ' 0
3 There exists a continuum of nontrivial -

cycle solution pairs ( ̂ ()) of the matrix difference equation (1)-(2) that (transcritically) bifurcates

from the extinction pair (0 0̂).

(a) If 0  0 then the bifurcating -cycle pairs ( ̂ ()) are locally asymptotically stable, non-

extinction -cycle pairs for  ' 0, but are non-feasible -cycles pairs for  / 0. In this case, we

say a forward, stable bifurcation occurs at  = 0

(b) If 0  0 then the bifurcating -cycle nontrivial pairs ( ̂ ()) are unstable, non-extinction

-cycles for  / 0, but are non-feasible -cycles pairs for  ' 0. In this case, we say a backward,

unstable bifurcation occurs at  = 0

3By  /  is meant both    and |− | is small. Similarly,  '  means both    and |− | is small.
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A pair ( ) ∈ 2 is a nontrivial equilibrium pair (i.e.  6= 0) of the scalar equation (12) if and
only if it satisfies the equation (13). Thus, a geometric way to represent positive equilibrium pairs

is to plot the graph defined by this equation, i.e. to plot the set of points

 := {( ) :  ( ) = 1} 

in the ( )-plane. We are particularly interested in the positive equilibrium pairs, represented by

the graph

+ = {( ) ∈  :   0} 
Given the correspondence between the equilibrium pairs ( ) of the scalar equation (12) and the

-cycles of the matrix equation (1) with (2), the graph + also describes the non-extinction -

cycles of the matrix equation. Since (0 0) also satisfies equation (13), the graph  intersects the

graph of the extinction equilibrium pairs (which is the -axis in the ( )-plane) at this point.

The intersection described in Theorem 1 is a transcritical bifurcation at (0 0) with a concomitant

exchange of stability between branches [19].

Cartoon graphs illustrating the bifurcation scenarios described in Theorem 1 appear as the first

row of plots in Figure 1. If in A2 we have 0  0 instead, then the inequalities in Theorem 1

are reversed and we get bifurcation alternatives also shown in the second row of plots in Figure 1.

In either case, notice that the direction of bifurcation determines the stability of the bifurcating

equilibrium pairs.

Figure 1. The four bifurcation alternatives for the scalar equation (12) that plot equi-

librium pairs ( ) in the ( )-plane in a neighborhood of a bifurcation point (0 0).

The horizontal line is the graph of the extinction equilibrium pairs ( 0) and the in-

tersecting curves are the graphs of  Each pair ( ) corresponds to a -cycle of the

matrix equation (1) with (2) so that the first row these plots schematically describe the

bifurcation of the -cycles as given in Theorem 1. If 0  0 replaces 0  0 in A2,

then the bifurcation alternatives are shown in the second row of plots.
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By Theorem 1 we see that near the bifurcation point (0 0̂) the bifurcating non-extinction -

cycles guaranteed by Theorem 1 are stable if 0  0 and unstable if 0  0, regardless of the

sign of 0. A proof of the following corollary is given in the Appendix.

Corollary 1 Assume A1 and A2. The quantity 0 is a linear combination, constructed with non-

negative coefficients, of the derivatives 0 of the entries in the within-season matrix  taken

with respect to entries  of ̂ (and evaluated at the bifurcation point ̂ = 0̂,  = 0).

The partial derivatives 0 measure the effects that changes in low level, class specific densities

have on the entry  in the within-season projection matrix  . We say a negative density effect

occurs at low population densities if 0  0, i.e. when increased low-level density  decreases

 . We say a positive density effect occurs at low population densities (which is sometimes called

a component Allee effect) if 0  0, i.e. when increased low-level density  increases  .

Corollary 1 implies, in conjunction with Theorem 1, that the bifurcation of stable -cycles

occurs when negative density effects are predominant at low population densities (in the sense that

0  0) whereas the bifurcation of unstable, non-extinction -cycles occurs if positive density

effects are predominant at low population densities (in the sense that 0  0).

2.2 -cycles outside a neighborhood of the bifurcation point

Theorem 1 describes the properties of the bifurcating continuum of non-extinction -cycles ( ̂ ())

in a neighborhood of the bifurcation point ( 0̂), which we will call the primary bifurcation point.

Because non-extinction -cycles of the matrix equation (1)-(2) correspond to positive equilibria of

a scalar equation (12), it is possible to investigate the stability properties of -cycles that are not

necessarily near the bifurcation by investigating the geometry of the graph + in the ( )-plane.

First of all, we recall that it is well-known for scalar difference equations that positive equilib-

rium pairs ( ) can suffer secondary bifurcations, where their stability properties change, outside

of a neighborhood of the primary bifurcation point at (0 0). The famous period-doubling cascade

to chaos for scalar equations for which the graph of  ()  has a “hump”, such as the case for

the exponential (Ricker) nonlinearity exp (−), is perhaps the most well-known example. The
stability properties of positive equilibrium pairs outside a neighborhood of the bifurcation point

depends crucially on the properties of the nonlinearities in  appearing in  ( ) (i.e. the nonlin-

earities in ̂ present in the entries  of the seasonal projection matrix matrix  ). Nonetheless,

as we will see, some general stability and instability criteria are available for equilibrium pairs lying

on certain segments of the graph +.

