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Abstract--With the averaged net reproductive rate used as a bifurcation parameter, the existence of a 
local parameterized branch of time-periodic solutions of the McKendrick equations is proved under the 
assumption that the death and fertility' rates suffer small-amplitude time periodicities. The required linear 
theory is developed and the results are illustrated by means of a simple example in which fertility varies 
cosinusoidaliy in time. 

I N T R O D U C T I O N  

The equations 

p, + p,, + Dp = 0, t > 0 ,  0 < a < A  < +~c, (1.1) 

p(t, 0) = Fp(t, a) da, t > 0, (1.2) 

for the age-specific density p = p(t, a) of a single age-structured species at time t describe the 
death and birth processes respectively in terms of a per unit death rate D and fertility rate F. 
The real A is a maximum age for any individual in the population and it is required that p(t, 
A) --- 0 for all t > 0. These equations are now usually referred to as the McKendrick equations. 

In using the system of Eqs. t1.1)-(1.2)  as a model for population growth most studies 
allow the vital rates D and F to be dependent upon age a and also, in modelling density- 
dependent growth, upon the density p. The vast majority of population growth models are 
autonomous, i.e. they assume that these vital rates do not depend explicitly on time t. Under 
such an assumption the important fundamental questions concerning asymptotic states as t---, 
+ ~,  around which theoretical population dynamics centers, deal with the existence and stability 
of equilibrium (i.e. time-independent) solutions and there is a rapidly growing literature on 
these topics for the general McKendrick Eqs. (1.1)-(1.2) as well as many specialized cases 
derived from them. 

Despite the widely recognized biological fact that death and fertility rates for real popu- 
lations are rarely constant in time the amount of literature dealing with model equations in 
which vital rates are explicitly time dependent is comparatively very small. This is tree even 
for the simpler classical models of non-age-structured populations. In recent years considerable 
attention has been paid to the important and difficult question of the effects due to stochastic 
fluctuations of model parameters in population-growth models. While it is true that vital rates 
and other model parameters can be expected to suffer significant stochastic variations in time 
for some populations under certain conditions, it is also true that some parameters for other 
populations or for populations under other conditions may well exhibit regular recurring fluc- 
tuations in time (e.g., see [1]). For example, physical environmental conditions such as tem- 
perature and humidity and the availability of food, water and other resources (just to mention 
a few) usually vary in time, often fairly regularly, with the yearly seasons (or with daily or 
monthly periods or even cycles with other periods). Natural birth rates are often markedly 
seasonal, as are death rates. These can be due to such things as exposure to seasonal weather 
patterns and resource availabilities, susceptibility to diseases or exposure to predators and 
competitors, etc. 

A natural simplifying mathematical assumption to make in considering such regular fluc- 
tuations in model parameters is that they are exactly periodic. This leads to the study of 
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nonautonomous equations with periodic coefficients. For example, in the general model I 1. I ) -  
(1.2) D and F might be assumed to depend explicitly on time t in a periodic manner. 

In general, nonautonomous periodic differential equations do not have equilibrium solutions 
and the familiar techniques available for studying the existence and stability propertie,,, of 
equilibrium solutions are not applicable. Instead one has the more difficult challenge of dealing 
with the existence and the stability of periodic solutions, as well as the challenge of analysing 
the properties of these solutions. Such problems have been considered in recent papers for a 
variety of non-age-structured population-growth models[_- I o 1. 

With regard to the autonomous McKendrick equations ( 1.1)-(1.2) there is a gro~ing body 
of literature dealing with equilibrium solutions (e.g. [15-19]L but little in the literature con- 
cerning periodic solutions of periodic equations[201. The purpose of this paper is to consider 
the existence of positive periodic solutions of ( I .1)-(1 .2)  when the xital rates D and F are 
explicitly periodic in time t, using a bifurcation theory approach analogous to that used in 
[15,16] for equilibriurn solutions of the autonomous case. 

The primary assumption will be that the time periodicities in D and F are of small amplitude 
a. This assumption permits the use of perturbation techniques and the calculation of lower- 
order approximations to solutions. It is, however, a restrictive assumption and precludes the 
consideration of large "'catastrophic" fluctuations in such things as environmental conditions, 
availability of resources, population densities, etc. Nonetheless. as is often pointed out with 
regard to oscillatory phenomena in many kinds of models and applications, small-amplitude 
parameter oscillations can lead to significant effects and to ignore them in favor or' averaged 
values can be misleading. Moreover, the effects of small-amplitude periodicities often persist 
in specific models for larger-amplitude periodicities. In any case, the study of small-amplitude 
time periodicities in the vital rates D and F in (1.1)-(1.2) certainly contributes fundamentally 
to the general understanding of time-periodic fluctuations in these vital rates. 

in order to use a bifurcation-theory approach to Eqs. / 1.1 )-(1.2) it is necessary to distinguish 
a bifurcation parameter. In [15,16] this parameter was taken to be the biologically meaningful 
"'inherent net reproductive rate" n defined by 

( f d d,) n = F0 exp - D, da. 
i) ) , 

where Do and Fo denote the age-specific vital rates D and F evaluated at p -= 0. Then the 
fertility rate F is written as F = n f ,  where f is appropriately normalized. When F is periodic 
in time we will use, more generally, a time-averaged inherent net reproductive rate for the 
bifurcation parameter. 

