TECHNICAL COMMENTS

J. Physiol. (London) 474, 35 (1994).

89, 5720 (1992).

(H.U. and T.Y.).

31.

30. W. P. Hausdorff et al., Proc. Natl. Acad. Sci. U.S.A.

We thank S. Nishimura, H. Takeshima, and K.

Fukuda for mAChR-expressing CHO cells; R. Shige-

moto for anti-mGluR1a; Y. Bessho for assistance

with Ca2+ imaging; L. G. Sayers and A. Tanaka for

critical reading of the manuscript; K. Haga, T. Haga,

and K. Kimura for discussions; and Y. Kaziro for his

encouragement. Supported by grants from the Min-

istry of Education, Science, and Culture of Japan

16 December 1996: accepted 7 May 1997

- 7. I. Aramori and S. Nakanishi, ibid. 8, 757 (1992).
- 8. CHO cells expressing mGluR1α or MEF cells transfected with M1 mAChR were incubated, 48 hours after transfection, in phosphate-buffered saline (PBS) for 1 hour and stimulated with glutamate or carbachol, respectively. The inhibitors were applied 10 min before the application of agonists. CHO cells were lysed in tris-NP40-EDTA (TNE) buffer [H. Umemori, S. Sato, T. Yagi, S. Aizawa, T. Yamamoto, Nature 367, 572 (1994)]. MEF cells were lysed in RIPA buffer [H. Umemori et al., Mol. Brain Res. 16, 303 (1992)]. Equal amounts of lysates were subjected to immunoblotting with anti-PY (RC20, Transduction Laboratories); subjected to immunoprecipitation with anti-PY (4G10, Upstate Biotechnology Inc.) followed by immunoblotting with anti-mGluR1 α [R. Shigemoto, T. Abe, S. Nomura, S. Nakanishi, T. Hirano, Neuron 12, 1245 (1994)]; or subjected to immunoprecipitation with anti-Gaq, anti-Ga11 [non-cross-reactive with each other (15)], or antibody that recognized both $G\alpha_{\alpha}$ and $G\alpha 11$ $(G\alpha_{q/11})$ (Santa Cruz) followed by immunoblotting with RC20 or anti-G $\alpha_{\alpha/11}$. T. J. O'Dell, E. R. Kandel, S. G. N. Grant, *Nature* **353**,
- 9 558 (1991).
- 10. Y. T. Wang and M. W. Salter, ibid. 369, 233 (1994).
- 11. [Ca²⁺], was measured by a microscopic calcium imaging system using a silicon-intensified targeted video camera with Ca2+-sensitive fluorescent dve fura 2-AM, as described (7). Inhibitors were applied 10 min before stimulation with glutamate. Ratio values varied among sets of experiments mainly because different objective lenses were used.
- 12. M. Masu, Y. Tanabe, K. Tsuchida, R. Shigemoto, S. Nakanishi, Nature 349, 760 (1991).
- 13. A. Gazit et al., J. Med. Chem. 34, 1896 (1991).
- 14. Formation of ${\rm IP}_{\rm 3}$ was measured as described (7). Cells were seeded in 12-well plates at 2×10^5 cells per well and incubated with [3H]inositol for 24 hours, washed with PBS, and incubated for 20 min. Cells were then incubated with inhibitors in PBS containing 10 mM LiCI (PBS-Li) for 20 min. Agonists were applied in PBS-Li for 20 min. [3H]IP, was separated by Bio-Rad AG1X8 chromatography.
- 15. H. Umemori, unpublished data.
- 16. E. Meldrum, P. J. Parker, A. Carozzi, Biochim. Biophys. Acta 1092, 49 (1991).
- 17. MEF cells [D. Ilic et al., Nature 377, 539 (1995)] seeded in 10-cm dishes or 12-well plates were transfected with M1 mAChR cDNA (2 µg per 10cm dish; 0.2 μg per well) and Ga11 cDNAs or pCMV5 vector (8 µg per 10-cm dish; 0.8 µg per well) by lipofection with Transfectam (Sepracor). For IP₃ assay, cells were labeled with [³H]inositol 24 hours after transfection.
- 18. K. Fukuda et al., Nature 355, 355 (1988); L. M. F. Leeb-Lundberg and X.-H. Song, J. Biol. Chem. 266, 7746 (1991).
- 19. Wild-type $G\alpha 11$ cDNA was isolated by the polymerase chain reaction (PCR) after reverse transcription of RNA from mouse S49 lymphoma cells, and its sequence was confirmed by sequencing. Mutations in the Ga11 cDNA were introduced by PCR mutagenesis with wild-type cDNA as a template. The PCR primer pairs used were 5'-TAGCAAGCTTCATATGACTCTGGAGTCCATGAT-GGC-3' and 5'CAATGGATCCACTTCCTGCGCTCT-GACCTCAGGGCCTCCC-3' for the Q209L mutation [N.-X. Qian, S. Winitz, G. L. Johnson, Proc. Natl. Acad. Sci. U.S.A. 90, 4077 (1993)] and 5'-ACCTTCTAGAA-GACAAGATC-3' and 5'-CATGCCCGGGTCACAC-CAGGTTGAACTCCTTCAG-3' for the Y356F mutation. The PCR fragments were inserted into the corresponding region of the wild-type Ga11 cDNA. Wildtype and mutated Ga11 cDNAs were subcloned into the Hind III site of pCMV5 [S. Andersson, D. N. Davis, H Dählbach H Jörnvall D M Bussell J Biol Chem. 264, 8222 (1989)]. Mutations were confirmed by sequencing.
- 20. J. S. Moyers, M. E. Linder, J. D. Shannon, S. J. Parsons, Biochem. J. 305, 411 (1995).
- 21. F. Nakamura et al., J. Biol. Chem. 270, 6246 (1995). 22. H. R. Bourne, Nature 376, 727 (1995); T. van Biesen
- et al., ibid., p. 781. 23
- The expression plasmid for active fyn [N. Fusaki et al., Int. Immunol. 6, 1245 (1994)] was used for transfection (8 µg per 10-cm dish).

