
Generating Functions

Notes for Math 447

March 31, 2011

1 Ordinary generating functions

1.1 One variable

1.1.1 Generalities

An ordinary generating function is a convenient way of working with a sequence
of numbers ak defined for k ≥ 0. It is a power series of the form

f(x) =
∞∑

k=0

akxk. (1)

The utility of this notion is explained by the product property. Consider a
collection of functions f (j)(x) for j in some index set B. For notational simplicity
we take B to be the natural numbers from 1 to n. Suppose also that

f (j)(x) =
∞∑

k=0

a
(j)
k xk. (2)

Let

f(x) = f (1)(x)f (2)(x) · · · f (n)(x) =
∞∑

k=0

akxk. (3)

be the product of the ordinary generating functions. Then the coefficient ak

corresponding to the product is

ak =
∑

k1+k2+...+kn=k

a
(1)
k1

a(2)k2 · · · a(n)
kn

. (4)

This is a sum over all sequences k1, . . . , kn of natural numbers with k1 + k2 +
. . . + kn = k of combinatorial coefficients satisfying a product rule. In fact, it
is a sum over multi-indices. So a complicated operation involving a huge sum
over multi-indices corresponds to a simple operation on the ordinary generating
function: multiplication.

One use for ordinary generating functions is to count multi-indices on a set B
satisfying certain restrictions. Say that one wants to know how many ways there
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are to select up to 2 apples, 3 or 4 oranges, and an even number of bananas to
get k fruits. Here B is the set of three fruits. The ordinary generating function
is

f(x) = (1+x+x2)(x3+x4)(1+x2+x4+x6+x8+ · · ·) =
1− x3

1− x
x3(1+x)

1
1− x2

.

(5)
The factors correspond to the different kinds of fruits; the terms within the
factors give the inventory of available numbers of each kind of fruit.

1.1.2 Multiset coefficients

An important special case is when there are no restrictions on the multi-indices.
In that case, the ordinary generating function for the number of multi-indices
on an n point set of size k is

Mn(x) =
∞∑

k=0

((
n

k

))
xk = (1 + x + x2 + x3 + · · ·)n = (1− x)−n. (6)

1.1.3 Binomial coefficients

Another important special case is when the restriction is that the values of the
multi-index must be 0 or 1. Such multi-indices correspond to subsets of B. In
that case, the ordinary generating function for the number of subsets of an n
point set of size k is

Bn(x) =
∞∑

k=0

(
n

k

)
xk = (1 + x)n. (7)

Sometimes a problem that does not seem to be a multi-index problem can
be reformulated to be of the correct form. Consider, for instance, the problem
of finding the generating function for binomial coefficients

(
n
k

)
for fixed k as a

function of n. The trick is to think of each set as being listed in order, from 1 to
n. Take a set B with 2k + 1 points. There is a bijection between multi-indices
on B and subsets with k elements. The multi-index corresponding to a subset
counts the number of elements between each of the elements of the subset and
also counts each element. So the ordinary generating function is

Bk(y) =
∞∑

n=0

(
n

k

)
yn

= (1 + y + y2 + y3 + · · ·)y · · · (1 + y + y2 + y3 + · · ·)y(1 + y + y2 + y3 + · · ·)
=

yn

(1− y)n+1
. (8)
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1.1.4 Integer partitions

The problem of counting integer partitions may also be studied by this method.
Each integer partition corresponds to a type vector, which is a multi-index
on the set of strictly positive natural numbers. Say that the type-vector is
p1, p1, p3 . . . , pj , . . ., eventually zero. This determines another multi-index of the
form 1p1, 2p2, 3p3, . . . , jpj , . . . whose values are multiples of j. The coefficient
p(k) of xk is the number of such multi-indices that have sum k. So the ordinary
generating function for integer partitions is

P (x) =
∞∑

k=0

p(k)xk

= (1 + x + x2 + x3 + · · ·)(1 + x2 + x4 + x6 + · · ·)(1 + x3 + x6 + x9 + · · ·) · · ·
= (1− x)−1(1− x2)−1(1− x3)−1 · · · . (9)

Let p(k, [n]) be the number of integer partitions of k into parts each of some
size j with j ≤ n. The ordinary generating function is

