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Summary 

A general (Volterra-Lotka type) integrodifferential system which describes a predator-prey inter- 
action subject to delay effects is considered. A rather complete picture is drawn of certain qualitative 
aspects of the solutions as they are functions of the parameters in the system. Namely, it is argued 
that such systems have, roughly speaking, the following features. If the carrying capacity of the 
prey is smaller than a critical value then the predator goes extinct while the prey tends to this 
carrying capacity; and if the carrying capacity is greater than, but close to this critical value then 
there is a (globally) asymptotically stable positive equilibrium. However, unlike the classical, non- 
delay Volterra-Lotka model, if the carrying capacity of the prey is too large then this equilibrium 
becomes unstable. In this event there are critical values of the birth and death rates of the prey and 
predator respectively (which hitherto have been fixed) at which "stable" periodic solutions bifurcate 
from the equilibrium and hence at which the system is stabilized. These features are illustrated by 
means of a numerically solved example. 

1. Introduction 
The integrodifferential system 

N[ (t)=b: N~ ( t ) ( 1 - e : :  Ul  ( t ) - q 2  ~oN2 ( t -u )dha  (u)) 

N'2 (t) = b 2 N 2 (t) ( -  1 + c2: So N:  ( t -  u) d h 2 (u)) (1.1) 

bi>O, cu>0, dh i (u)>_O, Sodhl (u)= 1 

serves to describe the dynamics of two species whose population sizes are N i (t) 
(in some appropriate units) and whose interaction is that of a predator N2 and 
prey N~. Here b I (or b2) is the inherent, exponential net birth (or death) rate of the 
prey (or predator) in the absence of all constraints and c:1 is the density 
coefficient for the prey. In the absence of predators (i. e. when N 2 - 0) N1 satisfies 
the well-known logistic equation N'l-=b: N 1 ( 1 - q l  N 0 and hence N 1 (0)>0 
implies that N:  (t) tends to the equilibrium 1/Cll (i.e. to its so-called "carrying 
capacity") as t ~  + oo ; in the absence of prey, N2--*0 as t ~  + oo. On the other hand, 
when N 1 and N2 interact, the Stieltjes integrals in (1.1) allow the contacts between 
predator and prey at (possibly all) past times to effect the growth rates of both 
species. 
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Delay effects were first considered in predator-prey systems by Volterra in his 
well-known book [8]. Volterra set dhi(u)=ki(u)du and showed that under 
certain conditions all solutions possess a certain "oscillatory" behavior. If 
h i (u)=s,(u~ the unit step function at z>0,  then (1.1) is a differential system 
with constant time lags. Such systems have been studied by a few authors (see 
[2] and [6] and the references therein) and, although such systems are not as 
completely understood as systems without time-lag, enough is certainly known 
to say that such lags can significantly alter the qualitative behavior of solhtions. 
(Also see [1].) 

Although the general theory and available analytic techniques for integrodifferen- 
tial systems are not as well developed as those of differential systems, enough 
recent work has been done for both general integrodifferential systems (e. g. see 
[3], [4], [7] and the references therein) as well as those of the form (1.1) (see [1], 
[5]) to be able to draw a rather complete picture of certain aspects of the 
qualitative behavior of solutions of (1.1) as they are functions of the parameters 
in the system. To attempt to do this is the purpose of this paper. 

To begin we observe that the only equilibria, Ni(t)-ei=constant,  of (1.1) 
lying in the right half plane are 

El: el = l/c2l, e2=(C21--C11)/C21 r 
(1.2) 

Ea: e1=1/c11, e2=0. 

In the classical, nondelayed case of the Volterra-Lotka equations (i.e. when 
hi (u)=so (u), the unit step function at z=0) it is well-known that all positive 
solutions N i > 0 (a) tend to E 2 if c t 1 > c21 and (b) tend to E1 if 0 < c 11 < c21- Thus, 
either the equilibrium E1 is asymptotically stable or the predator goes extinct 
depending on whether the carrying capacity of the prey is respectively greater 
than or less than the critical value 1/c2~. In the presence of time delays, however, 
the situation is a good deal more complicated. In some cases for example Ea may 
be unstable [1], [3] and/or nonconstant, periodic solutions may exist [1], [5]. 

