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Summary 

A general model is considered for the growth of a single species population which describes the 
p e r  unit growth rate as a general functional of past population sizes. Solutions near equilibrium 
are studied as functions of ~: = l/b, the reciprocal of the inherent per unit growth rate b of the 
population in the absense of any density constraints. Roughly speaking, it is shown that for large ~; 
the equilibrium is asymptotically stable and that for e small the solutions show divergent oscil- 
lations around the equilibrium. In the latter case a first order approximation is obtained by m e a n s  

of singular perturbation methods. The results are illustrated by m e a n s  of a numerically integrated 
delay-logistic model. 

1. Introduction 

One of the most common experiments in population dynamics is that involving 
the growth of a single species in an isolated laboratory environment with a 
constant supply of food. Typically, there are a variety of radically different 
outcomes: the population might become extinct; or it might fluctuate wildly, 
often about some equilibrium; or it might stabilize at some equilibrium value 
either monotonically or in an oscillatory manner. After having made these 
same observations May et al. [5, 6] offer an explanation of these various 
possibilities in terms of an interplay between what they call "the characteristic 
return time" inherent in the density-dependence of the species and the time 
delays present in the response of the population to changes in resources and/or 
the density effects. (These authors also consider time delays due to age structure 
or the presence of different generations, all of which we ignore here by making the 
usual assumption that the age distribution in the population is constant.) Their 
conclusions are drawn from a variety of specific discrete and differential models 
which are found in the literature. A discussion of these conclusions centered 
around the delay-logistic equation may be found in [6, 7]; they are briefly 
as follows: if the characteristic return time (defined to be the reciprocal 1/b 
of the inherent net, per unit birth rate b>0) is large compared to the "delay 
time" T> 0, then the equilibrium is asymptotically stable while if this return time 
is decreased until it reaches a critical value then oscillations about the equilibrium 
Occur.  

Some of these features of single species growth have been mathematically 
established for certain models. For example, for the logistic equation with a 
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single instantaneous time lag T (often called Hutchinson's model) it is known that 
for 1/(b 7) large the equilibrium is asymptotically stable. If 1/(b 73 is decreased 
then the stability becomes oscillatory and eventually yields to the existence of 
stable periodic solutions as 1/(b 7) passes through a critical value (see [3, 4, 6] and 
the references cited therein). May [6, 7] considers the logistic equation with a 
more general (and realistic) "continuously distributed" delay of Volterra integral 
form. His mathematical analysis is, however, strictly linear. Rigorously speaking, 
the linearization approach for this model is valid (at least locally) as far as the 
stability or even instability of the equilibrium is concerned [1, 8]; however, a 
study of oscillatory features and the existence of periodic cycles is more difficult 
as these are essentially nonlinear phenomena. Asymptotic stability of the equili- 
brium is studied in [2, 9]. 

The purpose of this paper is to establish mathematically some of the above 
described features for a very general single species, density-dependent model 
with continuously distributed delays. We will show, relative to a fixed delay 
kernel, that for lib large the equilibrium is (locally) asymptotically stable and 
that for lib small the solutions exhibit divergent oscillations about the equilibrium. 
The latter case is established by proving the existence of solutions, which, to the 
first order of approximation in b -  1/3, are divergent oscillations at least for short 
time intervals. Most likely it is only relatively short time intervals that would be of 
interest in this case since small population sizes would be subject to extinction. 
These solutions are found by means of a singular perturbation analysis. All of 
our results, which are given in chapter 2, are proved in chapter 4. In chapter 3 
the delay-logistic equation is discussed and numerically integrated solutions are 
displayed in order to illustrate the theorems. 

2. Results 

We consider the general model 

U'/U = b g ( S t_ ~ k (t - s) N (s) d s), ' = did t (2.1) 

where the following hypotheses are assumed to hold: 

f b = constant > 0, g (0) = 1 
( H I )  O<-k( t )~C~ S~ k ( t ) d t = l  

g(c )=0  forsome c~R+,c#O,g'(c)<O 
g (0  is twice continuously differentiable in a neighborhood of ~ = c. 