P[n](x) =
∞∑

k=0

p(k, [n])xk

= (1 + x + x2 + x3 + · · ·)(1 + x2 + x4 + x6 + · · ·) · · · (1 + xn + x2n + x3n + · · ·)
= (1− x)−1(1− x2)−1(1− x3)−1 · · · (1− xn)−1. (10)

How about the seemingly more complicated problem of counting integer
partitions of k into n parts? It may be proved by conjugation that the number
p(k,≤ n) of partitions into at most n parts is given by p(k,≤ n) = p(k, [n]).
Therefore the ordinary generating functions are equal: P≤n(x) = P[n](x). The
ordinary generating function for integer partitions of k into n parts is then
obtained by p(k, n) = p(k,≤ n)− p(k,≤ n− 1), giving

Pn(x) = P≤n(x)− P≤n−1(x) = P≤n−1(x)
[

1
1− xn

− 1
]

= P≤n−1(x)
xn

1− xn
= xnP≤n(x). (11)

Notice that this immediately implies that p(k, n) = p(k − n,≤ n).

1.1.5 Words and sentences

Here are applications of ordinary generating functions that go beyond multi-
indices. Consider an alphabet with m letters. The number of words of length
k is mk. This is of course just the number of functions from a k element set to
an m element set. The ordinary generating function is

(1−mx)−1 =
∞∑

k=0

(mx)k =
∞∑

k=0

mkxk. (12)
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Now consider sentences of n words having a total of k letters from an alpha-
bet of m letters. A sentence is a sequence of words, so the ordinary generating
function is

(1−mx)−n =
∞∑

k=0

((
n

k

))
(mx)k =

∞∑

k=0

(
k + n− 1

n− 1

)
mkxk. (13)

This has a simple interpretation. There are mk sequences of letters. These
can be divided up into words by placing n− 1 barriers between sequences, thus
designating words.

1.1.6 Set partitions

There is an interesting ordinary generating function for set partitions of a set
with k elements into n blocks. The number of such set partitions is the Stirling
number of the second kind S(k, n), so this is another way of getting at Stirling
numbers of the second kind. The trick is to take the k element set that is being
partitioned in order, from 1 to k. In each block of the set partition, consider
the smallest element. This determines an ordering of the blocks. Consider an
alphabet with n letters arranged in order. Then the set partition determines a
sentence. The jth word in the sentence consists of the jth letter in the alphabet,
followed by the other letters that occur in that block. The jth word only uses
the first j letters of the n letters in the alphabet. The ordinary generating
function for such sentences is

Sn(x) =
∞∑

k=0

S(k, n)xk

= x(1− x)−1x(1− 2x)−1x(1− 3x)−1 · · ·x(1− nx)−1

= xn(1− x)−1(1− 2x)−1(1− 3x)−1 · · · (1− nx)−1. (14)

The ordinary generating function for set partition numbers depends on an
artificial ordering of the set. For such problems involving sets another tool is
more natural: the exponential generating function.

1.2 Two variable

1.2.1 Binomial coefficients

There is something awkward about having two generating functions for
(
n
k

)
.

Using two variables gives a nicer way to think of the situation. Thus consider

B(x, y) =
∞∑

n=0

∞∑

k=0

(
n

k

)
xkyn =

∞∑
n=0

(1 + x)nyn =
1

1− (1 + x)y
. (15)

This is a beautiful packaging of the facts about binomial coefficients. One has
an experiment with many stages. At each stage one gets a 0 or 1 according to
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whether there is a failure or a success at that stage. This is indicated by the
1 + x factor. Furthermore, in either case one counts this stage with a y factor.
So at each stage there is a (1+x)y term. The infinite sequence of stages is then
given by taking the geometric series 1/(1− z) and replacing z by (1 + x)y.

One byproduct of this analysis is the other series for the binomial coefficients.
One writes

B(x, y) =
∞∑

k=0

∞∑
n=0

(
n

k

)
ynxk =

1
1− y

1
1− y

1−y x
=

∞∑

k=0

yk

(1− y)k+1
xk. (16)

We recover the result

Bk(y) =
∞∑

n=0

(
n

k

)
yn =

yk

(1− y)k+1
. (17)

1.2.2 Multiset coefficients

One can make a similar calculation for the multiset coefficients
((

n
k

))
. Thus

consider

M(x, y) =
∞∑

n=0

∞∑

k=0

((
n

k

))
xkyn =

∞∑
n=0

(1− x)−nyn =
1

1− 1
1−xy

. (18)

At each stage one gets a natural number. This is indicated by the 1/(1 − x)
factor. Furthermore, one counts this stage with a y factor. So at each stage
there is a y/(1−x) term. The infinite sequence of stages is then given by taking
the geometric series 1/(1− z) and replacing z by y/(1− x).