Suppose D = D(p)( t .  a) and F = F(p)(t ,  a) depend on the density p, age a and periodically 
on time t. Let av[f] denote the time t average of f over one period and set 

If ( j  /1 n = av F(O)(t, a) exp - D(O)(t,  s) ds da . 
L a 0 c~ . 

If we write F = n f ,  where f = f (p ) ( t ,  a) is normalized so that 

rr. )] av f(O)(t, a) exp - D(O)(t,  s) ds da = 1, 
L J O  ) 

then Eqs. (1. I)-(1.2)  become 

Pt + P, + D(p)(t, a)p = 0, t > 0, 0 < a "< A < - : c  

p(t, O) = n f(p)(t, a)p(t, a) da, t > O. 
) 

(1.3) 

(1.4) 
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tbr P = pit, a) >- O. Of interest here is the existence of nontrivial time t periodic solutions 
P -> 0 (~  0) satisfying p(t, A) ~ 0, or more specifically a determination of those values of n 
for which such solutions exist. 

In [16] it was shown under only mild continuity conditions that when D and f are inde- 
pendent of t a global branch of nontrivial equilibrium solutions p = p(a) -> 0 exists and 
bifurcates from (and only from) the critical point (n. 9) = (1. 0). This continuum branch of 
equilibria (n, 9) connects to the boundary of the domain upon which the problem is posed in 
certain Banach spaces. In [15] this bifurcation phenomenon is studied in more detail locally in 
a neighborhood of the bifurcation point (l ,  0). 

In Sec. 3 below a local bifurcation theorem for the existence of nontrivial periodic solutions 
is proved for (1.3)-(1.4) when D and f are periodic in t. under the assumption that these 
periodicities have "'small amplitude." It establishes the local existence o fa  parameterized branch 
of nontrivial periodic solutions which bifurcates from a critical point (n, p) = (n,~, 0). where 
n,j is an eigenvalue of the linearized problem whose existence is established in Sec. 2. This 
result extends, indeed generalizes, the existence result of  [15]. to the case of time-periodic vital 
rates D and f .  The lemmas and theorem of Secs. 2 and 3 allow for the computation of any 
number of lower-order terms in perturbation expansions for n,) and the nontrivial solution (n, 
p). These lower-order terms can of course be used as approximations to these solutions in 
specific applications. A simple example is given in Sec. 4. 

The stability of the branch solutions given in the theorem of Sec. 3 is not studied here. 
For the autonomous case stability was shown in [ 15] to depend on the "'direction of bifurcation," 
i.e. the branch solutions p are stable near bifurcation only if these solutions correspond to n > 
no = 1. Moreover, the trivial solution P -= 0 is stable for n < 1 and unstable for n > 1. A 
natural conjecture is that these stability properties remain in force for the periodic, small- 
amplitude case considered here. 

2. THE LINEAR THEORY 

Let R and R-  denote the set of reals and the set of  nonnegative reals respectively. Denote 
by A the set of continuous functions Ix: [0, A) --> R satisfying 

lira M(a) = + ~, M(a) := ~x(s) ds. 
a~ .4  

Set 

p,)(a) = e x p ( - M ( a ) )  f o r 0 - <  a < A ,  p,L4) = 0. 

The linear space of  continuous functions h: R x [0. A] ---, R for which h(t, a)/p,Ja) is continuous 
and for which h is periodic of period 1 in t is denoted by P(p.). This space P(p.) is a Banach 
space under the norm 

Ilhrl~ := max !h(t. a)l/p,)(a). 
RxI0 ,A]  

The subspace of  h E P(Ix) which are independent of t is the space B~, used in [15.16] to study 
equilibrium solutions of autonomous Eqs. ( 1.3)-(1.4). Note that p~ ~ P(ix) and that h(t, ,4 ) ~- 0. 
t E R. for any h E P(p.). 

The linear space of  functions h for which in addition h(t. a)/po(a) has continuous first 
partial derivatives is a Banach space under the norm 

IIh!!~,, := IItzlk + max (h/po) + max - - (  . 
' R , [ 0 . 4 1  R " i"- -~ O[ 

and is denoted by P ~(p.). The Banach space of functions h for x~ hich h(t. a)/p,)(a) has a continuous 
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first partial in t is denoted by P~-(~} and is given the norm 

Ilhl[~.,-:= i[hll~ + max {h.'p,0 . 
g ~ [0. ~'. 

For h ~ P(p.) define the average av[h] := fo  h( t .  a)  d t  and denote by Po(P-} the subspace of 
functions h E P(p.) with zero average (for all a ~ [0. A]); similarly for Po~(p.) and P~-(p.). 