- 24. K. Bluml, E. Mutschler, J. Wess, J. Biol. Chem. 269, 18870 (1994).
- Y. Okuma and T. Reisine, ibid. 267, 14826 (1992). 25. 26. The [³H]QNB binding assay was done as described (24, 25). $G\alpha_{q/11}$ was immunoprecipitated from the cell lysate (25), washed with binding buffer (25), and then incubated with 1 nM [3H]QNB for 90 min at 30°C. In a typical experiment, total binding obtained from cell lysates was 2500 counts per minute.
- 27. G. Berstein et al., J. Biol. Chem. 267, 8081 (1992). W. W. Liu, R. R. Mattingly, J. C. Garrison, Proc. Natl. 28
- Acad. Sci. U.S.A. 93, 8258 (1996).
- 29. K. Nakamura, T. Nukada, T. Haga, H. Sugiyama,

TECHNICAL COMMENTS

Estimating Chaos in an Insect Population

R. F. Costantino et al. (1) state that their laboratory data of the population dynamics of the flour beetle Tribolium castaneum show convincing evidence of transitions to chaos. Their methodology was similar to earlier studies (2) that assessed the population dynamics of a time series by fitting some mechanistic or empirical model and then inspecting realizations from the deterministic skeleton of the fitted model. However, Ellner and Turchin (3) argued powerfully that such an approach was flawed because it did not allow for a random component in the dynamics and might lead to the misidentification of series dynamics.

Ellner and Turchin identify three sources of variation that might influence the sensitivity of the system to initial conditions-endogenous dynamics, exogenous dynamics, and measurement error and ask how fluctuations can be categorized as stochastic or dynamic if the methodology assumes the absence of noise. They presented methods for calculation of the Lyapunov exponent that allow for dynamic noise; these methods have now been supplemented by associated randomization tests that indicate the variability of Lyapunov exponents under two population dynamic hypotheses (4). While this new methodology cannot disentangle the relative contributions of measurement error (which is usually assumed to be small) from exogenous dynamics, it does identify the effects of the exogenous dynamics, which is usually the aim of the exercise.

The estimates of the Lyapunov exponents given by Costantino *et al.* must be shown to be robust to the presence of noise [that the authors themselves estimate in their variancecovariance matrix sum (Σ) if a valid characterization of the Tribolium dynamics is to be obtained. We urge Costantino *et al.* to provide such estimates for the stochastic version of their model and then to compare their data

with such output, rather than to use estimates from the deterministic skeleton.

Joe N. Perry Ian P. Woiwod Rothamsted Experimental Station, Institute of Arable Crops Research, Harbenden Herts, AL5 2JQ United Kingdom E-mail: joe.perry@bbsrc.ac.uk Robert H. Smith University of Leicester, Leicester, United Kingdom David Morse University of Kent at Canterbury,

United Kingdom

REFERENCES

- 1. R. F. Costantino, R. A. Desharnais, J. M. Cushing, B. Dennis, Science 275, 389 (1997).
- 2. P. Turchin and A. D. Taylor, Ecology 73, 289 (1992); J.
- N. Perry, I. P. Woiwod, I. Hanski, Oikos 68, 329 (1993). 3. S. Ellner and P. Turchin, Am. Nat. 145, 343 (1995).
- 4. X. Zhou, J. N. Perry, I. P. Woiwod, R. Harrington, J. S. Bale, S. J. Clark, Ecol. Entomol. 22, 231 (1997).

3 March 1997; revised 23 April 1997; accepted 28 April 1997

Response: We agree with Perry et al. that more study is needed of nonlinear dynamics in the presence of noise. We have computed the Lyapunov exponents (LE) for both the deterministic and stochastic versions of our model (Table 1) by using our published estimates for the model parameters and variance-covariance matrix. If one accepts a positive stochastic LE as a hallmark of chaos, then these results demonstrate that our statements about chaos are "robust to the presence of noise."

