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PERIODIC McKENDRICK EQUATIONS FOR
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Building #89, Tucson, Arizona 85721, U.S.A.

Abstract—With the averaged net reproductive rate used as a bifurcation parameter, the existence of a
local parameterized branch of time-periodic solutions of the McKendrick equations is proved under the
assumption that the death and fertility rates suffer small-amplitude time periodicities. The required linear
theory is developed and the results are illustrated by means of a simplte example in which fertility varies
cosinusoidally in time.

INTRODUCTION
The equations
p. + p. +Dp =0, >0, 0<a<A< +x, (L.1)
A
p(t, 0) = I Fp(t, a)da, t>0. (1.2)
0

for the age-specific density p = p(r, a) of a single age-structured species at time ¢ describe the
death and birth processes respectively in terms of a per unit death rate D and fertility rate F.
The real A is a maximum age for any individual in the population and it is required that p(r,
A) = 0 for all t > 0. These equations are now usually referred to as the McKendrick equations.

In using the system of Eqgs. (1.1)-(1.2) as a model tor population growth most studies
allow the vital rates D and F to be dependent upon age a and also, in modelling density-
dependent growth, upon the density p. The vast majority of population growth models are
autonomous, i.e. they assume that these vital rates do not depend explicitly on time ¢. Under
such an assumption the important fundamental questions concerning asymptotic states as t —
+ =, around which theoretical population dynamics centers, deal with the existence and stability
of equilibrium (i.e. time-independent) solutions and there is a rapidly growing literature on
these topics for the general McKendrick Egs. (1.1)-(1.2) as well as many specialized cases
derived from them.

Despite the widely recognized biological fact that death and fertility rates for real popu-
lations are rarely constant in time the amount of literature dealing with model equations in
which vital rates are explicitly time dependent is comparatively very small. This is true even
for the simpler classical models of non-age-structured populations. In recent years considerable
attention has been paid to the important and difficult question of the effects due to stochastic
fluctuations of model parameters in population-growth models. While it is true that vital rates
and other model parameters can be expected to suffer significant stochastic variations in time
for some populations under certain conditions, it is also true that some parameters for other
populations or for populations under other conditions may well exhibit regular recurring fluc-
tuations in time (e.g., see [1]). For example, physical environmental conditions such as tem-
perature and humidity and the availability of food, water and other resources ( just to mention
a few) usually vary in time, often fairly regularly. with the vearly seasons (or with daily or
monthly periods or even cycles with other periods). Natural birth rates are often markedly
seasonal, as are death rates. These can be due to such things as exposure to seasonal weather
patterns and resource availabilities. susceptibility to diseases or exposure to predators and
competitors, etc.

A natural simplifying mathematical assumption to make in considering such regular fluc-
tuations in model parameters is that they are exactly periodic. This leads to the study of
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nonautonomous equations with periodic coefficients. For example. in the general model (1. -
{1.2) D and F might be assumed to depend explicitly on time ¢ in a periodic manner.

In general. nonautonomous periodic difterential equations do not have equilibrium solutions
and the familiar techniques available for studying the existence and swbility properties of
equilibrium solutions are not applicable. Instead one has the more ditficult challenge of dealing
with the existence and the stability of periodic solutions. as well as the challenge of analvsing
the properties of these solutions. Such problems have been considered in recent papers for a
variety of non-age-structured population-growth models{2-13].

With regard to the autonomous McKendrick equations (1.1)-(1.2) there is a growing body
of literature dealing with equilibrium solutions (e.g. [15-19]). but little in the literature con-
cerning periodic solutions of periodic equations[20]. The purpose of this paper is to consider
the existence of positive periodic solutions of (1.1)~(1.2) when the vital rates D and F are
explicitly periodic in time ¢. using a bifurcation theory approach analogous to that used in
[13,16] for equilibrium solutions of the autonomous case.

The primary assumption will be that the time periodicities in D and F are of small amplitude
a. This assumption permits the use of perturbation techniques and the calculation of lower-
order approximations to solutions. It is. however. a restrictive assumption and precludes the
consideration of large ""catastrophic™ fluctuations in such things as environmental conditions,
availability of resources. population densities. etc. Nonetheless, as is often pointed out with
regard to oscillatory phenomena in many kinds of models and upplications. small-umplitude
parameter oscillations can lead to significant effects and to ignore them in favor of averaged
values can be misleading. Moreover, the eftects of smull-amplitude periodicities often persist
in specific models for larger-amplitude periodicities. In any case. the study of small-amplitude
time periodicities in the vital rates D and F in (1.1)=(1.2) certainly contributes tundamentally
to the general understanding of time-periodic fluctuations in these vital rates.