Finally, let P~ be the Banach space of continuously differentiable, periodic functions h: 
R ~ R under the usual supremum norm ilk!It := Ijh[10 + ilh'llo, I]hll,, := maxo._,~l ih(t)t. P~ is the 
subspace of  functions with zero average. The cross-product space P~ × P~-(p.} is given the 
norm t['l]l + ]I'[[~.~-. Similar norms are taken for other cross-product spaces. 

Consider the nonhomogeneous linear system 

p,(t, a) + p , ( t , a )  + ~(a)p(t. a) = h. ~ Pt-(bt),  0 < a < , 4  < +:c .  {2.1a) 

.£ p(t, 0) - [3(a)p(t .  a} da  = hi E p t .  (2. tb) 

and its associated homogeneous system 

p,(t, a) + p,(t, a) + /.z(cl)p(t, a) = 0. 

pi t ,  O) - ~ ( a ) 9 ( t ,  a)  d a  = O. 
) 

0 < a < A ,  
{2.2} 

We will also refer to the related systems 

p,,(a) + bt(a)p(a) = h_, ff B~. 0 < a < A,  

£ p(O) - [3(a)p(a)  d a  = hi ~ R ,  

(2.3) 

and 

p.(a) + ix{a)p(a) = O, 0 < a < A < ~-z,  

f/ p(0) - [3(a)p(a)  da  = O. 

{2.4) 

We assume throughout that ix E A, [3 ~ C O = C°{[0, A]: R}. It is required in all equations 
that p vanish identically when a = A ,  a condition which is met by' finding solutions in PtIla). 

In [15] a Fredholm-type alternative was proved for (2.3)-(2.4),  which formed the basis 
of the study of equilibrium solutions of nonlinear equations. The goal of  this section is to derive 
a similar result from the t-periodic systems (2.1)-{2.2). First. however, a lemma concerning 
the integral equation 

B ( t )  - [3(a)po(a)B( t  - a) da  = h ~ p l .  (2.5} 

and its associated homogeneous equation 

f} 
4 

B ( t )  - ~3(a)p,,{a)B{t - a} d a  = 0 {2.6} 

is needed. Let Z denote the set of  all integers and X denote the subspace of all solutions B 
pE of (2.6). Also, let ?¢: = {h ~ P~: av[hBl = 0 V B ~ N}. 
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LEMM.~, 2. l 
Assume ix ~ .X and [3 E C O . 

(a) dim N is finite. 
(b) Equation (2.5) has a solution B ~ P~ if and only if h ~ N - ,  in which case (2.5) has a 

unique solution B ~ N a and the operator L: N -  ~ N -  defined by B = Lh is linear and 
bounded. 

Proof .  B ~ P~ has a Fourier series B = E c,,e -''~"', which when substituted into (2.5) 
yields the equations 

(2.7) 

for the complex coefficients c,,. Here the h,, are the Fourier coefficients of h ~ P~. 
(a) For the homogeneous Eq. (2.6) all h,, = 0 and a nontrivial solution exists in Pt if and 

only if 

f l  ~ [3(a)po(a)e -z'i"" des = I 

for at least one m E Z. The space N is spanned by the real and imaginary parts of e :,''"r, m 
Zo, where 

{ } Z0 = m E Z: 13(a)p0(a)e-:""" des = 1 . 

By the Riemann-Lebesgue theorem 

fo ~f3(a)po(a)e -2' '"" da .-+ 0 as ]m I --~ + ~c (2.8) 

and hence Zo is finite. 
(b) Clearly it is necessary for the solution of  (2.7) that h,, = 0 for all m ~ Zo. This shows 

that h E N -~ is necessary. Conversely,  suppose h ~ N ~-. Then (2.7) can be solved to yield the 
solution 

B( t )  = ~ c,,e z ..... , (2.9) 
m~Zo 

c,, = h,, 1 - [3(a)po(a)e -2=im" da , m ~ Zo. 

By (2.8) there is a constant k for which 

[/( J: ) 1 I - [3(a)po(a)e -'-~'im" da  <- k, m ~ Zo. 

Thus m=lcZ ~ k=m=lhml=. Since h E P '  it follows that E m=lhml: < + ~ and hence E m:]c~12 < 
+ :~. which means B(¢) defined by (2.9) is absolutely continuous and hence differentiable almost 
everywhere. Since B satisfies (2.5) by construction, it easily follows that in fact B ~ P~. 
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From Eq. (2.5) (k is a generic constant not necessarily the same in different expressions) 

lB(t) I <- [3-'p~ da BZ(t - a ) d a  + Ihli, 

i 2 (L ) ( c) k 1 - k 2 + Ilhllo, <- BZ(t - a) da + Ilhll,) < 
m ¢. Z,t 

so that 

LLBIIo-< k Ih,,I-' ÷ Hhlto < " h:de  + Ithllo -< kNhHo. 
t r) 0 

Similar inequalities obtained from (2.5) when differentiated show that liB'I[0 <- kllh'll0, and 
consequently ]IBt[I = HLhI[I <- kl]hHt. • 