By the linearization principle, an equilibrium pair ( ) of the scalar equation (12) is (locally as-

ymptotically) stable if | ( ( ))|  1 and is unstable if | ( ( ))|  1. At an equilibrium
pair, the derivative

 ( ( )) =  ( ) +  ( )

becomes

 ( ( )) = 1 +  ( )

From this we see that  ( ( ))  1 at a positive equilibrium pair ( ) if  ( )  0,

in which case the equilibrium pair is unstable. On the other hand, if  ( )  0 then the

equilibrium pair is stable provided −2   ( )  0. Let us say that an equilibrium pair ( )

is a critical equilibrium pair if  ( ) = 0
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Theorem 2 Assume A1 and A2. Let ( ) be the positive equilibrium pair associated with a non-

extinction -cycle of (1)-(2).

(a) The non-extinction -cycle is unstable if  ( )  0. Geometrically this means the -

cycle is unstable if ( ) lies on a strictly decreasing segment of the graph + if  ( )  0 (or

on a monotone increasing segment of + if  ( )  0).

(b) The non-extinction -cycle is (locally asymptotically) stable if −2   ( )  0. Geo-

metrically this means the -cycle is stable if ( ) lies near a critical equilibrium pair on an in-

creasing segment of + when  ( )  0 (or on a decreasing segment of + if  ( )  0).

Proof. An application of the implicit function theorem to the equilibrium equation (13) shows

that the graph + in a neighborhood of the equilibrium pair ( ) is a smooth curve given by a

twice continuously differentiable function  =  (). An implicit differentiation of  ( ()  ) = 1

with respect to  yields 
0 +  = 0 and  0 = − 6= 0. The sign of  0 is the opposite

of the sign of  from which follow the geometric assertions in (a) and (b) concerning the

monotonicity of + at the positive equilibrium pair ( ). ¥
The graph of + in the ( )-plane is the reflection through the line  =  of the graph in the

( )-plane. A local extremum of + in the ( )-plane is a critical equilibrium pair, and it is a

tangent (saddle-node or blue-sky) bifurcation point in the ( )-plane, as illustrated in Figure 2.

Figure 2 geometrically summarizes the results of Theorem 2 in the case  ( )  0 for all ( ),

which is the most commonly occurring case in applications.

A common and important scenario that often (usually) results in population models with a

backward bifurcation is illustrated in Figure 2B when   0 As we observed, a backward bifur-

cation occurs because of dominant positive density effects at low population densities (component

Allee effects). However, most population models assume that negative density effects are dom-

inant at high population densities. This model assumption provides density regulation against

unbounded population growth and it means  ( ) decreases for increases in large values of , i.e.

 ( )  0 for large . As we follow the non-extinction equilibrium pairs ( ) backward, to the

left from the bifurcation point (0 0) in Figure 2B, the component  decreases and the component

 increases. The equality  ( ) = 1 is maintained, near the bifurcation point, by   0 and

  0. However, as the  component increases to the point that negative density effects come

into play, so that   0 then in order to maintain the equality  ( ) = 1 the  component of

the equilibrium pair must increase (since   0). This implies the graph + “turns around” as

shown in Figure 2B, which in turn results in a stabilization of the equilibrium pair. This scenario

therefore results in multiple attractors, one of which is the extinction equilibrium and another of

which is a positive equilibrium pair. This scenario is called a strong Allee effect and it is a hallmark

of backward bifurcations in population models [7], [8].
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Figure 2. These plots summarize the relationship between the geometry of the graph

+ of positive equilibrium pairs of the scalar difference equation (12) and their stability

and instability when   0 for all ( ). By Theorem 2(a) equilibrium pairs located

anywhere on decreasing segments of + are unstable and those located on increasing

segments near the critical equilibrium pairs denoted by solid circles are (locally asymp-

totically) stable. The question marks emphasize that, by Theorem 2(b), stability on

increasing segments is guaranteed in general only at points near the critical points (tan-

gent bifurcation points of the scalar equation (12)) and near the primary transcritical

bifurcation point (0 0).

The significance of a strong Allee effect of this kind in population models is that it provides for

survival for parameter values when  ( 0)  1 even though the extinction state is stable. Survival

in this case is initial condition dependent, of course, since the initial population must lie outside

the basin of attraction of the extinction equilibrium.

As an example illustrating Theorems 1 and 2, consider a matrix model (1)-(2) with a two

dimensional demographic vector of juveniles 1 and adults 2 and matrices

 (1 2) =

µ
1 (2)  (2)

0 2

¶
  =

µ
0 0

1 2

¶
where

0  1 2  1   0

0 ≤   1 and  are not both 0

and where  and  are twice continuously differentiable on an open half line containing + satisfying

 (0) =  (0) = 1,  ()  0 and 0  1 ()  1 on +

Here  (2) juveniles are produced per time unit per adult, and 1 (2) and 2 are the per unit

time survival probabilities of juveniles and adults respectively. The probabilities that a juvenile

and an adult survives from the end of one season to the start of the next season are 1 and 2
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respectively. The normalization of  and  at 2 = 0 means that  and  are the density-free

(or inherent) fertility and survival rates, respectively. In this example we assume adult fertility is

regulated by adult population density in a negative way, i.e.

0 ()  0,  ≥ 0

We also assume that adult density effects on juvenile survival is a positive one (a component Allee

effect), which could be attributed, for example, to protection of juveniles by adults, so that

0 ()  0,  ≥ 0

We use  =  as the bifurcation parameter.