In order to use a bifurcation-theory approach to Eqs. (1. 1)~(1.2} it is necessary to distinguish
a bifurcation parameter. In [15,16] this parameter was taken to be the biologicallv meaningful
““inherent net reproductive rate’” n defined by

K u
n = J Fy exp( —j D, ds) da.
0 . [

)] K
where D, and F; denote the age-specific vital rates D and £ evaluated at p = 0. Then the
fertility rate F is written as F = nf, where f is appropriately normalized. When F is periodic
in time we will use, more generally. a time-averaged inherent net reproductive rate for the
bifurcation parameter.

Suppose D = D(p)(t.ayand F = F(p){s. a) depend on the density p. age ¢ and periodically
on time t. Let av[f] denote the time r average of f over one period and set

n = av[J'A FO)t, a) exp( —J“ D0)(z, 5) ds) da].
[} 1 /

If we write F = nf, where f = f(p)(t, @) is normalized so that

alef fO)t, a) exp( —fa D)t 5) ds) du} = 1,
0 0y

then Eqgs. (1.1)~(1.2) become
pot p. T DE.a)p =0, >0, 0<au<A< —x, (L3

A
p(t, 0) = n J' flp)r. aypte. ay da. ¢ > 0. (1.4)
)
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for p = p(r. a) = 0. Of interest here is the existence of nontrivial time 7 periodic solutions
p = 0 (= 0) satisfying p(r, A) = 0, or more specifically a determination of those values of n
for which such solutions exist.

In [16] it was shown under only mild continuity conditions that when D and f are inde-
pendent of ¢ a global branch of nontrivial equilibrium solutions p = pla) = 0 exists and
biturcates tfrom (and only from) the critical point (n, p) = (1. 0). This continuum branch of
equilibria (n, p) connects to the boundary of the domain upon which the problem is posed in
certain Banach spaces. In [15] this bifurcation phenomenon is studied in more detail locally in
a neighborhood of the bifurcation point (1. 0).

In Sec. 3 below a local bifurcation theorem for the existence of nontrivial periodic solutions
is proved for (1.3)—(1.4) when D and f are periodic in r. under the assumption that these
periodicities have *small amplitude.”" [t establishes the local existence of a parameterized branch
of nontrivial periodic solutions which biturcates from a critical point (1. p) = (n,. 0). where
n, is an eigenvalue of the linearized problem whose existence is established in Sec. 2. This
result extends, indeed generalizes. the existence result of [15]. to the case of time-periodic vital
rates D and f. The lemmas and theorem of Secs. 2 and 3 allow for the computation of any
number of lower-order terms in perturbation expansions for n, and the nontrivial solution (n,
p). These lower-order terms can of course be used as approximations to these solutions in
specific applications. A simple example is given in Sec. 4.

The stability of the branch solutions given in the theorem of Sec. 3 is not studied here.
For the autonomous case stability was shown in [15] to depend on the *direction of bifurcation,™
i.e. the branch solutions p are stable near bifurcation only if these solutions correspond to n >
ny = 1. Moreover, the trivial solution p = 0 is stable for n < 1 and unstable for n > 1. A
natural conjecture is that these stability properties remain in force for the periodic. small-
amplitude case considered here.

2. THE LINEAR THEORY

Let R and R~ denote the set of reals and the set of nonnegative reals respectively. Denote
by A the set of continuous functions w: [0. A) — R satisfying

u—A”

lim M(a) = +=, M(a) = J’ wis) ds.
D]

pola) = exp(—M(a)) for0 < a <A p,d) = 0.

The linear space of continuous functions #: R X {0, A] — R for which A(t, a)/p,la) is continuous
and for which & is periodic of period 1 in ¢ is denoted by P(w). This space P(i) is a Banach
space under the norm

[All, == max lh(t. @)|/pya).
R« {0.4]

The subspace of h € P(W) which are independent of ¢ is the space B, used in [15.16] to study
equilibrium solutions of autonomous Eqs. (1.3)-(1.4). Note that p, € P(w) and that (¢, 4) = 0.
t € R. forany h € P(p).

The linear space of functions A for which in addition A(z. a)/py(a) has continuous first
partial derivatives is a Banach space under the norm

¢
+ max |— (hipy)].