In section 2 and section 4 theorems will be stated and proved which, roughly 
speaking, support the following general statement concerning (1.1) when delays 
are present. Case (a) above holds in general for (1.1) when c t a > c21 regardless of the 
values of the other parameters or of the nature of the delay integrators h i (u). 
This is also true of case (b) provided cl 1 is not too small. However, unlike the 
classical Volterra-Lotka system, if c11>0 is small (all other quantities being 
held fixed), then the equilibrium E 1 will usually, owing to the presence of delays, 
become unstable. In the case when c~ t is small however, there are under certain 
conditions critical values b ~ of the .birth and death rates b~ and b 2 at which 
nonconstant, periodic limit cycles will bifurcate from Ex. Hence, an equilibrium 
which is unstable due to the presence of time delays and a large carrying 
capacity for the prey can be stabilized by an appropriate adjustment of the birth 
and death rates bl and b2. 

All of the above points are illustrated in section 3 by means of a specific, 
numerically solved system (1.1) with exponentially decaying kernels k i (u). Although 
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the rigorous mathematical theorems in section 2 only support the above claims 
"locally", all examples which have been numerically investigated by the author 
(including the one discussed in section 3 below) indicate that these phenomena 
are for all practical purposes in fact global in the sense that for fixed values of the 
parameters in (1.1) every positive solution either tends to E~ or Ez; or every 
solution spirals outwardly in an unstable manner; or every solution tends to a 
periodic limit cycle (not necessarily to the same one). Only for a very narrow range 
of "borderline" values of the parameters was "mixed" behavior ever observed. 
For  example, see Fig. 1 (e) below where some trajectories spiral outwardly while 
some spiral inwardly. 

2.  T h e o r e m s  

Following Volterra [8] we say that two functions N~(t) form a solution 
(N 1 (t),Nz (t)) of (1.1)for  t > t  o for some t o > - O o  if each Ni(t  ) is defined for 
- o o  < t <  + oo and differentiable for t>to, if each integral in (1.1) is defined for 
t >  t o and if each equation in (1.1) is identically satisfied for t >  t o. Note that any 
solution of (1.1) for t > t  o is necessarily of one sign for t > t  o. This is because 
N~ (t) = N~(to) exp (~'to P~ (s) ds) for t > t o where the P~ are the parenthetical expressions 
on the right hand sides of the equations in (1.1). By a positive solution of (1.1) for 
t > t o we mean a solution for t > t o as defined above for which Nz (t)>0 for all 
- oo < t < + oo. Positive solutions are of course the only solutions of interest in 
any ecological application of (1.1). For  simplicity we will take t o = 0, although all 
of the following theorems remain valid for an arbitrary t o > -  m. Thus by a 
solution or positive solution of (1.1) we will mean a solution or positive solution 
of(1.1) for t>0 .  

We assume throughout that h~ (u) is of bounded variation of finite intervals. 

T h e o r e m  1: I f  (N 1 (t),Nz(t)) is a positive solution of (1.1) with c11>c21 then 
(N1, N2) approaches E 2 as  t---* + oo ; that is, 

limt_~+~ N 1 (t)=l/c11, lim, o+~o N 2 ( t )=0.  

We emphasize that this theorem, which says that the predator goes extinct if 
the prey's carrying capacity is too small, is valid for any values of the other para- 
meters bl, b 2 and Clz and for any delay integrators h~. In this regard (1.1) 
behaves like the classical Volterra-Lotka system. 

The next three theorems deal with the case c11 <Czl; i.e. with the case when the 
equilibrium E 1 lies in the first quadrant. We say that E1 is locally stable [4] 
if given any e > 0  there exists a 3 = 6  (e)>0 such that for any solution of (1.1) 
satisfying [N~(t)[_<6 for all t < 0  it is true that [N~(t)[_<e for all t>0 .  The 
equilibrium E 1 =(el ,  ez) is locally asymptotically stable [4] if it is stable and if 
there exists a constant 7 > 0  for which [N~(t)[<7 for all t < 0  implies that 
Ni (t)---,ei as t---, + oo. 

Theorem 2: Assume that dhi(u)=ki(u)du in (1.1) where ki(u) has a Laplace 
transform k*(s) which is analytic for Re s>0.  There exists a constant 



372 J.M. Cushing: 

e~=e~ (clz, c21, bi, k~)>O such that if cll  satisfies c21-~1<c11<c21 , then the 
equilibrium E~ is locally asymptotically stable. 