The general solution of Eq. (2. la) is 

p ( t , a )  = p0(a) B(t  - a) + h:(t - a + s , s ) / p o ( s )  ds , (2.10) 

where B is an arbitrary differentiable function. This solution will also solve (2. Ib) if and only 
if B solves the integral Eq. (2.5) with 

h(t) = hi(t) + [3(a)po(a) h:(t - a + s. s) /po(s)  ds da. (2. l l )  

Note that (h,, h:) E P~ x Pl-(/ . , t)  implies that h E P~, and that i fB ¢ P~ solves (2.5) then p 
defined by (2.10) is a solution of (2.1) which lies in P~(~). 

Define N(tx) to be the subspace of all solutions p ~ P~(~) of (2.2) and let N-(~x) = {P 
P~(p,): f~[p, 15] = 0 V 15 ~ N(#.)}, where 

f/ 
4 

f~[.r. 2] := 13(a) av[x(t, a).f*(t, a)]/po(a) da. 
) 

Here "* ' "  denotes complex conjugation. Let M~(~x) ~ P~ x P~-(Ix) be the closed subspace 
consisting of those (h~, h_,) for which h defined by (2.11) lies in N~(~).  

LEMMA 2.2 
Assume ~x ~ A and [3 ~ C O . 

(a) dim N(IX) is finite. 
(b) The system of Eqs. (2.1) has a solution p E Pt (~)  if and only if (hL, h:) E M-(~x) ,  in 

which case (2.1) has a unique solution p ~ N-(Ix) and the operator S: M - ( t x ) ~  N-(p.) 
defined by p = S(h~, h2) is linear and bounded. 

Proof.  The space N(~)  of  homogeneous solutions of (2.2) is spanned by the real and 
imaginary parts of  15re(t, a) = p0(a) exp(2wimt ) ,  m ~ Zo. and hence is finite dimensional. This 
proves (a). 

Suppose p E Pt(Ix) solves (2.1). Then B in (2.10) solves (2.5) with tt given by (2.11). 
By Lemma 2.1, h ~ N - .  i.e. (/4- h2) ~ M:(p . ) .  

Conversely, suppose (ht, h2) ~ M-(~x).  Then h defined by (2.11) lies in N-(Ix) and by 
Lemma 2.1 Eq. (2.5) has a unique solution Lh ~ N - .  With B(t)  = V,,,=~z, c,, exp(2"rrimt) - 
Lh for arbitrary coefficients c,,, m E Zo, pit,  a) defined by (2.10) lies in Pt(~)  and solves (2.1). 
Now h E N-(~t) if and only if h,, = 0. m ~ Zo. i.e. if and only if 

J'.4 f a  
hu, + [3(a)pu(a) av[h_,(t - a + s, s )e - :  ...... ]"p,j(s) ds da = 0. m E Z,,. (2.12) 

0 ) 
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where h~,, are the Fourier coefficients of h~(t): 
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f0 I him = h,(t)e -'-~''"' dt. (2.13) 

The unique solution p of (2.1) which lies in N-~(i.t), i.e. which satisfies f~[p, Po exp(2rrim(t - 
a))] = 0 for all m E Zo, is obtained by choosing the constants c,, to be equal to h~m. Thus 
(2.1) has a unique solution p ~ N- (~ )  given by p = S(h,,  h,_), where 

\ r n E Z  o 

with h~m given by (2.13). 

Simple inequalities show, using (2.14) and Lemma 2. l, that 

[S/9ol <- ktlh,N0 + k[lhlh + A]lh:[l~, 

O (S/po) ~t -< kllh~llo + kllhlll + IIh=II~, + A h_, , 

~t (S/po) <-kl{h,llo + kl[hllo + kllhllt + e 0t h., ~,' 

and consequently IIS(h~, hz)ll~.t ~ k(l{h~lh + IlhzlL.l-). 
We will be interested below in the case when dim N(p.) = 1, that is, when 

[3(a)po(a) da = 1, (2.15a) 

[3(a)po(a)e -'-'~i"" da ¢: 1, 0 # m ~ Z. (2.15b) 

In this case the homogeneous Eqs. (2.2) have exactly one independent solution p ~ P~(p.), 
namely the time-independent or equilibrium solution 9 = 90(a) of (2.4). Then N(tt) is spanned 
by 9o(a) and 

N~-(~) = p ~ PI(t.t): [3(a) av[p(t, a)] da = 0 . 

By (2.12), (h~, h2) ~ Ma(p.) and the nonhomogeneous Eq. (2. I) have solutions if and only if 
the single constraint 

To av[ht] + [3(a)po(a) av[h.,(t - a + s, s)]/po(S) ds da = 0 (2.16) 

holds. This "orthogonality condition" on (h~, h,) is an averaged version of that derived in [ 15] 
for (h~, h:) ~ R x B~, and for equilibrium solutions 9 ~ B~,.~ of (2.3). 