R«pLA;

NAad, == A, + max

R~{0.4)

9 (h/py)
— n
da P ot

and is denoted by P'(u). The Banach space of functions 4 for which ii(t. a)/p,(a) has a continuous
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first partial in ¢ is denoted by P' () and is given the norm

A |
— (h: pm‘ .
{

|h
I ;

= hll, + max
Rl

[T

For h € P(p) define the average av[h] := [, h(t. @) dr and denote by Py(w) the subspace of
functions 7 &€ P() with zero average (for all @ € [0. A]); similarly for Pi{p) and P}~ ().
Finally, let P! be the Banach space of continuously differentiable. periodic functions #:

R — R under the usual supremum norm |4ll, := [&lly + 4], 4l := maxge,«, [A(1)]. P} is the
subspace of functions with zero average. The cross-product space P! X P'~(W) is given the
norm ||, + |i-ll...-. Similar norms are taken for other cross-product spaces.

Consider the nonhomogeneous linear system

plt, @) + pt, @) + p@p(t.a) = i EP (), 0<a<A< +x=%, (2.1a)

A
p(t, 0) — f Blayp(t. a) da = h, € P'. (2.1b)
0

and its assoctated homogeneous system

plt, a) + put, a) + wlaplt.a) = 0, 0<a <A,

A (2.2)
p(r, 0) — f Bla)p(t, a) da = 0.
0
We will also refer to the related systems
pla) + wl@pla) = h, €EB,. 0 <a <A,
(2.3)
A
p(0) — f Blayp(a) da = h, € R.
]
and
pa) + mlapla) = 0, 0<a< 4 < +=,
(2.4

p(0) — J'A B(a)p(a) da = 0.
0

We assume throughout that m € A, B € C* = CX[0, A]: R). It is required in all equations
that p vanish identically when a = A, a condition which is met by finding solutions in P'(u).

In [15] a Fredholm-type alternative was proved for (2.3)-(2.4), which formed the basis
of the study of equilibrium solutions of nonlinear equations. The goal of this section is to derive
a similar result from the r-periodic systems (2.1)—(2.2). First. however, a lemma concerning
the integral equation

A
B(1) — f B(a)py(a)B(t — a)yda = h € P'. (2.3)
0
and its associated homogeneous equation
A )
B(t) — f Blarpa)Blr — a)da = 0 (2.6)
0

is needed. Let Z denote the set of all integers and .V denote the subspace of all solutions 8 €
P! of (2.6). Also, let N+ = {h € P av[hB] = 0V B € NV}
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LEMMA 2.1
Assume b € Aand B € C°.

(a) dim A is finite.

(b) Equation (2.5) has a solution B8 € P' if and only if # € N-, in which case (2.5) has a
unique solution 8 € N+ and the operator L: N* — N~ defined by B = Lh is linear and
bounded.

Proof. B € P! has a Fourier series B = = ¢,e*™™, which when substituted into (2.3)
vields the equations

(1 - f ! B(a)py(a)e ~*mima da)c,,, = h, Q2.7
0

for the complex coefficients c,. Here the h,, are the Fourier coefficients of & &€ P'.
(a) For the homogeneous Eq. (2.6) all #,, = 0 and a nontrivial solution exists in P' if and
only if

A
j Bla)pya)e~m da = |
0

for at least one m € Z. The space N is spanned by the real and imaginary parts of e*™, m €
Z,, where

4
Z, = {m S Z:f Bla)pyla)e™*™m da = l}.
0
By the Riemann-Lebesgue theorem

A
J B(a)py(a)e "™ da— 0 as |m| —> +x, (2.8)
0

and hence Z, is finite.

{b) Clearly it is necessary for the solution of (2.7) that #,, = O for all m € Z,. This shows
that # € N* is necessary. Conversely, suppose # € N*. Then (2.7) can be solved to vield the
solution

B(t) = D c,ei™m, 2.9

mzZ,

Cn = hm/(l - fA B(a)pg(a)e ~*mima da), m & Z,.
o

By (2.8) there is a constant & for which

ll/(l - J’A Bla)py(a)e = 2mima da)
0

Thus m¥c,|* < k*mh,|*. Since h € P* it follows that £ m?h,|* < + = and hence £ m¥c,* <
+ %, which means B(r) defined by (2.9) is absolutely continuous and hence differentiable almost
everywhere. Since B satisfies (2.5) by construction, it easily follows that in fact B € P'.