This theorem is proved by means of the standard technique of linearization 
about E1 and an investigation of the resulting linear system of integro-differential 
equations. For  the details of this procedure and for its formal justification we 
refer the reader to [4]. The stability of the linearized system is determined 
by means of the location in the complex plane of the roots of the characteristic 
determinant [7] which for our application here turns out to be f ( s ) =  s (s+ b t e~ 
c11)+k (s) where k (s)=b I b2 el e2 cl2 C21 k~ (s) k~ (s). If the roots of f ( s ) = 0  all 
lie in the left half complex plane Re s <0  then E 1 is locally asymptotically stable 
[4], [7] and Theorem 2 is proved in section 4 by showing that this is in fact 
the case for c~  close to, but less than c2~. 

On the other hand, if f ( s ) = 0  has a root in the right half plane Re s > 0  then Et 
is unstable [3], [4]. As we will see this often happens as c1~ is taken closer to zero. 
In order to investigate this possibility we consider f ( s )  when q l = 0 ;  let 
fo (s) =sz + k (s) where now k (s)=bl b 2 k* (s) k~ (s). We look for conditions on 
k~ under which fo (s)= 0 has a root in the right half plane. Under these same 
conditions f (s) will have roots in the right half plane for c 11 small. 

It is often the case that k (s) is a rational function of s in which case the location of 
the roots offo  (and f )  can be carried out by means of the well-known Routh-Hur- 
witz criteria. For example, see the examples in [3] or section 3 below. To obtain 
more general criterion, however, we make use of the argument principle and 
obtain the following theorem. 

Theorem 3: Assume that the integrators h i satisfy the hypotheses of Theorem 2 and 
that fo (s) = 0 has no purely imaginary roots s = i y, - c~ < y < + o9. I f  the condition 

arg fo (+  ~ i )~n  (2.1) 

holds, then the equilibrium E 1 is unstable for 0 <c1 1 <~  z where ~2=~z(c12, c2x , 
bi, ki) > 0 is some sufficiently small constant. 

Here we mean, of course, that argf0 (+  ~ i )=l imyo+~ argfo  (iy). Note that 
fo ( i y ) = -  y2+ k (i y) and that [k* (i y)] ___ 1 for all y implies that the curve fo (iy), 
y > 0 lies in the semi-infinite rectangle - ~ < x _< b 1 b a, [ y [ -< bl b2 of the complex 
plane s = x + i y .  Since f o ( 0 ) = b l  b2 and R e f o ( i y ) - ~ - ~  as y ~ + ~  it follows 
that arg fo (+  ~ i) = (2 n + 1) n for some integer n = 0, +_ 1, _ 2 . . . . .  According 
to Theorem 3 all possibilities except n = 0  imply the instability of E 1. It will 
follow from the proof of Theorem 3 in section 4 below that when n = 0 no roots 
offo (s)= 0 will lie in the right half plane. Hence, since it was assumed that none lie 
on the imaginary axis, it follows that in this exceptional case all roots lie in the 
left half plane which implies, as in Theorem 2, that E 1 is locally asymptotically 
stable. Since all but this one case of infinitely many lead to instability we conclude 
that it is usually the case that E a is unstable for cll  small (i.e. for prey with 
large carrying capacity). In further support of this statement we point out that all 
examples with specific kernels k i ever computed by the author, including that in 
section 3 below and those in [1] and [3], have yielded unstable cases. 
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Our final result deals with the existence of nonconstant periodic solutions of (1.1) 
which surround the equilibrium E i. (By a p-periodic solution of  (1.1) for  t >  t o we 
mean a solution for t > t  o as defined above such that N i ( t + p ) = N  i (t) for all t. 
It is not difficult to see that such a solution is in fact a solution for arbitrary 
t o > - oe and hence we speak simply of p-periodic solutions of (1.1).) This problem 
was dealt with for general two species interactions in [5] and we will apply the 
main results in [5] to (1.1). The theorems in [5] give necessary and sufficient 
conditions for the bifurcation of p-periodic solutions of (1.1) from E 1 as the 
birth and death rates b 1 and b 2 respectively vary through critical values b ~  
and b ~ > 0. In order to describe the application of these criteria to (1.1) we must 
introduce some further notation. 