From  we have

̂ =

µ
0

1

¶


We calculate  () from (7) by induction and obtain

 ( ) =

µ
1 ()  ()

0 2

¶
if  = 2

 ( ) =

⎛⎜⎝ −11

−2Q
=0


¡
2

¢


Ã
−3P
=0

−2−1 2
¡
2

¢ −2Q
=+1


³


2
´
+ −22 

¡
−22 

¢!
0 −12

⎞⎟⎠ if  ≥ 3

From these, used in (10), we find that

 ( ) =

½
1 () + 22 if  = 2

1 () + 2
−1
2 if  ≥ 3

in which we have defined

 () :=

−3X
=0

⎛⎝−2−1 2
¡
2

¢ −2Y
=+1


³


2
´⎞⎠+ −22 

¡
−22 

¢
 0. (14)

From

 ( 0) =

½
1+ 22 if  = 2

1 (0) + 2
−1
2 if  ≥ 3

0   (0) =

−2X
=0

−2−1 2 =

(

−1
2 −−11

2−1 if 2 6= 1

( − 1) −21 if 2 = 1

we obtain the bifurcation point (where  ( 0) = 1 and the extinction equilibrium destabilizes) for

 =  is

0 =

½
(1− 22) 1 if  = 2¡

1− 2
−1
2

¢
1 (0) if  ≥ 3 

Note that

0   ( ) =

½
1 () if  = 2

1 () if  ≥ 3 
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and hence by Theorem 1 the direction of bifurcation and the stability of bifurcating -cycles at

 = 0 is determined by the sign of

0 =

½
10

0 (0) if  = 2

10
0 (0) if  ≥ 3 

We conclude that a forward and stable bifurcation occurs when  = 2 and when 0 (0)  0 for

 ≥ 3. The bifurcation is backward and unstable when 0 (0)  0 for  ≥ 3. A calculation from (14

using the product and chain rules shows 0 (0) is a linear combination of 0 (0) and 0 (0):

0 (0) =
−3X
=0

−2−1 22 
0 (0) +

−3X
=0

−2−1 2

−2X
=+1



2

0 (0) + 
2(−2)
2 0 (0)

= 0 (0)
−2X
=0

−2−1 22 + 0 (0)
−3X
=0

−2−1 22

−2X
=+1


−
2 

This formula quantifies the magnitude of the positive density effect on juvenile survival 0 (0)
(relative to the negative density effect on adult fertility 0 (0)) in order that a backward bifurcation
occurs, i.e. in order for for 0 (0)  0.

3 A seabird population model

Motivated by the observations and studies of marine birds described in Section 1, we construct a

matrix model of the type (1)-(2) designed to investigate the population dynamic consequences of

the individual behavioral tactics of egg cannibalism and reproductive synchronization that occur

during each breeding season. We specify four classes of individuals, which we call eggs, juveniles,

reproductively active female adults, and non-reproductively active female adults. The number of

eggs, denoted 1 (), is the number of eggs laid on day . A juvenile in this model is either an

egg older than one day or a chick, and the number of juveniles at time  is denoted 2 (). The

individual ovulation cycle for each adult female gull is about two days, and each female lays an egg

approximately every other day. The number of reproductively active adults, 3 (), is the number of

female adults that are in the first day of the avian hormone cycle on day . These are the females

that lay an egg on day . The number of non-reproductively active adults, 4 (), is the number

of female adults in the second day, or non-reproductive day, of the hormone cycle on day ; these

females do not lay an egg on day . After the breeding season of  − 1 days, a between-season
mortality is applied. All surviving eggs and chicks are assumed to mature during the between-

season interval, after which the females are placed into either class 3 or class 4 at the start of the

following season.
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Figure 3 A compartmental diagram for the within-season dynamics described by () The

time step is one day.

The model is a periodically-forced, nonlinear, four-dimensional map

̂ (+ 1) =  ( ̂()) ̂() (15)

where

̂ =

⎛⎜⎜⎝
1
2
3
4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
eggs

juveniles

reproductively active adults

reproductively inactive adults

⎞⎟⎟⎠
is the vector of life stages, the time step is one day, and the -periodic projection matrix  ( ̂) is

defined as follows. The within-season projection matrix derived from the diagram in Figure 3 has

the form

 (̂) =

⎛⎜⎜⎝
0 0  (̂) 0

11 (̂) 22 (̂) 0 0

0 0 0 44 (̂)  (3)

0 0 33 (̂) 44 (̂) (1−  (3))

⎞⎟⎟⎠  (16)

The term  (̂) is the number of eggs produced per reproductively active female. The terms  (̂)

are the fractions of -class individuals that survive one time unit (day). Note that a surviving class

1 individual (egg) moves to the juvenile class 2 and a surviving class 3 (reproductively active)

individual moves to the reproductively inactive class 4 (because of the reproductive refractory

period). A surviving class 4 (non-reproductively active) individual moves to class 3, i.e. becomes

reproductively active, with probability  and otherwise remains in class 4. Note that we have

assumed this fraction  =  (3) depends only on the number of reproductively active females 3.