=k, m & Z,
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From Eq. (2.3) (k is a generic constant not necessarily the same in difterent expressions)

12 -
|B(t) = (J" B p3 da) (f Bt — a da) + Al
4] v} /

N 12
= k(fI Bt — a) da) + Al = k( z le,
0

3) + [lAll,
mzZ, /

so that

12

5

) = k( J h%/r)l il = Al

P

b}

1B, = k( >

mezZ,

Similar inequalities obtained from (2.5) when differentiated show that {B'{, = k|li'{,,. and
consequently [Bll, = |ILAll, = k|All,. |
The general solution of Eq. (2.1a) is

p(t, a) = po(a)<B(t —a) + fu ho(t — a + 5. 5)/pyls) ds), (2.10)
0

where B is an arbitrary differentiable function. This solution will also solve (2.1b) if and only
if B solves the integral Eq. (2.5) with

E} u
h(t)y = hi(t) + f B(a)po(a)f h(t — a + 5.5)/ pyl(s) ds da. (2.1
0 0

Note that (h,, h.) € P' X P'~(p) implies that & € P', and that if B € P' solves (2.5) then p
defined by (2.10) is a solution of (2.1) which lies in P'(w).

Define N(p) to be the subspace of all solutions p € P'(p) of (2.2) and let N-(n) = {p €
P'(w): Qlp, pl = 0V p € N(p)}, where

Qlx, 3] = f‘* Bla) avlx(z. a)t*(r. &)}/ pya) da.
0

Here “**'" denotes complex conjugation. Let M-(w) € P' X P' (p) be the closed subspace
consisting of those (h,, h,) for which & defined by (2.11) lies in ¥=(w).

LEMMA 2.2
Assume w € A and B € C".

(a) dim N{w) is finite.

(b) The system of Egs. (2.1) has a solution p € P'() if and only if (h, hy) € M-(p). in
which case (2.1) has a unique solution p € N-(w) and the operator §: M -(p) — N-(p)
defined by p = S(h,. h,) is linear and bounded.

Proof. The space N(u) of homogeneous solutions of (2.2) is spanned by the real and
imaginary parts of p,(f, a) = pyla) exp(2wimt), m € Z,. and hence is finite dimensional. This
proves (a).

Suppose p € P'(p) solves (2.1). Then B in (2.10) solves (2.5) with / given by (2.11).
By Lemma 2.1, h € N-, i.e. (h. h) € M~(p).

Conversely, suppose (h,, h:) € M~(u). Then h defined by (2.11) lies in N-(p) and by
Lemma 2.1 Eq. (2.5) has a unique solution Lh € N-. With B(t) = X7 ¢, exp(lwimt) —
Lh for arbitrary coefficients ¢, m € Z,. p(t, a) defined by (2.10) lies in P'(w) and solves (2.1).
Now h € N~(w) if and only if h,, = O. m € Z,. i.e. if and only if

A e
. + J B(a)pu(a)j avlh(r — a + s sk T psydsda = 0. meZ,. (2.12)
bl t}
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where h,,, are the Fourier coefficients of h(t):

1
h =f h (e mm dr, (2.13)
0

The unique solution p of (2.1) which lies in N*(), i.e. which satisfies Q[p. p, exp(2mim(r —
a)] = 0 for all m € Z,, is obtained by choosing the constants ¢, to be equal to k,,,. Thus
(2.1) has a unique solution p € N*(u) given by p = S(h,, h.), where

S= Po(a)< Z hy €D+ (Lh)(t — a) + fu h(t — a + s, 5) py(s) ds). (2.14)
meZ, 0

with A, given by (2.13).
Simple inequalities show, using (2.14) and Lemma 2.1, that

IS/pol = Klllo + KiiKll, + Alihll,

d ]
(% (S7po)| = kllhlly + kllAll, + [Adfl, + A']B—t h, R
0 d
’a_ (S7po)| = Kllhllo + klidlle + KliAll, + AH— ha|| .
t at "
and consequently [IS(h;, Al = (Ml + (Al ). u
We will be interested below in the case when dim N(w) = 1, that is, when
A
J' B(@)po(a) da = 1, (2.152)
0
A
f Bl@)pola)e ™™ da < 1, 0 #meE Z. (2.15b)
0

In this case the homogeneous Egs. (2.2) have exactly one independent solution p € P'(p).
namely the time-independent or equilibrium solution p = py(a) of (2.4). Then N(p) is spanned
by po(a) and

Ni(p) = {p € PY(p): f" B(a) avlp(t, a)] da = 0}.
0

By (2.12), (h\, hy) € M*(p) and the nonhomogeneous Eq. (2.1) have solutions if and only if
the single constraint

av(h,] + fA Bla)py(a) fﬂ avla(t — a + s, $)}/py(s)dsda = 0 (2.16)
Q 0

holds. This ‘*orthogonality condition’’ on (h,, k,) is an averaged version of that derived in [13]
for (h), h.) € R X B, and for equilibrium solutions p € B, , of (2.3).