We remain unconvinced, however, that the stochastic LE (2) advocated by Perry et al. should be viewed as an objective hallmark of chaos. Consider, for instance, a population model in which population size, N_r , obeys a stochastic Ricker (discrete time logistic) model

$$N_t = N_{t-1} \exp(r - aN_{t-1} + \sigma Z_t)$$

where r, a, and σ are positive parameters, and Z_t is normal (0, 1) noise. For the value r = 1.9, the deterministic skeleton ($\sigma = 0$) predicts a stable equilibrium. For values of σ greater than about 1.5, however, the stochastic LE is positive. Chaos is indicated by the stochastic LE for what many would consider a stable, but noisy, equilibrium. It is not clear to us that ecologists at large would want to classify such a system as chaotic.

Perry *et al.* also urge us to compare our data to the output of the stochastic version of our model. Realizations from the stochastic model mimic well the experimental data (an example is given in Fig. 1 for the chaotic treatment $c_{pa} = 0.35$). As shown in our previous work (3, 4), however, a more rigorous approach is to conduct diagnostic analyses of the differences between the model predictions and the experimental time series (5).

The model presented in our report (1) was based on detailed biological knowledge of the well-studied flour beetle system (6) and has been validated by extensive diagnostic analyses using time series residuals from independent data sets (3, 4). The time series (1) were generated from an experiment that was designed to test qualitative transitions in dynamics that were predicted a priori by this nonlinear model. Our study should not be classified with other claims of chaos that are based on unvalidated descriptive models fitted to historical data sets.

In contrast with our approach, the statistical methods (2) advocated by Perry *et al.* for estimating the stochastic LE from data involve estimating the structure of the deterministic skeleton with various nonparametric regression methods without regard to the biological mechanisms producing the data. The efficacy of these

Table 1. Deterministic and stochastic Lyapunov exponents (*LE*) for the model and parameter estimates of Costantino *et al.* (1)

Experimental treatment (C_{pa})	Deterministic LE	Stochastic LE
Control	-0.0448	-0.0441
0.00	-0.2989	-0.0729
0.05	-0.0257	0.0339
0.10	0.0000	0.0561
0.25	0.0245	0.0608
0.35	0.1029	0.0493
0.50	0.0665	0.0396
1.00	-0.1871	0.0312

methods for reconstructing ecological dynamics has been tested only on simple models (2, 7), with mixed results. Different regression methods frequently yielded different conclusions for the same data (2). In short, we are skeptical that the value of an index calculated from one of several curve-fitting algorithms constitutes reliable evidence of chaos.

We concentrated in our report on what seemed to be the more testable aspects of chaos theory in ecology. The heart of the scientific debate about ecological chaos

Fig. 1. Three-dimensional phase space plots of the output of the stochastic model (**A**) and the experimental data (**B**) for the chaotic treatment $c_{\rho a} = 0.35$ of Costantino *et al.* (1). Experimental data are for three replicate populations from t = 10 to 45 (70 weeks). Simulation data are for three realizations of the stochastic model from t = 10 to 45 started with the same values observed in each experimental replicate at t = 10. In both plots, the solid dots represent the chaotic attractor of the deterministic skeleton.

revolves around whether simple deterministic models with chaotic dynamics can be useful representations of ecological systems (8). One of the main take-home messages of nonlinear dynamics is the prediction of transitions in system behaviors in response to changing parameter values. In our studies (1, 9), the transitions of the attractor of a deterministic model (our skeleton, the "LPA model") in and out of chaos, invariant loops, and cycles provided strikingly accurate predictions of the responses of our experimental populations to parameter manipulations. With this approach, the hypothesis that simple feedback mechanisms cause complex population dynamics is far more vulnerable to empirical refutation.

Ecological systems are stochastic, so much so that the low-dimensional dynamic models of theoreticians are widely derided by empirical ecologists. Theoretical ecology needs more studies in which mathematical models survive experimental challenges as serious scientific hypotheses.

R. A. Desharnais Department of Biology and Microbiology, California State University, Los Angeles, CA 90032, USA R. F. Costantino Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA J. M. Cushing Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA **Brian Dennis** Department of Fish and Wildlife Resources and Division of Statistics, University of Idaho, Moscow, ID 83844, USA

REFERENCES

- R. F. Costantino, R. A. Desharnais, J. M. Cushing, B. Dennis, *Science* 275, 389 (1997).
- 2. S. Ellner and P. Turchin, Am. Nat. 145, 343 (1995).
- B. Dennis, R. A. Desharnais, J. M. Cushing, R. F. Costantino, *Ecol. Monogr.* 65, 261 (1995).
- 4. _____, *J. Anim. Ecol.*, in press.
- J. Anim. Ecol., in press.
 R. A. Desharnais *et al.*, in preparation.
- R. A. Desnamals *et al.*, in preparation.
 R. F. Costantino and R. A. Desharnais, *Population*
- Dynamics and the Tribolium Model: Genetics and Demography (Springer, New York, 1991).
- D. Nychka, S. Ellner, D. McCaffrey, A. R. Gallant, J. R. Statist. Soc. B. 54, 399 (1992).
- 8. R. M. May, Nature 261, 459 (1976).
- R. F. Costantino, J. M. Cushing, B. Dennis, R. A. Desharnais, *ibid.* 375, 227 (1995).

26 March 1997; revised 8 May 1997; accepted 9 May 1997