For a positive integer n > 1 and positive period p > 0 we define the Fourier-Stieltjes 
integrals 

Sij = S~j (n, p) = cij S~ sin 2 rc n p -  i u dh~ (u) 

Ci~ = Cq (n, p) = cij ~ cos 2 rc n p -  i u dh i (u) 

and the expressions 

Z1 =Z:~l (n, p)=S12 C21--t-821 C12 , z~ 2 =z~ 2 (n, p)--- S12 $21-C12 C21. 

Theorem 4: Suppose that the following conditions hold for  some integer n>_ 1 
and period p > 0: 

Z i (n,p)>0, 2:2 (n,p)<0, C2i (n,p)@O. (2.2) 

Suppose in addition that either 

n X l ( m , p ) @ m Z l ( n , p )  or n 2 Z l ( n , p ) Z z ( m , p ) @ m 2 Z l ( m , p ) Z 2 ( n , p )  (2.3) 

for  all integers m >_ 1, m ~ n. Then for  c i x > 0 sufficiently small: 

O<cl l  ~ e 3 = g  3 (C12, C2D hi), 

there exists a nonconstant, positive p-periodic solution o f  (1.1) for  values of  
bl, b 2 sufficiently close to the critical values given by 

b ~ = - 2 rc n c21 S 1 (n, p)/p Ca 1 z~'2 (n, p) (2.4) 

b2~ rc n c l i /P  (c2i - c l 0  Z 1 (n, p). (2.5) 

Furthermore, the average o f  any p-periodic solution of  (1.1) is the equilibrium Ei ; 
i.e. p -  i Sg Ni (t) d t = e i . 

The first two inequalities in (2.2) are in fact necessary for the bifurcation of 
p-periodic solutions from E 1 [5]. The conditions C21 =p0 and (2.3) are added to 
guarantee that bifurcation actually occurs. (As those familar with bifurcation 
theory know, the necessary conditions derived for a given problem by means of 
examining the corresponding linearized problem are not necessarily sufficient 
for bifurcation to occur. Hence the need in general for added hypotheses.) 

Notice that conditions (2.2) and (2.3) are all inequalities. One would expect from 
this that if these conditions hold for some n and p then they would hold for 



374 J.M. Cushing: 

this n and all other periods close to p. Thus periodic solutions of (1.1) of various 
periods p are to be expected for certain values of bi. This can be observed in the 
numerically solved example in section 3. 

We do not offer any formal theorems concerning the "stability" of the periodic 
solutions obtained from Theorem 4. The stability question is a difficult one (in 
fact, the stability of nonconstant periodic solutions of nondelay differential 
systems is in general a difficult one) and there appears to be no available 
techniques for approaching it for systems as general as (1.1). Certainly the remarks 
above concerning the existence of many periodic solutions of different periods 
rules out global stability properties of any one periodic solution. As is observed 
numerically in section 3 neither is it true that all solutions are periodic. The 
best statement we can make based on our numerical investigations is that each and 
every solution seems to tend orbitally to a periodic solution, but not necessarily 
each to the same one. 

Finally we point out that, as will be seen in the proof in section 4, the smallness 
of ca~ is not really necessary in Theorem 4. Technically we will see that the 
theorem remains valid if 0<caa<c2a and caa-J=c~ where c~ is a certain 
critical value. 

3. An Example 

System (1.1) was solved numerically for c21 = C 12 = b2 = 1.0 and dhi(u ) = exp(-  u)du. 
Selected trajectories for selected values of cll  and bl are shown in Figs. 1 and 2 in 
such a way as to illustrate the four theorems in section 2 above. Note that the 
critical value for cla is Cza = 1.0 and that the two equilibria are 

El: ea = 1.0, e2 = 1.0- tax 

E2:e1=cl11,  e2=0. 

In this example fo (s) = s 2 + ba/(s + 1) 2 and it is easy to see by direct calculation that 
there are roots in the right half plane (or that arg fo (+ oo i) = - 7c) and hence that 
Theorem 3 applies. 