The condition (2.15a) implies that n = 1 is an " 'eigenvalue" of the problem (2.4) with 
[3(a) replaced by n[3(a). In fact, n = 1 is then the only value of n for which this homogeneous 
problem has a nontrivial solution (namely P = 90). The next lemma deals with a generalization 
of this result when ~ and [3 suffer small-amplitude a time-periodic perturbations. Consider the 
equations 

Or(t, a) + 9,(t, a) + (~(a) + r_4c~)(t, a))p(t,  a) = O, 

O(t, O) - no (~(a) + rt(a)(t ,  a))p(t,  a) da = O, 

(2.17a) 

(2.17b) 
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where no ~ R and where r, for each c~ ~ ( -o~ 0. %) is a real-valued function of t and a such 

that 

r,(O)(t, a) =- 0, 

and for which the operators defined by 

f 
A 

l l (a ,  p) := r~(a)p da .  l:(c~, p) := r : (a)p  (2.18) 
) 

map 

l ~ : ( - % , % )  x pL(p,)_._, p ,  and l, : ( - e~o ,  eL o) × Pl (p , ) - - -*P : - ( l a )  (2.19) 

and are q -> 1 times Frdchet differentiable in (~, 9). 

LEMMA 2.3 
Suppose la, ~ k and 13 ~ C O satisfy (2.15) and the r, are, as described above, real-valued 

functions for which the operators I, in (2.18) satisfy (2.19) and are q - >  I times Frdchet 
differentiable. Then for sufficiently small ]a[ < 6~o < cq~ the homogeneous Eqs. (2.17) have a 
nontrivial solution 

p(t, a) = po(a) + z ( a ) ( t ,  a) (2.20) 

for 

no = 1 + h ( a ) ,  (2.21) 

where z(o0 : ( -fit0, 6.0) ~ N-*(g) and X : ( -&o,  &o) ~ R are q --> 1 times differentiable and 
where z(0) = 0, M0) = 0. 

Proof .  A substitution of (2.20) and (2.21) into (2.17) results in a system of the form (2.1) 
for z with 

~ 4 

ht := (rt(c~)(t, a) + M13(a) + r l (a)( t ,  a)))(p0(a) + z ) d a ,  

h, := -rz(c~)(t,  a)(po(a) + z). 

12.22) 

Because (2.15) holds it is necessary that the "or thogonal i ty"  condition (2.16) hold. Thus we 
reformulate (2.17) with (2 .20)-(2.21)  as follows. Given z ~ N - ( I x )  and c~ ~ R we define ~. 
so that (2.16) holds: 

fo' i; ) 1 + 13(a) av[z(t,  a)] da + av[rl(o0(t,  a)(po(a) + z(t ,  a))] da ~. 

fo fi' fo' '~ av[rl(et)(t, a)(po(a) + z( t ,  a))] da  + 13(a)po(a) av[ r , (a ) ( t  - a + s. s) 

x (po(s) + z( t  - a + s, s ) ) ] / p o ( s ) d s  da ,  (2.23) 

and then the equation for z is equivalent to the operator equation 

- - S(h~(c~, _'), h_,(c~. -)) = O. (2.24) 

where S is the operator of Lemma 2.2 and h~, h,_ are defined by (2.22) with a. given by 12.23). 
Clearly, h is well defined by (2.23) for '.e~! and }[--11~,.~ sufficiently' small, say' in an open neigh- 
borhood F C R x N - ( ~ ) o f ( o t , _ - )  = (0 ,0 ) .  
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Under the stated hypotheses the operator F: F ~ N'(IX) defined by F ( a ,  z) := z - S ( h ~ ( c t ,  

: ) ,  h , ( a .  z ) )  is q -> 1 times continuously differentiabte and 

F ( 0 , 0 )  = 0, F : (0 ,0 )  = I, 

where I : N±(IX) ~ N-(tx)  is the identity operator. The implicit-function theorem implies that 
(2.24) has a (local) q -> 1 times continuously differentiable solution z = z(et) ~ N-~ (~),  which 
yields (2.20) and, after a substitution into (2.23), h in (2.21). • 

As pointed out above z ~ N±(IX) means under (2.15) that 

f l  a ]3(a) av[z(cx)(t, a)] da = 0 

for each cx. 
With sufficient differentiability (q -- 1 large enough) lower-order terms of any desired 

order in the a expansions of  p and n can be computed by the familiar method of substituting 
expansions 

9(t, a) = p0(a) + azt(t, a) + a'-z,.(t, a) + . . . ,  

n o = 1 + eth~ + e~'-h: + . . .  

into (2.17), equating coefficients of  like powers of ct on both sides of  both equations and solving 
the resulting recursive linear nonhomogeneous systems for zi. These linear problems have the 
form (2.1) and are solvable by Lemma 2.2 when the orthogonality condition above is satisfied 
by an appropriate choice of h.,. 