This should give the other series for the multiset coefficients. One writes

M(x, y) =
∞∑

k=0

∞∑
n=0

((
n

k

))
ynxk = (1−x)

1
1− y

1
1− 1

1−y x
= (1−x)

∞∑

k=0

1
(1− y)k+1

xk.

(19)
After a calculation we get

M(x, y) =
∞∑

k=0

∞∑
n=0

((
n

k

))
ynxk =

1
1− y

+
∞∑

k=1

y

(1− y)k+1
xk. (20)

Hence M0(y) = 1/(1− y) and Mk(y) = y/(1− y)k+1 for k ≥ 1.

1.2.3 Integer partition numbers

There is a double series for the integer partition numbers p(k, n). This is

P (x, y) =
∞∑

n=0

∞∑

k=0

p(k, n)xkyn = (1− yx)−1(1− yx2)−1(1− yx3)−1 · · · . (21)
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To check this, one can expand

(1− yxj)−1 =
∞∑

p=0

ypxjp. (22)

Take the product of such factors. The coefficient of the xkyn term is the number
of type vectors p1, p2, p3 with p1 +p2 +p3 + · · · = n and p1 +2p2 +3p3 + · · · = k.
This number is p(k, n). The x acts as a counter for k, while the y acts as a
counter for n.

2 Exponential generating functions

2.1 One variable

2.1.1 Generalities

An exponential generating function is a convenient way of working with a se-
quence of numbers ak defined for k ≥ 0. It is a power series of the form

f(x) =
∞∑

k=0

ak
xk

k!
. (23)

The utility of exponential generating functions is that they are relevant for
combinatorial problems involving sets and subsets. Often there is a set A, and
one wants to consider functions from A to another set B. For each such function
there is a decomposition of A into subsets indexed by B. Another scenario is
when there is only the set A and one is interested in set partitions of A. It is the
sets that are of primary interest in constructing the combinatorial objects. The
number of combinatorial objects may depend only on the number of elements of
the set, but the way combinatorial objects are generated is via decompositions
of sets into subsets, rather than decompositions of numbers into summands.

Say that one has a collection of functions f (j)(x) for j in some index set B.
For notational simplicity we take B to be the set [n] of natural numbers from 1
to n. Suppose also that

f (j)(x) =
∞∑

k=0

a
(j)
k

xk

k!
. (24)

Let

f(x) = f (1)(x)f (2)(x) · · · f (n)(x) =
∞∑

k=0

ak
xk

k!
. (25)

be the product of the exponential generating functions. Then the coefficient ak

corresponding to the product is

ak =
∑

k1+k2+...kn=k

k!
k1! · · · kn!

a
(1)
k1

a
(2)
k2
· · · a(n)

kn
. (26)
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This is a sum over all multi-indices k1, . . . , kn with k1 + k2 + . . . kn = k of
combinatorial coefficients satisfying a product rule. However there is also a
multinomial coefficient. This counts the number of functions from a k element
set Ak to an n element set B = [n] with the given multi-index. Such a function
corresponds to a decomposition of A into subsets, indexed by B = [n]. We
think of each subset having a corresponding combinatorial coefficient a

(j)
kj

that
depends only on j and on the size kj of this subset. So we can write instead

ak =
∑

[n]Ak

a
(1)
k1

a
(2)
k2
· · · a(n)

kn
. (27)

Here Ak is a set with k elements, and B = [n] is a set with n elements, which we
may think of as the numbers from 1 to n. The set [n]Ak consists of all functions
from Ak to [n], that is, of all decompositions of A into subsets indexed by [n].
Then a

(j)
kj

is the combinatorial coefficient associated with the subset of A of size
kj that corresponds to element j of [n]. So a complicated operation involving a
huge sum over indexed decompositions of a set corresponds to a simple operation
on the exponential generating function: multiplication.