Here R is the set of real numbers and R + = { r ~ R : r > O } .  In this model g 
describes of course the per unit growth rate as a function of past population 
sizes as weighted by the delay kernel k and is accordingly referred to as the 
density dependence term. If g were independent of N, that is if g-= 1, then we 
see that b is the per unit growth rate of the population in the absence of such density 
dependent restraints. The constant c is an equilibrium; if it is asymptotically stable, 
it is called a carrying capacity of the environment. Our analysis will be carried 
out locally near c and as a result no global assumptions are made on g. In 
particular, we do not necessarily assume that c is a unique equilibrium. 
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We wish to study the behavior of the solutions of (2.1) as they are functions of the 
parameter e = 1/b > 0. By a solution of (2.1) we mean an N ~ C 1 (R +, R+), bounded 
and piece-wise continuous on t < 0, for which (2.1) is an identity for t > 0. Notice that 
we have restricted our definition to positive functions N (t)_>0 as is only reason- 
able for applications to population dynamics. We have chosen (arbitrarily, but 
without loss in generality) the initial time t = 0  and we refer to the initial 
value problem associated with (2.1) as that of finding a solution satisfying 
N ( t ) = N o ( t  ), t<O for a given bounded initial function No(t)>_O, t<O. This 
reduces (2.1) to a standard Volterra integrodifferential equation to which basic 
existence and uniqueness theorems are applicable [10]. We say that the equilibrium 
c is (locally) stable if given y > 0  there exists a 6=fi  (7)>0 such that ] N o ( t ) - c l < 6  
for all t_<0 implies that I N ( t ) - c  [ o = s u p ~ n l N ( t ) - c  [<7 and we say that c is 
(locally) asymptotically stable if in addition N (t) ~ c as t ~ + ~ .  

Theorem 1: I f  (H 1) holds and if ~ t k(t) d t<  + ~  then the equilibrium c is 
(locally) asymptotically stable as a solution of (2 .1)for  / 3= l /b>0  sufficiently 
large. 

For small values of e = 1/b we have the following result. 

Theorem 2: Suppose that (HI )  holds and for t small k ~ C2 (R+,R  +) can be 
written k (t) = # t + t 2 m (t), # = k' (0) > 0 for m ~ C2 (R +, R +). Let x o (t), t < O, be 
piece-wise continuous with compact support. Given any finite number U > 0  
there exists an e o =~o (U)>O such that for all 0<~<~o,  ~= 1/b, the unique 
solution of (2.1) satisfying the initial condition 

N ( t ) = c e x p ( O x o ( t )  ), t<_O, 0=/31/3 
is given by 

N (t) = c exp (0 q (t/O) + 0 z (t/O, 0)), 0 < t < U 0 (2.2) 

where q is given by (4.6) below and hence exhibits exponentially divergent 
oscillations and where z~  C O [0, U] satisfies ]z(u,O)[=O(O) uniformly for 
u~[0, U]. 

Roughly speaking the above theorems state that as the parameter/3 = lib passes 
from large values to small positive values, the model (2.1) possesses respectively 
an asymptotically stable equilibrium c and divergent oscillations (at least for 
small t) exhibited by solutions initially near equilibrium. In the latter case we 
have the first order (in t31/3) approximation N ~ c  exp (/~1/3 q(t/el/3)) valid near 
t=0 .  

3. An Example 

In order to illustrate the results of chapter 2 and also in order to observe the degree 
of accuracy of the first order oscillations obtained in Theorem 2 we numerically 
integrated the delay-logistic model 

N ' / N = b  T ( 1 - c  -1 ~ '~  k ( t - s )  N(s )ds )  
with the delay kernel 

k (t) = t exp ( - t). 
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This model has been studied in several publications [6, 7]. Equation (3.1) can be 
viewed as a reformulation of the delay-logistic with kernel kr (t) = t T-  2 exp ( -  t~ T) 
by means of a time rescaling from t to t/T. Since the unique maximum of kr (t) 
occurs at t = T it is natural to think of T as "the delay" or at least a reasonable 
measure of the delay represented by this kernel. Equation (3.1) then results from 
using the delay Tas a unit of time and explicitly exhibits this delay parameter in the 
analysis. Our three theorems of chapter 2 apply to (3.1) with b replaced in the 
theorems by b T. 

Clearly (H 1) holds with 9(~)= 1 - c - 1 ~  and as a result Theorem 1 applies: 
N = c is asymptotically stable for b T small. This is illustrated in Fig. 1. 