From (2.23) it is easily seen that 

f: Jo h.l = -- av[ri(0)(t ,  a ) ] p o ( a )  d a  + 13(a)po(a) av[r;(0)(t  - a + s, s)] ds da,  
0 

where r[(0) denotes the partial derivative with respect to a at a = 0. This gives a formula for 
the lowest-order correction to the "e igenvalue"  no. 

A natural way to study time-periodic oscillations in the death and fertility rates is to consider 
oscillations about (age-specific) averages Ix and !3, i.e. to assume that 

av[ r , ( c~ ) ( t ,  a)] -- 0, V(ot, a) E ( - S o ,  c%) x [0, A]. (2.25) 

In this case, h.~ = 0 and no = 1 + ~ 'X,  + ... so that there is a second-order correction to 
the "e igenva lue"  no. Moreover, from (2.23) and (2.25), 

;i h_, = - av[ri(0)(t ,  a ) z l ( t ,  a)] da 

fo f0 + 13(a)po(a) av[r ' (0)( t  - a + s ,  s ) z l ( t  - a + s ,  s ) ] / p o ( S )  d s  d a ,  

where z~ is the unique solution of (2.1) in N'(IX) with 

j~ 4 

hi = r i ( O ) ( t ,  a ) p o ( a )  d a ,  h ,  = - r ~ ( O ) ( t ,  a)p0(a), 

as guaranteed by Lemma 2.2; that is, z~ is given by (2.10): 

z l ( t ,  a )  = po(a)  B ( t  - a )  - r~ (O) ( t  - a + s ,  s )  d s  , 
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where B(t) is the unique solution of the integral Eq. (2.5) satisfying av[B] = 0 with [see (2.1 1)1 

~0 ~ j'4 I a h(t) = ri(0)(t, a)po(a) da - /3(a)p,~(a) r~(O)(t - a 4- s, s) ds da. 
[1 J 

Under assumption (2.25) these formulas allow for a study of the effects, to lowest order, 
on the "eigenvalue" no and "eigensolution" p (as determined by X, and .-~) due to periodic 
oscillations about average death and fertility' rates ix and 13. An example is given in Sec. 4. 

3. A NONLINEAR THEOREM 

In [15,16] the autonomous version of the nonlinear Eqs. (1.3)-(1.4) in which the death 
and fertility rates D and f are general functionals of  the population density p, but do not depend 
explicitly on time t, were studied using global and local bifurcation techniques with n as a 
bifurcation parameter. Under the normalization 

/; ( ; ; )  f(O)(a) exp - D(O)(s) ds da = 1 

and certain minimal smoothness assumptions it was shown in [16] that a global continuum of 
equilibrium p = p(a) solution pairs (n, P) ~ R x B~, exists and bifurcates from the critical 
point ( I ,  0). This continuum connects to the boundary of the domain of definition of the 
functionals D and f .  In [ 15] this bifurcation branch was parameterized and studied locally near 
the bifurcation point (1, 0). 

Here we wish to allow D and f to depend explicitly on time t in a periodic manner as in 
(1.3)-(1.4). Specifically, let D and f suffer small-amplitude a time-periodic perturbations of 
the form 

D = IX + Rz(a, p), f = 13 + Rt(a, P), (3.1) 

where ~ ~ ~ and/3 ~ C O satisfy (2.15) and the terms Rs = R,(a, p)(t, a) are such that &(0, 
0)(t, a) -= 0 and the operators defined by 

~ 4 
nt( a,  P) ' = Rl(a, p)(t, a)p(t, a) da, n.,(a, p) ' = R_,(a, p)(t, a)p(t,  a) (3.2) 

are q -- 1 times Fr6chet differentiable as operators mapping 

nl : ( - % ,  %)  x Pt(~x) ~ P~. n, • ( - % ,  ao) × P~(tx)---" P~(~x). (3.3) 

THEOREM 3.1 
Assume that D and f have the form (3.1), where ix ~ & and 13 ~ C O satisfy (2.15) and 

the perturbation terms & are such that &(0, 0) = 0 and (3.2) defines q -- 1 times Fr6chet- 
differentiable operators which satisfy (3.3). Then for Ic, I < a,, <_ c,o and for ]el < e,) sufficiently 
small, (1.3)-(1.4) has a (unique) solution of the form 

where 

P = epL(a) + ew(a.  e) with n = n,(c~) + nt(a, e), (3.4) 

pl(c~) = P0 + _-(a). n j = 1 + )t(a) (3.5) 

are as in Lemma 2.3 with rj = Rl(C~. O) and r, = R,_(c< O) and where 

w : ( - ~ o , & ) )  x ( - % ,  %)- -+N-(p . I ,  n~ ( - 6 , , c ~ o )  x ( - % ,  e , 0 - - ' R  

are q ---- 1 times Frdchet differentiable and satisfy w(a,  O) ~ O, n~(~, 0) -= 0. 
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Proof. If (3.1) and (3.4) are substituted into (1.3)-<1.4), then making use of (3.5) we 
obtain for each et equations of the form (2.1) for w where 

hi = hi(or, e, w) := (Rz(ct, 0) - Rz(ct, Gpt + ew))(p, + w) - R:(ot, O)w 

f0' f: h, = h2(c~,e, w ) ' =  ni (13 " Rt(a. Gpl + ew))(pl + w) da + no Rt((x, 0 ) w d a  

,f0 + no (Rt(a, ept + ew) - Ri(a, 0))(pl + w) da. 