The condition (2.15a) implies that n = 1 is an “‘eigenvalue’’ of the problem (2.4) with
B(a) replaced by nf(a). In fact, n = 1 is then the only value of n for which this homogeneous
problem has a nontrivial solution (namely p = p,). The next lemma deals with a generalization
of this result when p and B suffer small-amplitude « time-periodic perturbations. Consider the
equations

p(t, a) + pt.a) + (p(a) + r(a)(t, a))plt. a) = 0, 2.17a)

p(t, 0) — n, fA (Bla) + r(a)t, a)p(t, a) da = 0, (2.17b)
]
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where n, € R and where r, for each « € (— . ) is a real-valued function ot ¢ and a such
that

r(0)t, a) =0,

and for which the operators defined by

A
l(a. p) = J' rifa)p da, (o, p) = rialp (2.18)
0

map
Li(=ap ap) X Pwy— P' and i (—ag o) X PHp)— P () (2.19)
and are ¢ = 1 times Fréchet differentiable in (o, p).

LEMMA 2.3

Suppose . € A and B € CY satisfy (2.15) and the r; are. as described above, real-valued
functions for which the operators /; in (2.18) satisfy (2.19) and are ¢ = | times Fréchet
differentiable. Then for sufficiently small |a| < &, < a, the homogeneous Eqs. (2.17) have a
nontrivial solution

plt, a) = pyla) + z(a)t, a) (2.20)
for
ny =1+ Na). (2.21)
where z(a) : (— &y, &) = N-(p) and N @ (—~ @&, &) — R are ¢ = | times differentiable and
where z(0) = 0, A(0) = 0.

Proof. A substitution of (2.20) and (2.21) into (2.17) results in a system of the form ¢2.1)
for z with

4
h, = f (r(a)(t. ay + NMB(a) + ri(e)(, a))pyla) + ) da,
0

(2.22)

h

I

—r(a)(t. a){pola) + Z).
Because (2.15) holds it is necessary that the ‘“‘orthogonality’ condition (2.16) hold. Thus we

reformulate (2.17) with (2.20)-(2.21) as follows. Given - € N-() and o € R we define A
so that (2.16) holds:

<l + J"* B(a) av[z(t, a)] da + f* av(r(@)(t, a)(pya) + z(t, @))] d(,)}\
0 0

= —f: av(ri(a)(t, a)(pola) + z(r, a))] da + f: Bla)pyla) f: aviri(a)(t — a + 5. 5)
X (po(s) + z(t — a + s, 5)]/po(s) ds da. (2.23)
and then the equation for = is equivalent to the operator equation
> = Sthite, 2y, (a2 = 0. (2.24)
where § is the operator of Lemma 2.2 and A, /1, are defined by (2.22) with A given by (2.23).

Clearly, N is well defined by (2.23) for ie| and ||, ; sutficiently small. say in an open neigh-
borhood ' C R X N-(w) of (a. 2) = (0. 0).
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Under the stated hypotheses the operator F: I' — N-(u) defined by F(a, 2) := z — S(h(a,
2), hi(a. 2)) is ¢ = | times continuously differentiable and

FO,0 =0, F.0,0 =1,

where [ : N*(n) = N-=(p) is the identity operator. The implicit-function theorem implies that

(2.24) has a (local) ¢ = 1 times continuously differentiable solution z = z(a) € N*(w), which

yields (2.20) and, after a substitution into (2.23), A in (2.21). n
As pointed out above = € N*(u) means under (2.15) that

f‘ B(a) av[=(a)(r, a)] da = 0
0

for each a.

With sufficient differentiability (¢ = | large enough) lower-order terms of any desired
order in the a expansions of p and n can be computed by the familiar method of substituting
expansions

pola) + azi(t, @) + olzn(t, a) + -,

plt, a)
ng = 1 4+ ok, + a’\, + -

into (2.17), equating coefficients of like powers of o on both sides of both equations and solving
the resulting recursive linear nonhomogeneous systems for z;. These linear problems have the
form (2.1) and are solvable by Lemma 2.2 when the orthogonality condition above is satisfied
by an appropriate choice of \;.