First bi was fixed at ba = 1.0 and ca i was varied. In Figs. 1 (a) and (b) where ca a > 1.0 
we see illustrated the global attraction of the equilibrium E 2 (which is approximately 
(0.5, 0) and (0.9, 0) respectively) as is consistent with Theorem 1. In Fig. 1 (c) 
where Cax =0.9 is less than, but close to 1.0 we see the asymptotic stability of 
Ea =(1.0, 0.1) as expected from Theorem 2. This stability still holds for cai =0.6 
as shown in Fig. 1 (d). However, when cai is as small as 0.4 the equilibrium 
Ea=(1.0, 0.6) has become unstable as the outwardly spiralling trajectory in 
Fig. 1 (f) demonstrates. This is consistent with Theorem 3. The choice cii  =0.55. 
in Fig. 1 (e) shows a borderline case where the larger trajectory spirals inwardly 
while the smaller trajectory spirals outwardly. In all other cases shown (although 
for clarity only a few trajectories are drawn) every trajectory computed for a 
given value of ca~ possessed the same qualitative behavior as those shown in 
Fig. 1. 
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< a ~  [ / <d> 
C11 = 2.0 

Cll = 0.6 

375 

0 I-- 
a 
LU 

Z 

C l l  = 0,55 

C11 = 1,1 

<C> 

Cll = 0.9 

<f> ~ = 0 . 1  

1.o N 1 = PREY 1.o 
Fig. 1 

The results of Theorem 4 are demonstrated by Fig. 2. There we have fixed Cll 
at the value 0.4 which as shown in Fig. 1 (f) is an unstable case when b 1 = 1.0. In 
Fig. 2 the value of bl is increased in order to illustrate not only Theorem 4, but 
how an unstable equilibrium may be "stabilized" by an appropriate adjustment 
of the birth rate bl. For the exponential kernels chosen in this example we find that 

X 1 (n, p) = 2 ~ n p -  1/(1 + (2 ~ n p -  1)2)2 

222 (n, p)= ((2 ~z n p-  1)2 -- 1)/(1 + (2 7~ /'~ p-- 1)2)2 

C21 = ( 1  + ( 2  g r i p - l ) 2 )  -1  

b ~ = 5 (2 rc n p -  1)2 / (1  - -  (2  7C n p-  1)2) 
b ~ = (1 + (2 7z n p-1)2)2/3. 

first inequality in hypothesis The (2.2) 
remaining hypothese 2:2 < 0 of (2.2) of Theorem 4 clearly holds if 

2 n n p - l < l .  

(3.1) 

(3.2) 

obviously holds as does C21:~0. The 

(3.3) 
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We take n = 1 and recall that we have chosen b ~ = 1.0. This choice of b ~ in (3.2) 
determines p ~ 7.34 which yields 2 r~ n p-  1 = 2 rc p-  t ,-~ 0.86 and shows that (3.3) 
holds. Thus, Theorem 4 applies. The critical value for bl is found from (3.1) to be 
b~ 13.66. 

<a> 

b 1 = 4.o 

'1,0 

n -  
i 

0 <b> 
I , -  _ h 1 = 8.0 

t,u 1.o 

IL 

ff 

i 

<C> b1=IZ.O 

,1.0 

N 1 = P R E Y  

<d> 
b I = 14.o 

i 

<e> 

b 1 = 20,0 

b~ = so.o 

1.0 

Fig. 2 

The graphs in Fig. 2 bear out the above calculations. In Figs. 2 (a), (b) and (c) 
we see that as b I approaches the critical value b ~ from below the unstable, 
outward spirals become progressively tighter until at bl = 14.0 (which is near the 
critical value 13.66) periodic solutions are observed, three of which are drawn in 
Fig. 2 (d). Also drawn in Fig. 2 (d) are two trajectores which, although them- 
selves not periodic, approach periodic trajectories (so quickly in fact that except 
for a short segment in the graphs they appear indistinguishable from the periodic 
trajectories). These computer runs were made for 0 < t < 30 and it was observed 
that, very roughly, the periodic trajectories passed through four periods in this 
time interval. Thus observationally the periods were seen to be very close to 30/4 
which is in turn very near the theoretically computed period of 7.34. As bl was 
increased further, inwardly spiralling trajectories were observed (see Figs. 2 (e) 
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and (f)), but it was not clear whether these trajectories approached a nonconstant 
periodic solution or the equilibrium E 1 =(1.0, 0.6). Nonetheless is quite evident 
that the formerly unstable case for b I = 1.0 is stabilized for bl _> 14.0. 