Choosing n~ so that (h~, h,.) ~ M-(~x), i.e. choosing n~ = nt(c~, e, w) so that (2.16) holds, 
these equations for w ~ N+(Ix) can be equivalently reformulated using Lemma 2.2 as H(a ,  G, 
w) = 0, where 

H(ot, G, w) := w - S(hl(ct , G, w), h_,tot, G, w)) 

defines an operator H: ( - % ,  %) x ( - % ,  %) x N-L(~) ~ N-(Ia). Note that n~ so defined 
is easily seen to be well defined, since the coefficient of n] in (2.16) is 1 when (a, e, w) = 
(0, 0, 0), and q >- l times differentiable for (x, e and IlwN+ ~ sufficiently small. Moreover, a 
straightforward solution of this linear equation for n~ shows that nt((x, 0, 0) = 0 for all small 
laI and that ant(O, O, O)law = o. 

These facts yield 

H(O, O, O) = O, OH(O, O, O)/aw = I, 

and the implicit-function theorem in turn yields a unique solution w = w(c~, e) of  H(a ,  G, 
w) = 0 satisfying w(0, 0) = 0. It is easy to see that H(c~, 0, 0) ~- 0, so that w(ot, O) =- 0, 
n(c~, 0) -= 0 for all small Ic~[. • 

For q -- 1 sufficiently large lower-order e coefficients in the expansions (3.4) can be found 
in the standard manner of deriving and successively solving linear problems of the form (2.1) 
(for small t~xl) by the methods in Sec. 2. 

4. AN EXAMPLE 

Suppose that the age-specific fertility rate oscillates cosinusoidally around an average 
density-dependent rate with a small-amplitude a (relative to the average): 

f : =  13(a)(1 + ctcos2.rrt)g(p),  0 -<  13 ~ C °. 

Here g is an arbitrary functional of density p satisfying g(0) = 1, which is sufficiently smooth 
for an application of the theorem in Sec. 3 (q -> 1 times continuously differentiable). A specific 
example is the frequently used logistic-type model obtained by setting g = [1 - f~ k(a)p(t ,  
a) da]+[21]. 

With regard to the death rate D we assume in this simple example that it is density 
independent. Specifically, we choose 

D = i x : =  I /(A - a ) ~ . . k  

so that the death rate is a monotonically increasing function of  age a ~ [0, A). The system of 
Eqs. (1.3)-(1.4) then reduces to 

1 
p, + p, + - - p  = 0, t > 0 ,  0 < a < A  < +~c; (4.1) 

A - a 

;0' p(t, 0) = n 13(a)(1 + (x cos 2wt)g(p)  p da, t > 0. (4.2) 
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po(a) = (A - a ) / A .  0 <-- a <-- A .  (4.3) 

and the normalization of 13 is 

jIo ~ 13(a)po(a) da = 1. (4.4) 

According to the theorem of  Sec. 3 (with R~ = j 3 ( a ) ( -  1 + (1 + c~ cos 2"rrt)g(p)) and 
Rz = 0), Eqs. (4 .1)- (4 .2)  have nontrivial periodic solutions of the form (3.4). The lowest- 
order terms in the expansions (3.4) are given by the solution (3.5) of the linearized equations 

I 
p, + p~ + - - p  = 0, (4.5) 

A - a 

p(t, 0) = n 13(a)(l -~ a cos 2rrt )p  da ,  (4.6) 

which can be written 

91 = p0(a) + a z ~ ( t , a )  + a ' z 2 ( t , a )  + "" .  no = I + X~c~ + h,e~'- + . . .  (4.7) 

From the remarks at the end of Sec. 2 it follows, in fact, that ~-1 = 0. as will also be seen 

from the analysis below. 
To determine the lower-order coefficients in these c~ expansions, we substitute (4.7) into 

(4 .5)- (4 .6)  and equate coefficients of  like powers of c~. This leads to the following three systems 

of equations: 

Poa + A - a Po 0, p0(0) 13(a)p0(a) da; 

f0 ~ 
l Z I = 0, z l ( t ,  0) 13(a)zdt, a) da + ~-t + cos 2,-rt: (4.8) zlt + z~, + A - a 

_ - -  zz = O, z,_(t, O) = 13(a)z2(t, a) da + ~., Z2t + ZVa "~ A - a 

+ ~3(a)p~(t, a) da cos 2wt. 
(4.9) 

to be solved for the first three coefficients in (4.7). The first system is satisfied by the choice 