One use for exponential generating functions is to count indexed decompo-
sitions into subsets of a set A. The subsets are indexed by another set B. Say
that A is a display table with k places for placing fruits. The set B of categories
of fruits consists of apple, orange, and banana. Say that one wants to know
how many ways there are to place up to 2 apples, 3 or 4 oranges, and an even
number of bananas in the k locations. The exponential generating function is
f(x) = (1+x+ 1

2x2)( 1
6x3 + 1

24x4) cosh(x). The factors correspond to the differ-
ent kinds of fruits; the terms within the factors give the inventory of available
subsets of locations on the table for each kind of fruit. A solution is a choice
of a subset for each kind of fruit. Alternatively, it is a function that assigns to
each location on the table a corresponding fruit.

Here is a variation on the idea. Say that one has a function

f(x) =
∞∑

k=1

ak
xk

k!
. (28)

Let

g(x) =
1
n!

f(x)n =
∞∑

k=0

bk
xk

k!
. (29)

Then the coefficient bk is

bk =
∑

k1+k2+...kn=k

1
n!

k!
k1! · · · kn!

ak1ak2 · · · akn . (30)

This is a sum over all multi-indices k1, . . . , kn with each kj ≥ 1 and with k1 +
k2 + . . . kn = k of combinatorial coefficients satisfying a product rule. There is
also a multinomial coefficient. This counts the number of surjections from a k
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element set Ak to an n element set with the given multi-index. Such a function
corresponds to a decomposition of A into subsets, indexed by [n]. We think of
each subset having a corresponding combinatorial coefficient akj

that depends
only on the size kj of this subset. On the other hand, we also have a factor of
1/n!, which means that we are counting set partitions rather than surjections.
So we can write instead

bk =
∑

Partn(Ak)

ak1ak2 · · · akn . (31)

Here Ak is a set with k elements, and Partn(Ak) consists of all set partitions of
Ak into n blocks, that is, into all decompositions of Ak into n blocks, disregard-
ing order. Then akj

is the combinatorial coefficient associated with a block in
the set partition of A of size kj . So a complicated operation involving a huge
sum over set partitions of a set into n blocks corresponds to a simple operation
on the exponential generating function: 1/n! times the nth power.

Here is an illustration. Say that A is a display table with k places. One
wishes to use these places for displaying 4 formal table settings that each have
an odd number of pieces. A preliminary problem is then to partition A into 4
subsets each of which has an odd number of elements. The exponential gen-
erating function is g(x) = 1

4! sinh4(x). Consider for example the special case
k = 10. It is not hard to compute the number directly. There are three integer
partitions of 10 into odd parts. We can partition the set into blocks of sizes
3,3,3,1 in 2800 ways, partition the set into blocks of sizes 5,5 in 2520 ways, and
partition the set into blocks of sizes 7,1,1,1 in 120 ways. The total is 5440. But
it is perhaps easier to get this from the exponential generating function. An
elementary computation gives

g(x) =
1
4!

sinh4(x) =
1
4

[
1
8

sinh(4x)− 1
2

sinh(2x) +
3
8

]
. (32)

So the coefficient of 1
10!x

10 in g(x) is 1
4! [

1
8410 − 1

2210] which is again 5440.
Here is yet another step. Say that one has a function

f(x) =
∞∑

k=1

ak
xk

k!
. (33)

Let

h(x) = ef(x) =
∞∑

k=0

ck
xk

k!
. (34)

Notice that

ef(x) =
∞∑

n=0

f(x)n

n!
. (35)

So we are dealing now with set partitions into an arbitrary number of blocks.
It follows that

ck =
∑

Part(Ak)

ak1ak2 · · · akn . (36)
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Here Ak is a set with k elements, and Part(Ak) consists of all set partitions of
Ak into blocks, that is, into all decompositions of Ak into blocks, disregarding
order. The number n of blocks is a variable depending on the set partition. Then
akj is the combinatorial coefficient associated with a block in the set partition
of A. So a complicated operation involving a huge sum over set partitions of a
set corresponds to a simple operation on the exponential generating function:
taking the exponential.