4. Proofs 

For  the special case when hi (u)=So (u) and dh 2 (u)=k 2 (u)du, Theorem 1 was 
proved in Eli. The proof in [-1] can however be carried out with only the most 
obvious of modifications for the more general case (1.1). In doing this it is 
crucial that the integrators h i be nondecreasing. For  brevity here we skip the 
details of the proof of Theorem 1 and refer the interested reader to the proof of 
Theorem 2 in [-1]. 

Proof of Theorem 2: This theorem will be proved by showing that the roots of 
f ( s ) = 0  all lie in the left half plane R e s < 0  for cll  close to, but less than c2i. 
To do this we wish to treat f as a function of cii  as well as s and hence we denote 
f= f ( s ,  c i l ) =  s (s + b i  el c t l )+  k (s) where all other constants are fixed and 

k(s)=fl ~ e-S"kl(u)du ~ e-~Uk2(u)du (4.1) 

where fl=fl(cli)=bl b2 e2 c21 since e2=e2 (Cu). Here E1 =(el ,  e2) is given by 
(1.2). Note that/3 (cz l )=0 since e 2 (C21)m~0 .  

We argue by contradiction. Suppose it is not true that all roots of f satisfy 
Re s < 0  for c l i  close to, but less than e21. Then we can select sequences ~A") and 
s, such that 

f (s,, A,) ~ -  n Re s, > 0, ,'(") --* ,'(") ~" ~ '111 - -  v~ - -  U l l  C21~ ~11 "~ C21 " 

Now f(s, c21)=s (s+ba) has only two roots s = 0  and s =  - b  a <0. We distinguish 
two cases: (i) s, has a convergent subsequence or (ii) [ s, I~  + oc as n ~  + oe. 

(i) Relabeling if necessary we suppose without loss in generality that s,~s o. By 
continuity 0 =f(s,, e]"l)--*f(so, ezi) and hence f (So, e z i )=0  which implies, together 
with Re s, > 0 that s o = 0. 

A straightforward application of the Implicit Function Theorem (note that 
f (0 ,  c z l ) =0  and 0f(0 ,  czi)/Os=bi :P0)~shows that the equation f(s, q l ) = 0  has 
a unique solution branch s=  s (ca0 satisfying s (e2~)=0 for c1~ near czv Taking 
the implicit derivative o f f ( s  (caa), c~a)=0 with respect to c~a and evaluating the 
result at cla=c21, we find that ds/dcll=dx/dcal=b2/czl>O where s ( e i i ) =  
=x (c~a)+iy (el~). Thus for eia close to, but less than ez~ the only roots of f 
near zero have negative real parts, in contradiction to s, ~0 ,  Re s, > 0. 

(ii) Suppose I s. I~  + oe. Then s, (s,+b i e 1 e(~"l)~ oe. If 0 _ R e  s, = x , ~  + oe, then 
because k (s,)--*0 (see (4.1)) we find the contradiction that 0 = / ( s , ,  c~"l)~oe. Thus, 
we conclude that 0 < x, <m for some constant m > 0. This means k* (s,) is bounded 
and hence that k (s,)--.0 since/~ (c(a"l)~r ) = 0. Again we have the contradiction 
0 =f(s,, c]"~)~ oo. 

Since both cases lead to contradictions the theorem follows. 
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Proof of Theorem 3: We wish to show that under the hypotheses of the theorem 
fo (s) has at least one root with Re s>0 .  To do this we apply the argument 
principle on the half circle Re s > 0, [ s [ < R for an arbitrary but fixed radius R > 0. 
If ?(R) is the boundary of this half circle and if v=v(R)>O is the number of 
zeros of fo inside the half circle, then 

v(R)=(2ni)_  i [ f;(s)  ds (4.2) 
J fo (s) 

where of course ? (R) is oriented counterclockwise. The number of roots of fo 
in the right half plane is v+ =limR_~ + 00 V (R). Let ? (R) be divided into two parts 
7(R)=71 (R)"}-72 (R) where 7i (R) is the semi-circle I s l = R ,  Re s > 0  and 72 (R) 
is the line segment i y where y runs from R to - R. Then v (R) = 11 (R) + I 2 (R) where 

I i (R)=(2ni)  -1 F f~(s) ds. 
, fo (s) 

First we consider 11 (R) for large R. Now 

f ;  (s) 2 s k' ( s ) -  2 k (s) 

To (s) s s (s 2 + k (s)) 

For  s on 71 (R) it is easy to see that k(s) and k'(s) are bounded: [ k'(s)L__M, 
] k (s) l _< M. (See the note below added in proof.) Thus, 

~vl (R) [ f(~,(s)/fo (S) -- 2/S Ids < (R + 2) M/(R 2 - M) rc ~ 0 as R --* + ~ .  