From (2.23) it is easily seen that

N = —r av[r(0)(t. a)]pea) da + J'A B(a)pya) ja av[ri(0)(t — a + s, 5)] ds da,
0 0

0
where r/(0) denotes the partial derivative with respect to o at « = 0. This gives a formula for
the lowest-order correction to the ‘‘eigenvalue’ ny.
A natural way to study time-periodic oscillations in the death and fertility rates is to consider
oscillations about (age-specific) averages p and f3, i.e. to assume that

av[r‘(a)(t, a)] = 0’ V(a, a) € (_ao, ao) X [0, A] (225)

In this case, A, = 0 and n, = 1 + a®\, + - so that there is a second-order correction to
the “*eigenvalue’’ ny. Moreover, from (2.23) and (2.25),

N = —-IA av[r(0)(t, a)z,(t, a)] da

0

+ [ apa [ avtritO)e = a + 5. 920t = a + 5, 9ps) ds da
0 0
where =, is the unique solution of (2.1) in N*(w) with
A
h = f riO) (¢, a)pyla) da, h, = —ri0)(t, a)pya),
0

as guaranteed by Lemma 2.2; that is, z; is given by (2.10):

ot a)y = po(a)(B(l‘ - a) — fu ry0)t —a + s, 5) ds),

0
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where B(t) is the unique solution of the integral Eq. (2.5) satistying av[B] = 0 with {see (2.11)]

h(r) = f" rO)(t. @pola) da — J
0

A o

B(a)p()(a)f ri0yr — a + s, s5)ds da.

0 1)

Under assumption (2.25) these formulas allow for a study of the effects, to lowest order,
on the ‘‘eigenvalue'’ n, and *‘eigensolution’” p (as determined by A, and :) due to periodic
oscillations about average death and fertility rates w and 8. An example is given in Sec. 4.

3. A NONLINEAR THEOREM

In [15,16] the autonomous version of the nonlinear Egs. (1.3)-(1.4) in which the death
and fertility rates D and f are general functionals of the population density p, but do not depend
explicitly on time ¢, were studied using global and local bifurcation techniques with n as a
bifurcation parameter. Under the normalization

f* £(0)(a) exp<—f“ D(0)(s) ds> da = 1
0 0

and certain minimal smoothness assumptions it was shown in [16] that a global continuum of
equilibrium p = p(a) solution pairs (n, p) € R X B, exists and bifurcates from the critical
point (1, 0). This continuum connects to the boundary of the domain of definition of the
functionals D and f. In [15] this bifurcation branch was parameterized and studied locally near
the bifurcation point (1, 0).

Here we wish to allow D and f to depend explicitly on time 7 in a periodic manner as in
(1.3)—(1.4). Specifically, let D and f suffer small-amplitude o time-periodic perturbations of
the form

D =p + Ra.p). f =B + Rl p). (3.1)

where w € A and B € C? satisfy (2.15) and the terms R, = R{«a, p){¢, a) are such that R,(0,
0)(z, @) = 0 and the operators defined by

A
n(a, p): = j Ra, p)(t, @p(t, a) da, ns(a, p) . = Ra(a, p)(t, a)p(r, a)  (3.2)

0
are ¢ = 1 times Fréchet differentiable as operators mapping
n o (—ay, o) X PYRY—= Py ons i (—ag, ag) X P(p) — Plp). (3.3)
THEOREM 3.1
Assume that D and f have the form (3.1), where o € A and B € CY satisfy (2.15) and
the perturbation terms R; are such that R,(0, 0) = 0 and (3.2) defines ¢ = | times Fréchet-
differentiable operators which satisfy (3.3). Then for la| < &, = «, and for |e| < e, sufficiently

small, (1.3)-(1.4) has a (unique) solution of the form

p = epla) + ew(a, €) with »n = nyla) + nlo, €), (3.4)
where

pila) = py + (). n, =1 + Na) (3.5)
are as in Lemma 2.3 with r;, = R\(a. 0) and r» = R.(a. 0) and where

wo (=&, &) X (—€y €)= N-(), i (— &y, &) X (—€y, €) = R

i

are ¢ = 1 times Fréchet differentiable and satisfy w(o. 0) = 0. n(ax, 0) = 0.
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Proof. 1f (3.1) and (3.4) are substituted into (1.3)—(1.4), then making use of (3.5) we
obtain for each o equations of the form (2.1) for w where

h = hla. €, w) = (Roa, 0) — Ri(a, €p, + ew))(p, + w) — R, O)w
A A
hy = hy(a, €, w) 1= nxf (B - Ric. €p, + ew))(p, + w)da + ’lof R(a, O)w da
0 0
A
+ ’lof (Ri(x, ep, + ew) — Ri(a. 0))(p, + w) da.
0