1.0 

bT" 02  

i I 
20.0 30.0 t 

a 

bT=~O 

. _ _  1 I I t 

~0 20.0 300 
b 

Fig. 1. a) Three solutions of (3.1) are shown for kernel (3.2) and bT=0 .2 .  This illustrates the 
case of nonoscillatory, asymptotic stability of  the equilibrium N = 1 for small b T. b) As the value 
of  b T is increase to b T =  1.0 the equilibrium is still asymptotically stable, but the solutions are 

now oscillatory 

The critical value of b T is that value at which the linear equation is neutrally 
stable (e.i. the roots of its characteristic equation are purely imaginary, see the 
proof of Theorem 2 below). This turns out for this example to be b T=2 .  
For  values of b T near 2 the oscillations were numerically found to be sustained 
as is illustrated in Fig. 2 a. 
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Fig. 2. The solutions of (3.1) with kernel (3.2) for certain initial values are shown (a) for 
b T =  2.02 near the critical value of b T=  2.0 and (b) for "large" b T =  8.0. The solution in (a) 
appears to be periodic while the solution in (b) shows a divergent oscillation. The dashed graph 

in (b) is that of the first order approximation (3.3) 

Finally, all the hypotheses on k in Theorem 2 can easily be shown to hold. 
Hence for b T sufficiently large, solutions N(t) of (3.1) exist which have the 
asymptotic form (2.2) with/~ = k' (0)= 1 and as a result exhibit undamped diver- 
gent oscillations. To the first order in (b 7)1/3 

N (t)~ c exp ((b 7)- 1/3 q (t (b 7)1/3)), t = 0 ((b 7)- 1/3) (3.3) 

with q given by (4.6) with # =  1. This result is illustrated in Fig. 2 (b) where a 
solution is plotted together with the graph of the first order approximation. 
In this numerical work it was found generally that the first order approximations 
were qualitatively accurate for at least the first and often for the first two 
cycles; in particular they seem to predict fairly well the time and magnitude 
of the first maximum of N (t) and the duration and depth of the first population 
"crash" or minimum of N. Generally speaking the first order approximation was 
found to show divergent oscillations whose maxima were slightly smaller (and 
whose minima were larger) while occuring sooner and with greater frequency 
than those of the actual solution N (t). For the equations integrated the oscillations 
of the actual solution quickly became very violent and steep with a period much 
longer (particularly as t increased) than that of the approximation. 

19" 
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4. Proofs 

Proof of Theorem 1 ." Let x = N -  c and write 9 (c + 4)-- - a ~ + o (1 ~ 1), a = - g' (c) > 0. 
Then (2.1) reduces to 

x ' = - b a c  Sto k ( t - s ) x ( s ) d s - b a c  ~2 k ( S ) X o ( t - s ) d s + o ( l x l o )  

where x o = N o - c .  Since ~ k ( s )xo ( t - s )ds - - ,O  as t - - ,+oo  for any bounded 
xo we have by means of established linearization principles [1 ,8]  that x = 0  
(i.e. N = c) is locally asymptotical ly stable if this is true of x = 0  for the linear 
equat ion 

x ' + b a c  ~t o k ( t - s ) x ( s ) d s = O .  

This linear equat ion is asymptotical ly stable if and only if [8] 

p(z)-z+back*(z)-- /=O for R e z > 0  

k* ( z ) = ~  k (t) exp ( - z  t) dt. 

Thus Theorem 1 will be proved if we can show that the only roots of the 
characteristic equat ion p ( z ) = 0  lie in the left half plane Re z < 0 .  Let t l = b a c  
and write p = p (z, q). 

Lemma:  I f  k(t) satisfies (H 1) as well as ~ t k ( t ) d t <  +oo then there exists a 
unique solution branch z = z (q) of p (z, t / )=0  defined for t l small: [ q [ <  qo. This 
branch is such that z (0) = 0 and Re z (t/) < 0 for tl > O. 

This lemma is an applicat ion of the implicit function theorem. We note that  
p (0, 0 )=0 ,  Op (0, O)/t?z = 1 :pO and hence the existence of a unique solution branch 
as described in the lemma is guaranteed. Implicit differentation of p(z(q), t/)=O 
yields z' (0) = - 1 so that Re z (t/) < 0  for q >0.  