All of the density dependent terms are assumed twice continuously differentiable on an open set

Ω containing the non-negative cone 4+ and satisfy

 (̂) ≥ 0 0 ≤  (̂)  1 0   (3) ≤ 1
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(0̂) = 1 (0̂) = 1  (0) = 1

for all ̂ ∈ Ω We assume only adult density regulation of reproduction by setting

 (̂) =  (33 + 44)

where  is a decreasing function of a weighted total adult population size 33 + 44  ≥ 0
(not both 0):

0 () :=



 0

We design the remaining entries in the projection matrix so as to incorporate adult-on-egg canni-

balism and for a capability for females to reproductively synchronize. We assume egg survival is

subject to adult cannibalism in the following way. Let  (1 ) denote the probability a egg is

cannibalized in the presence of  adults of class  = 3 4 so that

1 (̂) =
4Q

=3

(1−  (1 ))

where

0 ≤  (1 ) ≤ 1
for all ̂ ∈ Ω The dependence of  on 1 allows for a victim saturation effect on cannibals in

analogy with the familiar predator saturation effect of prey on predators. Thus, we assume

1 :=


1
≤ 0  :=




≥ 0

We also assume juvenile survival is density independent

2 (̂) ≡ 1

and that adult survival is increased by cannibalism resources so that

 (̂) =  ( (1 )1)   = 3 and 4

where  is an increasing function of the number of eggs cannibalized  (1 )1 by an individual

-class adult, with

0 () :=
 ()


 0

Finally we assume

0 (3) :=


3
 0

so that a larger active adult density on any given day decreases the probability that inactive adults

become active the next day. We refer to  as the synchrony propensity term.

To account for a trade-off between environmental resource availability and cannibalism activity,

we let   0 denote the amount of available environmental resource and assume  =  () and

 =  ( 1 ) are functions of  satisfying

0 ()  0,  ( 1 )  0
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We also assume that in the absence of the environmental resource. reproduction ceases, so that

 (0) = 0

In a more general model, the inherent survivorships  could also depend on , but we will investigate

only the case here when they are independent of  We choose

 = 

as the bifurcation parameter in order to study the effect of changing environmental resource avail-

ability.

Under these assumptions, the projection matrix (16) becomes

 ( ̂) =

⎛⎜⎜⎝
0 0 13 ( ̂) 0

21 ( ̂) 22 ( ̂) 0 0

0 0 0 34 ( ̂)

0 0 43 ( ̂) 44 ( ̂)

⎞⎟⎟⎠  (17)

13 ( ̂) =  ()
¡
33 + 44

¢
(18a)

21 ( ̂) = 1 (1− 3 ( 1 3)3) (1− 4 ( 1 4)4)  22 ( ̂) = 2 (18b)

34 ( ̂) = 44 (4 ( 1 4)1)  (3) (18c)

43 ( ̂) = 33 (3 ( 1 3)1)  44 ( ̂) = 44 (4 ( 1 4)1) (1− (3)) (18d)

We now turn our attention to the across season projection matrix . A compromise we will

make in the model considered here is that immature individuals reach maturation after one season

(in contrast to the four seasons typical of the glaucous winged gull).

We assume the census takes place at the end of each day, during which the nonlinear effects take

place. After the final day of the breeding season, there is a demographic vector with individuals

present in each of the four classes. During the across-season time interval, all surviving non-adult

individuals mature and we assume a (density independent) probability of survival  ≥ 0 for each
of the population classes during this time interval (which includes over-winter survival). On the

first day of the next breeding season, the population consequently consists of adults only, a fraction

 which we assume is reproductively active on that first day. Thus, the across-season projection

matrix is

 =

⎛⎜⎜⎝
0 0 0 0

0 0 0 0

1 2 3 4

1(1− ) 2(1− ) 3(1− ) 4(1− )

⎞⎟⎟⎠  (19)

The general theory and results in Section 2 apply to this model (17)-(19) with

̂ =

⎛⎜⎜⎝
0

0



1− 

⎞⎟⎟⎠  ̂ =

⎛⎜⎜⎝
1
2
3
4

⎞⎟⎟⎠  (20)
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As is done in the general model in Section 2, we consider initial conditions of the form

̂ = 

⎛⎜⎜⎝
0

0



1− 

⎞⎟⎟⎠
i.e. initial conditions with only adults present in the proportions of  and 1 −  This model

separates the time scale of reproductive activity (daily) from the maturation period of juveniles,

which is assumed here to be one season (or year).

To calculate the bifurcation value of  and to apply Theorem 1 we need to find a value of  such

that ( 0̂) = 1 where ( 0̂) is given by (11), i.e. by

 ( 0) = ̂ −1 ( 0) ̂

with matrix

 ( 0) =

⎛⎜⎜⎝
0 0  () 0

1 2 0 0

0 0 0 4
0 0 3 0

⎞⎟⎟⎠ 

A simple calculation shows

 2 ( 0) =

⎛⎜⎜⎝
0 0 0  () 4

12 22  () 1 0

0 0 34 0

0 0 0 34

⎞⎟⎟⎠
and an induction shows that the even and odd powers of  (0) are, for  = 2 3 4 

 2 ( 0) =

⎛⎜⎜⎝
0 0 0  () 4 (34)

−1

1
2−1
2 22  ()2  ()2
0 0 (34)


0

0 0 0 (34)


⎞⎟⎟⎠

0  2 := 1

X
=1

(34)
− ¡

22
¢−1

=

(
1
(34)

−(22)


34−22
if 34 6= 22

1
¡
22
¢−1

if 34 = 22

0  2 := 124

−1X
=1

(34)
−1− ¡

22
¢−1

=

⎧⎨⎩ 124
(34)

−1−(22)
−1

34−22
if 34 6= 22

(− 1) 124
¡
22
¢−2

if 34 = 22

and

 2−1 ( 0) =

⎛⎜⎜⎝
0 0  () (34)

−1
0

1
2−2
2 2−12  ()2−1  ()2−1
0 0 0 4 (34)

−1

0 0 3 (34)
−1

0

⎞⎟⎟⎠
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0  2−1 := 12

−1X
=1

(34)
−1− ¡

22
¢−1

=

⎧⎨⎩ 12
(34)