Choosing n, so that (h,, h;) € M-(p), i.e. choosing n, = n(a. €, w) so that (2.16) holds,
these equations for w € N*(p) can be equivalently reformulated using Lemma 2.2 as H(a, €,
w) = 0, where

Hia, €, w):= w — S(h(a, €, w), hla, €, w))

defines an operator H: (—ay, op) X (—¢€y, €) X N*(pn) — N-(w). Note that n, so defined
is easily seen to be well defined, since the coefficient of n, in (2.16) is | when (o, €, w) =
(0, 0, 0), and ¢ = | times differentiable for a, € and |wl|,, sufficiently small. Moreover, a
straightforward solution of this linear equation for n, shows that n,(a, 0, 0) = 0 for all small
la| and that 9n,(0, 0, 0)/ow = 0.

These facts yield

H(0,0,0) =0, 8H(0,0, 0)/ow = I,

and the implicit-function theorem in turn yields a unique solution w = w(a, €) of H(a, ¢,
w) = 0 satisfying w(0, 0) = 0. It is easy to see that H(a, 0, 0) = 0, so that w(a, 0) = 0.
n(ee, 0) = 0 for all small |o]. ]

For g = I sufficiently large lower-order e coefficients in the expansions (3.4) can be found
in the standard manner of deriving and successively solving linear problems of the form (2.1)
(for small |a|) by the methods in Sec. 2.

4. AN EXAMPLE

Suppose that the age-specific fertility rate oscillates cosinusoidally around an average
density-dependent rate with a small-amplitude « (relative to the average):

fi= B@(l + acos 2mglp), 0=p € C.

Here g is an arbitrary functional of density p satisfying g(0) = 1, which is sufficiently smooth
for an application of the theorem in Sec. 3 (¢ = 1 times continuously differentiable). A specific
example is the frequently used logistic-type model obtained by setting g = [I — [§ k(a)p(t,
a) da] . [21].

With regard to the death rate D we assume in this simple example that it is density
independent. Specifically, we choose

D=p:=1(A—-a€A

so that the death rate is a monotonically increasing function of age a € [0, A). The system of
Eqs. (1.3)~(1.4) then reduces to

P+ pa t p=0 >0, 0<a<A<+x 4.1)

A-a

p(t, 0) = n f B(a)(1 + a cos 2wr)g(pp da, > 0. (4.2)
¢
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For this example

pola) = (A — a)iA, O0=a=A. 4.3

and the normalization of B is
A
J' Bla)py(a) da = 1. (¢.4)
0

According to the theorem of Sec. 3 (with R, = B(a)(—1 + (1 + « cos 2mw)g(p)) and
R, = 0), Egs. (4.1)-(4.2) have nontrivial periodic solutions of the form (3.4). The lowest-
order terms in the expansions (3.4) are given by the solution (3.5) of the linearized equations

1

p,+pu+A~ap=0, (4.5)
p(t, 0) = n f B(a)(l + & cos 2wt)p da. (4.6)
0
which can be written
pp = pol@) + az(f, @) + Qs @) + 0 ony = 1+ Ao+ At e (4T

From the remarks at the end of Sec. 2 it follows, in fact, that A, = 0. as will also be seen
from the analysis below.

To determine the lower-order coefficients in these a expansions. we substitute (4.7) into
(4.5)—(4.6) and equate coefficients of like powers of «. This leads to the following three systems
of equations:

1

4
Poa t F— po = 0, po0) = J’ Ba)py(a) da:
0

A -

1 4
2+ oz, + 21 =0, z(6,0) = [ Bla)z\(t, a) da + N, + cos 2wi. (4.8)
0

z, =0, 2(:,0) = f B(a)zx(t, a) da + X,
0

4 (+.9)
+ J’ B(a)p,(t, a) da cos 2.
i)

to be solved for the first three coefficients in (4.7). The first system is satisfied by the choice
(4.3) for py(a), in view of (4.4).
In order to solve the system (4.8) for z, it is necessary by Lemma 2.2 that
av[\; + cos 2wr] = 0,
i.e. A, = 0, in which case

z(t, @) = Bt — a)pyla). (4.10)

where B(¢) solves the integral equation

B(t) = f B(a)py(@)B(t — a) da — cos 271
0
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The solution of this integral equation is given by