Hence 11 (R)~(2 rc 0 -1 ~rl(R) 2/S ds= 1 as R--, + oo. 

Consequently from (4.2) and 

12 (R) = (2 rc i) -1 ~[R f(~ (i Y)/fo (i y) i d y = ( a r g f ( -  i R ) -  a rg f ( i  R))/2 rc 

we obtain the result 

v+ = 1 + ( a rg f  ( -  oo i ) - a r g  f (+  oo i))/2 n. 

It is not difficult to see that f ( - y i ) = f ( y i )  for all y and as a result that 
arg f ( - oo i) = arg f (+  o0 i). Since arg f (+  ~ i ) -  arg f (+  oo i) = - 2 arg f (+  oo/) 
we find that 

v+ =1 - a r g f ( +  oo i)ffc 

and Theorem 3 follows from the fact that v+ :riO if and only if (2.1) holds. 

Proof of Theorem 4: Assume that cll  <c21 so that E1 lies in the first quadrant. 
From [5] we find that p-periodic solutions bifurcate from El, treating bl and b2 
as parameters,  only if the 4 x 4 matrix  

~. - b  ~ e 1 Si2 - b  ~ e i Cu - b ~  C12 ) 
b~ 4. b~ ; 

M.= b~el Cll b ~ el  C12 in - b ~  el 812] | 
-- b ~ e2 C21 0 b~ e2 $21 in / 

where i , = 2  n n p-1 is singular, ff the determinant of this matrix is set equal to 
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zero the result is an equation of the form 

A fl~ + 2 B fll + 4 4 = 0 (4.3) 

where [3 i = b ~ ei, B = 4 2 S 2 f12 and 

A =(S 2 2 2 2 2 c l l  +c 1 4 . .  + C12) ($21 4, 21 

If we treat (4.3) as a quadratic in fll we find that its discriminant is 

B 2 -- A '* 4 ~.)2 < 0 in = - - i n  (Z~l f l 2 - - C l l  -- 

and hence that (4.3) can have a real solution fll if and only if f12 is chosen so that 
this discriminant is zero; i.e. if and only if b2 ~ is given by (2.5). In this case the 
left hand side of (4.3) becomes a perfect square 

#i #2 + = o 

so that/31 is then uniquely determined. This leads to b ~ being given by (5.1). Of 
course we must have both b ~ > 0 which means that n and p must be chosen so 
that $1 > 0  and S 2 <0  as required in (2.1). 

Finally to complete the proof we refer to [5] for conditions sufficient to insure 
that bifurcation occurs. First of all it is required that M m be nonsingular for 
m=p n. This is insured by (2.3) since these conditions mean that either b ~ or b2 ~ 
is different for all m =p n. Lastly it is required that a certain determinant J involving 
vectors from the nullspaces of M,, and its transpose as well as the Fourier 
integrals Sij, Cij be nonzero. The calculation of this determinant is straight- 
forward but rather tedious and consequently we omit the details. It turns out 
that J = a  C21 --~ Cll b where a = a  (c21 , 1712 , h3>0  and b = b  (c21, c12, hi) are  two 
very complicated constants in terms of the indicated parameters. In any case we 
certainly have J=p0 for el l  small if C21 ~0.  The existence of p-periodic solutions 
as stated in Theorem 4 now follows from Theorem 1 in [-5]. 

To compute the averages of N i (which we denote be IN,I) we divide both sides 
of the equations in (1.1) by p N 1, p N 2 respectively and integrate from 0 to p. 
If we make use of the fact that 

p-1 ~ ~ U , ( t - u ) d h j ( u ) d t = [ U l ]  S~ dhj(u)=[Ui]  

then these manipulations yield, for p-periodic solutions, the equations 

0 =  1 - - C l l  I N 1 ]  - c 1 2  [ N 2 ]  

0 = - 1 + c 2 1  [N1]. 
Thus [N1] = 1/c21 and [N2]=(c21-c11)/c21 q2 .  

Note added in proof: In Theorem 3 we need to assume also that ~ uki(u) du < + ~ .  
This insures in the proof that ~ (s)[ is bounded on 71 (R). 
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