−1−(22)
−1

34−22
if 34 6= 22

12 (− 1)
¡
22
¢−2

if 34 = 22

0  2−1 := 14

−1X
=1

(34)
−1− ¡

22
¢−1

=

⎧⎨⎩ 14
(34)

−1−(22)
−1

34−22
if 34 6= 22

12 (− 1)
¡
22
¢−2

if 34 = 22

From these formulas we find that

 ( 0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
 ()

h
1 (1− ) 4 (34)

−1
+ 2 (2 + (1− )2)

i
if  = 2+ 1

+(3 + 4 (1− )) (34)


for  = 1 2 3 

 ()
h
1 (34)

−1
+ 2 (2−1 + (1− )2−1)

i
if  = 2

+ [3 (1− ) 4 + 43] (34)
−1

for  = 2 3 4 

(21)

and that

 (0 0)  1  ( 0)  0

If lim→+∞  ( 0)  1 then the extinction equilibrium is stable at all resource levels . On the

other hand, if

1  lim
→+∞

 ( 0) ≤ +∞ (22)

then there exists a unique value of  = 0  0 at which  (0 0) = 1 and, therefore, for which

Theorems 1 and 2 apply. In this case we conclude that the two local bifurcation alternatives shown

in the first row of plots in Figure 1 and the global bifurcation alternatives in Figure 2 apply to this

model.

Example correlations between adult fertility and environmental resource availability for which

(22) holds are power laws

 () = 0
 0  0   0

(lim→+∞  ( 0) = +∞) and saturating resource uptake rates

 () = 0


1 + 
 1  0   0

provided, in that latter case, 0 = lim→+∞  () is sufficiently large (so that (22) holds:

0 

( 1−(3+4(1−))(34)
1(1−)4(34)−1+2(2+(1−)2)

if  = 2+ 1 for  = 1 2 3 

1−[3(1−)4+43](34)−1
1(34)

−1+2(2−1+(1−)2−1)
if  = 2 for  = 2 3 4 



We are particularly interested circumstances when a backward bifurcation occurs since, as dis-

cussed in Section 2.2, this leads to (initial condition dependent) survival in severely degraded

environments, i.e. when  ( 0)  1 and the extinct equilibrium is stable. Corollary 1 tells us

that a backward bifurcation occurs when there are dominant positive effects of low density in-

creases (component Allee effects), i.e. positive state variable derivatives of the entries (18) of the

projection matrix  (evaluated at ̂ = 0̂).

There are both negative and positive density effects in the entries (18) of  . Specifically,

negative low density effects occur in 12 from the assumed adult 3 and 4 density regulation of
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fertility (0 ()  0) and in 21 with respect to 3 and 4 from the effect of cannibalism on egg

survival ( ≥ 0) Positive low density effects occur 34 43, 44 with respect to 3 and 4 from
the assumed positive effect of cannibalism on adult survival (0 ()  0).
Finally, the adult reproductive synchrony term  (3) contributes a negative feedback to 34, but

a positive feedback to 44 (
0  0). Therefore, the net contribution of  to a backward bifurcation

is equivocal and, as we will see from Examples 1 and 2, depends on model’s inherent parameter

values, namely the survivorships  and  and the season length  − 1.
By Theorem 1 one can, determine the direction of bifurcation from the sign of 0 which, in

principle, can be calculated from the formula

0 = ̂
 ( ) ̂|()=(00) .

The formula is, however, sufficiently complicated that little in the way of general conclusions can be

discerned from it beyond those in Corollary 1; see the Appendix. Nonetheless, we can conclude from

Corollary 1 that if the benefit to adult survival from cannibalism is sufficient high, then a backward

bifurcation will occur. The general effect of reproductive synchrony, i.e. of the , on the direction

of bifurcation, however, remains ambiguous and model parameter dependent. See Examples 1 and

2.

We illustrate these conclusions will some selected simulations. We use the nonlinearities

 () =
1

1 + 33 + 44
  () = 0 (23a)

 (1 ) =
1

1 + 11

 ()

1 +  ()
  () =



1 + 
(23b)

 (1 ) = 1 +
 − 





1 + 
  (3) =

1

1 + 3
(23c)

All of the coefficients associated with these nonlinearities are nonnegative. By setting a coefficient

equal to zero, the corresponding linear mechanism is removed from the model. For example,  = 0

removes the positive benefit of cannibalism to the survival probability of adult  ,  = 0 removes

the synchrony propensity,  = 0 removes cannibalism by   and 1 = 0 removes the victim

saturation effect, etc. It is assumed that 0      1 so that the survival component 
increases from  to  as the number of cannibalized eggs  increases from 0 to +∞. Increasing the
value of a coefficient, increases the effect (or intensity) of the corresponding nonlinear mechanism.

These nonlinearities satisfy all of the requirements laid out above and, in particular, satisfy (22).

Using the environmental resource availability  =  as a bifurcation parameter, we calculate the

unique bifurcation value

0 =

(
1
0

1−(3+4(1−))(34)
1(1−)4(34)−1+2(2+(1−)2)

if  = 2+ 1 for  = 1 2 3 

1
0

1−[3(1−)4+43](34)−1
1(34)

−1+2(2−1+(1−)2−1)
if  = 2 for  = 2 3 4 



from (21) at which, according to Theorems 1 and 2, the forward and backward bifurcation alterna-

tives shown in Figure 2 hold.