B(t) = ¢ cos 2wt + ¢, sin 27w, @. 11
1 -C S . R
Q=T a=g d=(l-Cy+s: (4.12)
A A
C = f B(a@)pyla) cos 2wa da, § = f B(a)pyla) sin 2wa da. (4.13)
0 0

Here it is necessary that
d>0

in order that (2.15b) holds.
Equations (4.11)—(4.13) define the lowest-order oscillation in p, of the solution p given
by (3.4):

A T faB—a) ¢
P = A 03 a) - .

From (4.11) one can determine the age-specific phase and amplitude of this oscillation (relative
to that in the fertility rate f) as they depend, through (4.12)-(4.13). on the age-specific inherent
fertility rate B(a) and the maximum lifespan A. Some general conclusions which can be drawn
are as follows. Unless ¢, = 0, the “‘total birth rate’” B(¢) is not in phase with the oscillation
in the fertility rate f. Moreover, since ¢; = 0, the total birth rate B peaks later than f (with
relative phase tan™'(S/(1 — C)) if and only if § > 0. The amplitude of B increases without
bound as d approaches 0, where (2.15) fails to hold and a reasonance occurs.

In order to determine (to lowest order) the effect that the oscillation in f has on the critical
value n, of the average inherent net reproductive rate n we must (since A, = 0) calculate A..
This is done by means of the required “*orthogonality’’ condition (2.16) for the solution of
(4.9). The result is

A o= (CP+ ST = C)d.

Consequently, in this example there is a second-order adjustment in the critical bifurcation value
of the averaged inherent net reproductive rate caused by the oscillation in the fertility rate f.
There is an increase in this critical value if A, > 0 and a decrease otherwise.

A simple example is given by the case when fertility is not age specific: B(a) = B, =
const > 0 or, by the normalization (4.4), when 3(a) = 2/A. Then

C = (1 — cos 2mwAY/2wA°, § = (2wA — sin 2wA)/2w2A* 4.14

and A\, = 0, i.e. there is an increase in the critical value n,, since
C'+ 8§ —C= (1l + %A + cos(2mA + d))/27'A* = 0, (4.15)
where ¢ = tan™'(2wA/(w?A? — 1)). In this example S > 0, so that as remarked above the
total birth rate B(¢) given by (4.11) with (4.14) in the coefficients (4.12) is never exactly in
phase with the oscillatory fertility rate f, and in fact peaks after f. Furthermore, in this example.

the coefficient of the lowest-order oscillation in the total population size P = [} p(t, a) da is
easily computed to be

. A4
J* 5t a)da = f B(t — a)pyla) da = —2A((C* — §* — C)cos 2wt — S sin 2me)/d.
£ (

) )
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Consequently, by (4.15) and § > 0, P oscillates out of phase with the fertility rate f with a
phase difference tan~'(S/(C* + §° — C)) ranging from one-quarter to one-half cycle.

The purpose of this example is simply to illustrate the general results and techniques of
Secs. 2 and 3. It is not intended here to study in depth the biological implications of this model
or of small-amplitude oscillations in the vital rates in general. It is hoped to do this in a future

paper.

5. SUMMARY

The theorem appearing in Sec. 2 establishes a local. parameterized branch of time-periodic
solutions of the McKendrick Egs. (1.3)—(1.4) when the age-specific vital rates D and f suffer
small-amplitude o periodicities in time. The branch bifurcates from the trivial solution p = 0
at a critical value n, of the averaged net reproductive rate s, as given by Lemma 2.3. This
result is a generalization of the autonomous equilibrium results in (5], which correspond to
o = 0. This theorem and the lemmas of Sec. 2 permit the use of standard perturbation techniques
to calculate lower-order approximations to the time-periodic solutions. A simple example is
given in Sec. 4 in which fertility oscillates consinusoidally in time while the death rate is time
and density independent. Besides illustrating the general results and techniques, this example
shows some interesting biological results that such a model can imply, such as an increased
critical bifurcation value for the average net reproductive rate due to the fertility-rate oscillation
and certain phase relationships between fertility and the total birth rate and the total popuiation
size.
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