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TECHNICAL COMMENTS

Estimating Chaos in an Insect Population

R. F. Costantino et al. (1) state that their
laboratory data of the population dynam-
ics of the flour beetle Tribolium castaneum
show convincing evidence of transitions
to chaos. Their methodology was similar
to earlier studies (2) that assessed the
population dynamics of a time series by
fitting some mechanistic or empirical
model and then inspecting realizations
from the deterministic skeleton of the fit-
ted model. However, Ellner and Turchin
(3) argued powerfully that such an ap-
proach was flawed because it did not allow
for a random component in the dynamics
and might lead to the misidentification of
series dynamics.

Ellner and Turchin identify three
sources of variation that might influence
the sensitivity of the system to initial con-
ditions— endogenous dynamics, exoge-
nous dynamics, and measurement error—
and ask how fluctuations can be catego-
rized as stochastic or dynamic if the meth-
odology assumes the absence of noise.
They presented methods for calculation of
the Lyapunov exponent that allow for dy-
namic noise; these methods have now
been supplemented by associated random-
ization tests that indicate the variability of
Lyapunov exponents under two popula-
tion dynamic hypotheses (4). While this
new methodology cannot disentangle the
relative contributions of measurement er-
ror (which is usually assumed to be small)
from exogenous dynamics, it does identify
the effects of the exogenous dynamics,
which is usually the aim of the exercise.

The estimates of the Lyapunov exponents
given by Costantino et al. must be shown to be
robust to the presence of noise [that the au-
thors themselves estimate in their variance-
covariance matrix sum (�)] if a valid charac-
terization of the Tribolium dynamics is to be
obtained. We urge Costantino et al. to provide
such estimates for the stochastic version of
their model and then to compare their data

with such output, rather than to use estimates
from the deterministic skeleton.
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Response: We agree with Perry et al. that more
study is needed of nonlinear dynamics in the
presence of noise. We have computed the
Lyapunov exponents (LE) for both the deter-
ministic and stochastic versions of our model
(Table 1) by using our published estimates for
the model parameters and variance-covari-
ance matrix. If one accepts a positive stochas-
tic LE as a hallmark of chaos, then these
results demonstrate that our statements about
chaos are “robust to the presence of noise.”

We remain unconvinced, however, that
the stochastic LE (2) advocated by Perry et
al. should be viewed as an objective hall-
mark of chaos. Consider, for instance, a
population model in which population size,
Nt, obeys a stochastic Ricker (discrete time
logistic) model

Nt � Nt�1 exp	r � aNt�1 � 
Zt�
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where r, a, and 
 are positive parameters, and
Zt is normal (0, 1) noise. For the value r � 1.9,
the deterministic skeleton (
 � 0) predicts a
stable equilibrium. For values of 
 greater
than about 1.5, however, the stochastic LE is
positive. Chaos is indicated by the stochastic
LE for what many would consider a stable, but
noisy, equilibrium. It is not clear to us that
ecologists at large would want to classify such
a system as chaotic.

Perry et al. also urge us to compare our
data to the output of the stochastic version
of our model. Realizations from the stochas-
tic model mimic well the experimental data
(an example is given in Fig. 1 for the cha-
otic treatment cpa � 0.35). As shown in our
previous work (3, 4), however, a more rig-
orous approach is to conduct diagnostic
analyses of the differences between the
model predictions and the experimental
time series (5).

The model presented in our report (1)
was based on detailed biological knowledge
of the well-studied flour beetle system (6)
and has been validated by extensive diag-
nostic analyses using time series residuals
from independent data sets (3, 4). The time
series (1) were generated from an experi-
ment that was designed to test qualitative
transitions in dynamics that were predicted
a priori by this nonlinear model. Our study
should not be classified with other claims of
chaos that are based on unvalidated de-
scriptive models fitted to historical data
sets.

In contrast with our approach, the sta-
tistical methods (2) advocated by Perry et
al. for estimating the stochastic LE from
data involve estimating the structure of
the deterministic skeleton with various
nonparametric regression methods with-
out regard to the biological mechanisms
producing the data. The efficacy of these

methods for reconstructing ecological dy-
namics has been tested only on simple
models (2, 7), with mixed results. Differ-
ent regression methods frequently yielded
different conclusions for the same data
(2). In short, we are skeptical that the
value of an index calculated from one of
several curve-fitting algorithms consti-
tutes reliable evidence of chaos.

We concentrated in our report on what
seemed to be the more testable aspects of
chaos theory in ecology. The heart of the
scientific debate about ecological chaos

revolves around whether simple determin-
istic models with chaotic dynamics can be
useful representations of ecological sys-
tems (8). One of the main take-home
messages of nonlinear dynamics is the pre-
diction of transitions in system behaviors
in response to changing parameter values.
In our studies (1, 9), the transitions of the
attractor of a deterministic model (our
skeleton, the “LPA model”) in and out of
chaos, invariant loops, and cycles provid-
ed strikingly accurate predictions of the
responses of our experimental populations
to parameter manipulations. With this ap-
proach, the hypothesis that simple feed-
back mechanisms cause complex popula-
tion dynamics is far more vulnerable to
empirical refutation.

Ecological systems are stochastic, so
much so that the low-dimensional dynamic
models of theoreticians are widely derided
by empirical ecologists. Theoretical ecology
needs more studies in which mathematical
models survive experimental challenges as
serious scientific hypotheses.
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Table 1. Deterministic and stochastic Lyapunov
exponents (LE ) for the model and parameter esti-
mates of Costantino et al. (1)

Experimental
treatment (Cpa)

Deterministic
LE

Stochastic
LE

Control �0.0448 �0.0441
0.00 �0.2989 �0.0729
0.05 �0.0257 0.0339
0.10 0.0000 0.0561
0.25 0.0245 0.0608
0.35 0.1029 0.0493
0.50 0.0665 0.0396
1.00 �0.1871 0.0312

Fig. 1. Three-dimensional phase space plots of
the output of the stochastic model (A) and the
experimental data (B) for the chaotic treatment cpa
� 0.35 of Costantino et al. (1). Experimental data
are for three replicate populations from t � 10 to
45 (70 weeks). Simulation data are for three real-
izations of the stochastic model from t � 10 to 45
started with the same values observed in each
experimental replicate at t � 10. In both plots, the
solid dots represent the chaotic attractor of the
deterministic skeleton.
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