Example 1 For the parameter values displayed in the caption, Figure 4 shows two bifurcation dia-

grams that plot the total population size  of the attractor at the beginning of the season as a function

of the environmental resource availability . Cannibalism is in effect and the bifurcations are back-

ward, creating a strong Allee effect in a severely degraded environment. By this we mean (initial
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condition dependent) survival for an interval of environmental resource levels  below 0 where the

inherent population growth rates  (0) are less than 1. The bifurcation diagram with  = 0 (when

the synchrony propensity term is absent) illustrates a cannibalism induced backward bifurcation. (If

cannibalism were also absent, then the bifurcation would be forward since there would then be no

positive density effects; see Corollary 1.) In this sense, cannibalism in this example is beneficial

since it allows for non-extinction in an adverse environment when the absence of cannibalism would

result in extinction.

The bifurcation diagram with   0 indicates added benefits toward the survival of the population

due to reproductive synchrony in two senses: the presence of the synchrony propensity term results

in a higher total population size (at the start of each season), at any environmental resource level ,

and also a reduced environmental resource “tipping” point” where the saddle node bifurcation leads

to catastrophic-extinction.

Figure 5 shows some sample time series at the indicated locations on the bifurcation diagrams.

Note the within season adult class synchronized oscillations when   0 and their absence when

 = 0.

Example 2 The sample simulations in Example 1 show a benefit of reproductive synchrony in a

cannibalistic population. This is not, however, always predicted by the model. The two bifurcation

diagrams in Figure 6 show the opposite, namely, that reproductive synchrony reduces population

size and increases the tipping point for the environmental resource availability. These diagrams

use the same within-season parameter values as in Figure 5, but change the across season survival

probabilities as indicated in the captions.

Figure 4. Shown are two backward bifurcation diagrams plotting total population size

 at the beginning of the season of the attractor as a function of the environmental

resource availability  using the nonlinearities (23) in (15) with projection matrices (17)

and (19). In one plot ( = 0), the synchrony propensity term is absent and in the other

plot ( = 05) it is present. Parameter values are 0 = 07 3 = 4 = 0001  = 1

3 = 4 = 1 1 = 1 3 = 4 = 2 1 = 2 = 03, 3 = 4 = 09, 3 = 4 = 099
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and 1 = 2 = 4 = 5 = 095. The bifurcation value is 0 ≈ 1175. Sample time series
plots at the open circles are shown in Figure 5.

Figure 5. Sample adult class time series are shown for initial conditions 1 = 2 = 0

3 =  4 =  (1− ) with  = 05 and  = 30 The first column of plots are for

 = 90 and the second column of are for  = 95 (cf. to the open circles shown in Figure

4).

Figure 6. Shown are the same two bifurcation plots that appear in Figure 4, with the

same parameter values except for a change in the across season survival probabilities to

1 = 05 2 = 3 = 4 = 099 .
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4 Concluding remarks

Average SSTs have been rising in the Salish Sea and are expected to continue to rise. High SSTs

are associated with low food resources for surface-feeding marine birds such as glaucous-winged

gulls, and such seabirds are considered sentinels of environmental change. At the Protection Island

colony, high SSTs are associated with behavioral changes including high egg cannibalism and the

onset of daily egg-laying synchrony. How do such behavioral changes on a daily time scale within

the breeding season affect population dynamics across seasons? What consequences do they have

for the long term survival of the populations?

Motivated by these questions for seabirds, we formulate in Section 2 a general class of periodically-

forced structured matrix models that describes the behavioral and reproductive dynamics within

each breeding season and then projects the population to the next breeding season. Since the ques-

tion of extinction-versus-survival is of primary concern, especially in view of climate change, we

focus on the extinction equilibrium and its destabilization in our analysis of these models. We show

that a study of the seasonal composite map, which maps the demographic vector at the beginning

of one season to the beginning of the next season, reduces to the study of a scalar map from which

the theorems of Section 2 are derived. The general results in Section 2.1 account for the bifurcation

of non-extinction seasonal cycles at a critical value of model parameters at which the extinction

equilibrium destabilizes, the direction of bifurcation of these cycles and their stability near the

bifurcation point. Stability depends on the direction of bifurcation (an example of the exchange of

stability principle for transcritical bifurcations). Section 2.2 takes advantage of the reduction to a

scalar map to give results on the global extent of the bifurcating cycles and their stability outside

a neighborhood of the bifurcation point.

In Section 3 we consider a specific example from this general class of models as applied to the

seabird system. We focus on egg cannibalism and the daily reproductive synchrony of female egg

laying. The mechanisms built into the model include: the negative and positive effects of egg

cannibalism on juveniles and on adult survival; the positive effect of cannibal (predator) saturation

effect by victim (prey) density; and the negative effect of adult density regulation of fertility. The

model separates two time scales, the within-(breeding) season time scale when egg laying synchrony

takes place and the across-season time scale at which juvenile maturation occurs. This time scale

separation is absent in previous models investigating cannibalism and reproductive synchrony [9],

[32], with the exception of the model in [14], of which our model here is significant extension.

Of particular interest in the bifurcation scenarios derived in Section 2 is the case of a backward,

and hence unstable, bifurcation of non-extinction seasonal cycles. As shown in Section 2.2, backward

bifurcations typically produce strong Allee effects in population models. A strong Allee effect is,

by definition, a multiple attractor scenario containing both a non-extinction attractor and a stable

extinction equilibrium. In this scenario, initial condition dependent survival is possible prior to

the destabilization of the extinction equilibrium, corresponding presumably to poor or degraded

environmental conditions. In this sense, a backward bifurcation is beneficial to the population. The

diagnostic quantity (0) that determines the direction of bifurcation is shows that positive density

effects at low densities (component Allee effects) must be present and of sufficient significance in

order for a backward bifurcation to occur. The gull model in Section 3 has both positive and

negative effects and can exhibit backward or forward bifurcations, depending on parameter values.