(4.3) for po(a), in view of  (4.4). 
In order to solve the system (4.8) for z~ it is necessary by Lemma 2.2 that 

av[h~ + cos 27rt] = O. 

i.e. h~ = O, in which case 

z l ( t ,  a) = B ( t  - a)po(a) .  (4.10) 

where B ( t )  solves the integral equation 

'O 
B ( t )  = 13(a)po(a)B(t  - a ) d a  - cos 2wt. 
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B ( t )  = c I cos 2rrt + c, sin 2~rt; (4.11) 

I - C  S 
d = (1 - C)-" + S-': (4.12) cl - d , c: d" 

C = 13(a)po(a) cos 2,-ra da, S = 13(a)po(a) sin 27ra da .  (4.13) 

Here it is necessary that 

d > 0  

in order that (2.15b) holds. 
Equations (4.11)-(4.13) define the lowest-order oscillation in Pt of  the solution p given 

by' (3.4): 

Pl -- 
A - a 

A 
- - ( 1  + e~B(t - a) + . . . ) .  

From (4.11) one can determine the age-specific phase and amplitude of  this oscillation (relative 
to that in the fertility rate f)  as they depend, through (4.12)-(4.13), on the age-specific inherent 
fertility rate 13(a) and the maximum lifespan A. Some general conclusions which can be drawn 
are as follows. Unless c, = 0, the "total birth rate" B ( t )  is not in phase with the oscillation 
in the fertility rate f .  Moreover, since c~ >- 0, the total birth rate B peaks later than f (with 
relative phase tan-~(S/(l - C)) if and only if S > 0. The amplitude of B increases without 
bound as d approaches 0, where (2.15) fails to hold and a reasonance occurs. 

In order to determine (to lowest order) the effect that the oscillation in f has on the critical 
value no of  the average inherent net reproductive rate n we must (since h, = 0) calculate X,. 
This is done by means of the required "'orthogonality" condition (2.16) for the solution of 
(4.9). The result is 

h,  = (C  z + S: - C ) / d .  

Consequently, in this example there is a second-order adjustment in the critical bifurcation value 
of the averaged inherent net reproductive rate caused by the oscillation in the fertility rate f .  
There is an increase in this critical value if h, > 0 and a decrease otherwise. 

A simple example is given by the case when fertility is not age specific: 13(a) -~ 130 = 
const > 0 or, by the normalization (4.4), when 13(a) = 2 / A .  Then 

C = (1 - cos 2 w A ) / 2 ~ r : A : ,  S = (2"rrA - sin 2wA) /27r ' -A  2 (4.14) 

and k, -> 0, i.e. there is an increase in the critical value no, since 

C-" + S-" - C = (1 + ";r-'A-')(I + cos(2"rrA + 6))/2v~Aa --- 0, (4.15) 

where d) = t an -~ (2rrA / (w ' -A  "- - 1)). In this example S > 0, so that as remarked above the 
total birth rate B ( t )  given by (4.11) with (4.14) in the coefficients (4.12) is never exactly in 
phase with the oscillatory fertility rate f ,  and in fact peaks after f .  Furthermore, in this example. 
the coefficient of  the lowest-order oscillation in the total population size P = f~ p(t, a) da is 
easily computed to be 

J°.4 fA 
z~(t, a) da  = B ( t  - a)p0(a) da = -2A((C-" - S z - C )  cos 2wt - S sin 2,-rt) /d.  

0 ) 
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Consequent ly ,  by (4.15) and S > 0, P oscillates out of phase with the fertility rate f with a 
phase difference tan ~(S / (C:  - .  S :  - C ) )  ranging from one-quarter  1o one-half  cycle. 

The purpose of  this example is s imply to illustrate the general results and techniques of 

Secs. 2 and 3. It is not intended here to study in depth the biological implications of this model 
or of small-ampli tude oscil lations in the vital rates in general.  It is hoped to do this in a future 

paper. 

5. SUMMARY 

The theorem appearing in Sec. 2 establishes a local, parameterized branch of t ime-periodic 

solutions of the McKendr ick  Eqs. (1 .3 ) - (1 .4 )  when the age-specific vital rates D and f suffer 

small-ampli tude o~ periodicities in time. The branch bifurcates from the trivial solution p -= 0 

at a critical value no of the averaged net reproductive rate n, as given by Lemma 2.3. This 

result is a general izat ion of the autonomous equi l ibr ium results in [151, which correspond to 

c~ = 0. This theorem and the lemmas of Sec. 2 permit the use of standard perturbation techniques 

to calculate lower-order approximations to the t ime-periodic solutions. A simple example is 
given in Sec. 4 in which fertility oscillates consinusoidal ly  in time while the death rate is time 
and density independent .  Besides illustrating the general results and techniques,  this example 
shows some interesting biological  results that such a model can imply,  such as an increased 
critical bifurcation value for the average net reproductive rate due to the fertility-rate oscil lation 

and certain phase relationships between fertility and the total birth rate and the total populat ion 

size. 
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