Returning to the proof  of Theorem i, we suppose that the assertion of this 
theorem is false. Then for some sequence q., t/.--.0 there exists at least one 
root  z, of p satisfying Re z. > 0. Thus  

z. = - q. S~ k (t) exp ( - z. t) d t 

from which follows the estimate ] z . l < q .  and the fact that z . ~ 0  as n--.c~. 
Since Re z._> 0 we have a contradict ion to the uniqueness assertion in the above 
lemma and as a result Theorem 1 is proved. �9 

Proof of Theorem 2: Let IV=In(N/c) and 0 = e  I/a, e=l/b.  Letting u=t/O and 
x (u) = N r (u 0) we find that equat ion (2.1) becomes 

dx/du = - a c ~ | O- 1 k (0 ( u -  s)) x (s) ds + T(x, O) (4.1) 

T(x,O)=ac I"-o~ 0-1 k(O(u-s))(1 + x -eX)ds+O -2 r(c ~"-o~ Ok(O(u-s))( e x -  1)ds). 

We a t tempt  to solve (4.1) for small 0 > 0, subject to the initial condit ion 

x (u) = 0 x o (u), u < 0  (4.2) 

for x (u) in the form 
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x(u)=Oq(u)+Oz(u,O) for q(u)=xo(u) , z (u ,O)=Owhenu<O (4.3) 

where z is higher order in 0: z =0  (0). 

If (4.3) is substituted into (4.1) and higher order terms in 0 are ignored we arrive 
at the linear equation 

dq/du+ac l~  S"-~ (u-s )q(s )ds=O,q(u)=Xo(U)f~  (4.4) 

to be solved for q(u), u>0.  Here k(0)=0 is used and ~=k ' (0 )>0 .  Now 
k ( t ) = # t + t 2 m ( t ) ,  meC2(R+,R+) .  The higher order terms in 0 yield the 
following nonlinear equation for z (after a cancellation of a 0) 

d z / d u + a c #  ~"_~ ( u - s ) z ( s ) d s =  T*(O,z) 
(4.5) 

T * ( O , z ) = - a c O  SL~(u - s )2m(O(u- s ) ) (q+z )ds+O -~ T(Oq+Oz, O). 

First we consider (4.4). This equation can be easily solved by performing two 
differentiations with respect to u and solving the resulting third order, linear 
homogeneous ordinary differential equation. This yields q in (2.2): 

q (u) = A e- ~ + e zu/2 (B cos (2 u ]/~/2) + C sin (2 u ]/3/2)) 

3 A = x  o (0 ) -2  2 (S~ s x o (s) ds+~ ~ x o (s) ds) 

3 B = 2 x o (0) + 2 2 (S ~ ~ s x o (s) d s + S ~ ~ x o (s) d s) (4.6) 

3 C = 2  2 ]f3 (S~ SXo(S)ds-S~ Xo(S)ds) 

2=(ac  t~) 1/3, p=k ' (0 )>0 ,  a = - g ' ( c ) > 0 .  

The nonhomogeneous problem 

d z / d u + a c #  ~ ( u - s ) z ( s ) d s = f ( u ) ,  z(u)=0 for u_<0 

has solution 
solves 

z (u)= S"o G (u, s) f(s)  ds where the fundamental solution G (u, s) 

OG(u,s) /(?u+ac# ~ ( u - a )  G(rr, s)da=O, s<u 

G(s , s )=l ,  G(u,s)=O for u<s.  

Thus 

O, U < S .  

Equation (4.5) is accordingly equivalent to 

z (u)= S"o G (u, s) T* (0, z (s))ds. (4.7) 

Consider the Banach space C o [0, U], I z L o, v=maxo~ ,  <_vlz(u)l for some ar- 
bitrary, but fixed U > 0. Let B v (r) = {z e C o [0, U] : I z [o, v -< r}. A straightforward 
investigation of T* (0, .) as an operator from C o [0, U] into itself (for fixed 0) 
shows that (a) for fixed small r there exists a 0o>0 such that IT* (O,z)lo, v<r  
for all 0 < 0 < 0o, z e By (r) and that (b) the operator T* (0, .) is Fr6chet differentiable 
at every z o e B v (r) with L Dz T* (0, Zo) h 1o, v-< c 0 I h Io, v for some constant c >0  
and all h e C o [0, U]. It follows (for 0 o smaller if necessary) that T* (0, z) is a 
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contract ion from B v (r) into itself for each 0, 0 < 0 < 0  o. Thus, (4.7) has a 
unique solution z e By (r). Since [ T* (0, Z) lo, v = 0 (0) for z e Bu (r) we see that 
fz(u,O)lo, v=O(O). �9 
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