It is shown in that section, and its examples, that the positive effects of the reproductive synchrony

propensity and of cannibalism on adult survival can lead to a backward bifurcation and therefore

can produce the survival benefits of a backward bifurcation. It is also seen from Examples 1
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and 2 how under some circumstances (i.e. some inherent within-season and across-season survival

values, season lengths and cannibalism intensities) the benefit of a higher total population size

can also accrue from reproductive synchrony, although under other circumstances a lower total

populations size might occur. Thus, we see in this model how certain individual behaviors affect

the population-level dynamics and how benefits to individuals might or might not be a benefit to

the total population.

Although the gull-inspired model in Section 3 is more realistic than our previous proof-of-concept

models, two major simplifications still separate it from the motivating system. First, the model

assumes that each surviving adult female can continue to lay eggs throughout the breeding season,

whereas in reality each female lays approximately three eggs during the season. Second, the model

assumes that all surviving juveniles become adults at the beginning of the next breeding season,

whereas juvenile glaucous-winged gulls actually require four years to mature. There are a number

of smaller simplifications, as well. For example, the model does not keep track of egg order in a nest,

and so any egg (not just the first egg in the nest) can be cannibalized on the day it is laid, whereas in

glaucous-winged gulls the first egg is the most likely of the eggs in a clutch to be cannibalized. The

general class of models can be extended to meet these requirements. Another class of individuals

(incubating females) could be followed, and the maturation period of juveniles could be lengthened

to more than one season. This would involve creating yet a larger demographic vector to include

juveniles of differing ages, only the oldest of which matures from one season to the next. The result

would be a higher dimensional matrix model, with higher dimensional within-season and across-

season matrices and . Although there would be a dimensional reduction for the dynamics of the

composite map from start of season to start of season, it would no longer necessarily be a reduction

to dimension one. The resulting periodically-forced model would therefore be more demanding to

analyze. Another enhancement of the model would include density effects on across-season survival

( = (̂)), which were ignored here. In this case the dynamics of the resulting periodically-forced

models in Section 2 would still be reducible to a scalar map, but with additional nonlinearities that

need to be modeled, and the Theorems in Section 3 would still hold.

In conclusion, changes in individual behavioral tactics on a daily time scale within a breeding

season in response to environmental change can affect population-level dynamics across seasons.

Behaviors such as egg cannibalism and egg-laying synchrony that afford an adaptive advantage to

individuals may lead to population-level Allee effects that allow populations to survive at lower

resources levels than they would otherwise. These strong Allee effects, however, are associated with

initial-condition-dependent survival thresholds and with tipping points at resource levels below

which the population suffers collapse.
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Appendix

The following Lemma is an extension of results in [8]).

Lemma 1 Assume A1 and A2.

(a) Suppose 0  0. Then the equilibrium  = 0 of the difference equation (12) is locally

asymptotically stable if   0 and is unstable if   0. Suppose, on the other hand, that 
0
  0.

Then  = 0 is locally asymptotically stable for   0 and is unstable for   0.

(b) On an open interval  of 0 there exists a (twice continuously differentiable) continuum of

equilibria  =  () of the difference equation (12) satisfying  (0) = 0 and  () 6= 0 for  6= 0.

(c) Suppose 0  0 If 0  0 then for  ∈  the equilibrium  () is positive and locally

asymptotically stable if   0 (and are negative for   0) On the other hand, if 
0
  0 then

for  ∈  the equilibrium  () is positive and unstable for   0 (and are negative for   0).

(d) Suppose 0  0 If 0  0 then for  ∈  the equilibrium  () is positive and locally

asymptotically stable for   0 (and are negative for   0) On the other hand, if 
0
  0 then

for  ∈  the equilibrium  () is positive and unstable for   0 (and are negative for   0).

Proof. (a) The linearization principle guarantees local asymptotic stability of  = 0 if  (0 ) 

1 and instability if  (0 )  1.

(b) Under assumption A2 we can apply the implicit function theorem to the equation  ( ) = 1

for nontrivial equilibria of the difference equation (12) and obtain, on an open interval of 0, a twice

continuously differentiable function  =  (0)   (0) = 0 satisfying  (  ()) = 1 An implicit

differentiation with respect to  yields 0 (0) = −00 6= 0 from which it follows that  () 6= 0
for  6= 0.

(c) If 0 (0)  0 then  ()  0 (respectively  ()  0) for  ' 0 (respectively  / 0. On

the other hand, if 0 (0)  0 then  ()  0 (respectively  ()  0) for  / 0 (respectively

 ' 0) as asserted. With regard to the stability of the equilibrium  () for  near 0 we apply

the linearization principle by calculating

(())



¯̄̄
=()

= 1 +  ()
(())



¯̄̄
=()

= 1 +
¡
0 (0) 0

¢
(− 0) +

³
(− 0)

2
´

= 1 +
¡−0¢ (− 0) +

³
(− 0)

2
´


(24)

Assume 0  0. If 0  0 then 0 (0) = −00  0 and  () is positive and ||  1 for

 ' 0. If 
0
  0 then 0 (0) = −00  0 and  () is positive and ||  1 for  / 0.

(d) These conclusions are derived in closely similar manner to those in (c) by also making use

of (24).

Proof of Corollary 1. It is obvious from the definition of ̂ ( ) that ̂ ( 0) = 0̂ for all 

From (10) we have

0 = ̂0̂

where

 () =

=0Y
−2

 (̂ ()) = (̂ ( − 2)) · · · (̂ (1)) (̂ (0))
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0 =




=0Y
−2

 (̂ ())

¯̄̄̄
¯
=0

=

−2X
=0

 −2−(0̂)



 (̂ ())

¯̄̄̄
=0

 (0̂)

By the chain rule



 (̂ ())

¯̄̄̄
=0

=

∙
∇0̂




̂ ()

¯̄̄̄
=0

¸
where

∇0̂ =
¡
01 02 · · · 0

¢


From

̂ () =

Ã
=0Y
−1

 (̂ ())

!
̂

we obtain



̂ ()

¯̄̄̄
=0

=  (0) ̂

for  = 0 1 · · ·   − 1 The matrix

 () :=



 (̂ ())

¯̄̄̄
=0

=
£∇0̂

 (0) ̂
¤

leads to

0 =

−2X
=0

 −2−(0̂) () (0̂).

The entries in the matrix  () are linear combinations of the derivatives 0 . It follows that

the same is true of the entries in the matrix 0 and, as a result, the same is true of 0.

The quantity 0 for the gull model (17)—(19) with (18) We use the formula

0 = ̂ ( ) ̂|()=(00)
where

 ( ) = 

=0Y
−2

 ( ̂ ())

with matrix  defined by (17) and entries (18) and with the vectors ̂ and ̂ given by (20). By

the product rule

0 =

−2X
=0

 −2−(0̂) () (0̂)

where

 () :=

∙
∇0̂

̂ ()



¯̄̄̄
=0

¸
=
£∇0̂

 (0) ̂
¤

since

̂ () =

Ã
−1Y
=0

 (̂ ())

!
̂
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implies
̂ ()



¯̄̄̄
=0

= (0̂)̂

From the gull model matrix entries (18) we have

 () =

⎛⎜⎜⎜⎜⎝
0 0 0∇0̂  (0) ̂ 0

−1∇0̂ (3 (1 3)3)  (0) ̂

−1∇0̂ (4 (1 4)4)  (0) ̂
0 0 0

0 0 0 4∇0̂ (4)  (0) ̂

0 0 3∇0̂3  (0) ̂ 4∇0̂ (4 (1− ))  (0) ̂

⎞⎟⎟⎟⎟⎠
Let  be the 4 × 4 matrices with all zero entries with the exception of a 1 in the  entry.

Making use of these matrices, we write

 () = −1
¡
0 0 3 (0 0) 4 (0 0)

¢
  (0) ̂21 + 0∇0̂  (0) ̂13

+ 3∇0̂3  (0) ̂43 + 4∇0̂ (4)  (0) ̂34

+ 4∇0̂ (4 (1− ))  (0) ̂44

Then

̂ −2−(0̂) () (0̂)̂ = −10 ()
¡
0 0 3 (0 0) 4 (0 0)

¢
  (0) ̂

+ 01 ()∇0̂  (0) ̂

+ 32 ()∇0̂3  (0) ̂+ 43 ()∇0̂ (4)  (0) ̂

+ 44 ()∇0̂ (4 (1− ))  (0) ̂

where we defined the nonnegative scalar coefficients

0 () := ̂ −2−(0̂)21
(0̂)̂ 1 () = ̂ −2−(0̂)13

(0̂)̂

2 () = ̂ −2−(0̂)43
(0̂)̂ 3 () = ̂ −2−(0̂)34

(0̂)̂

4 () = ̂ −2−(0̂)44
(0̂)̂

This leads to

0 =

−2X
=0

̂ −2−(0̂) () (0̂)̂

= −1
−2X
=0

0 ()
¡
0 0 3 (0 0 0) 4 (0 0 0)

¢
  (0) ̂+ 0

−2X
=0

1 ()
£∇0̂  (0) ̂

¤
+ 3

−2X
=0

2 ()
£∇0̂3  (0) ̂

¤
+ 4

−2X
=0

3 ()
£∇0̂4  (0) ̂

¤
+ 4

−2X
=0

(3 ()− 4 ())
£∇0̂  (0) ̂

¤

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Finally, making use of

∇̂ (4) = ∇̂4 + 4∇̂ ⇒∇0̂ (4) = ∇0̂4 +∇0̂

∇̂ (4 (1− )) = (1− )∇̂4 − 4∇̂ ⇒∇0̂ (4 (1− )) = −∇0̂
we arrive at

0 = −1
−2X
=0

0 ()
¡
0 0 3 (0 0 0) 4 (0 0 0)

¢
  (0) ̂

+ 0 (0) 0
−2X
=0

1 ()
¡
0 0 3 4

¢
  (0) ̂

+ 03 (0) 3
−2X
=0

2 ()
¡
3 (0 0 0) 0 0 0

¢
  (0) ̂

+ 04 (0) 4
−2X
=0

3 ()
¡
4 (0 0 0) 0 0 0

¢
  (0) ̂

+ 0 (0) 4
−2X
=0

(3 ()− 4 ())
¡
0 0 1 0

¢
  (0) ̂

The first two terms, deriving from the adult density dependent fertility and the effect of cannibalism

on egg survival, are negative and therefore contribute to a forward bifurcation. The third and fourth

terms are positive, deriving from the positive density effect of cannibalism on adult survival. Finally

the sign of the last term, which involves the synchrony term 0 (0)  0, is ambiguous due to the

difference 3 ()− 4 () whose sign is dependent on model parameters.
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