Here is an illustration. Say that A is a display table with k places. One
wishes to use these places for displaying formal table settings that each have an
odd number of pieces. Partition A into blocks each of which has an odd number
of elements. The exponential generating function is h(x) = esinh(x).

2.1.2 Functions

Here are some important examples. An exponential generating function for the
functions from a k-set to an n set is

(ex)n = enx =
∞∑

k=0

nk xk

k!
. (37)

This follows from the product property, since a function from a k-set to an n
set is just a decomposition of the k-set into subsets indexed by the n-set.

2.1.3 Injections

An exponential generating function for the injective functions from a k-set to
an n set is

(1 + x)n =
∞∑

k=0

(n)k
xk

k!
. (38)

This follows from the product property, since an injective function from a k-set
to an n set is just a decomposition of the k-set into subsets with at most one
element indexed by the n-set.

Another exponential generating function for the injective functions from a k
set to an n set is

ykey =
∞∑

m=0

ym+k

m!
=

∞∑
n=0

(n)k
yn

n!
. (39)

This also follows from the product property, since an injective function from a
k-set to an n set is obtained by taking a sequence of k one-point subsets of the
n-set together with a remaining subset.

2.1.4 Surjections and set partitions

The exponential generating function for surjections from a k-set to an n set is

(ex − 1)n =
∞∑

k=0

n!S(k, n)
xk

k!
. (40)

9



A surjective function is the same as a decomposition into a sequence of n non-
empty subsets. The exponential generating function for set partitions of a k-set
into n blocks is

1
n!

(ex − 1)n =
∞∑

k=0

S(k, n)
xk

k!
. (41)

The exponential generating function for set partitions of a k-set is

eex−1 =
∞∑

k=0

Bk
xk

k!
. (42)

2.1.5 Permutations

If A is a set, then a permutation of A is a bijection from A to itself. If A has
k elements, then the number of permutations is k!. For every permutation of
A there is a set partition of A into subsets, on each of which there is a cyclic
permutation. A cyclic permutation is a permutation that consists of a single
cycle.

The number of cyclic permutations of a set with k elements is (k − 1)!. So
the exponential generating function for cyclic permutations is

∞∑

k=0

(k − 1)!
xk

k!
=

∞∑

k=0

1
k

xk = − log(1− x). (43)

This is consistent with what we know about permutations. Permutation are
partitioned into cyclic permutation. Therefore the exponential generating func-
tion for permutations is obtained by taking the exponential of that for cyclic
permutations:

e− log(1−x) =
1

1− x
=

∞∑

k=0

k!
xk

k!
(44)

Now let c(k, n) be the number of permutations of a k element set with n
cycles. The exponential generating function is

∞∑

k=0

c(k, n)
xk

k!
=

1
n!

(− log(1− x))n
. (45)

2.2 Two variable

2.2.1 Functions

The two-variable exponential generating function for the functions from a k-set
to an n set is

eexy =
∞∑

n=0

∞∑

k=0

nk xk

k!
yk

k!
. (46)

A function from A to B is given by a set partition of the disjoint union A + B
into blocks that consist of a single element of B together with a subset of A.
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2.2.2 Injections

The two-variable generating function for the injective functions from a k-set to
an n set is

e(1+x)y =
∞∑

n=0

∞∑

k=0

(n)k
xk

k!
yn

n!
. (47)

A injective function from A to B is given by a set partition of the disjoint union
A + B into blocks that consist of a single element of B together with a subset
of A with at most one element.

2.2.3 Surjections and set partitions

The exponential generating function for surjections from a k-set to an n set is

e(ex−1)y =
∞∑

n=0

∞∑

k=0

n!S(k, n)
xk

k!
yn

n!
. (48)

A surjective function from A to B is given by a set partition of the disjoint
union A + B into blocks that consist of a single element of B together with a
non-empty subset of A.

The exponential generating function for set partitions of a k-set is

eex−1 =
∞∑

k=0

Bk
xk

k!
. (49)

Write
eexy = e(ex−1)yey (50)

This says that a function from A to B is equivalent to decomposing A + B into
two sets, and partitioning each of these sets. The first set is partitioned into
blocks that consist of a single element of B together with a non-empty subset
of A. This is the surjection component. The second set is partitioned into the
blocks that consist of a single element of B alone. For fixed k this gives

∞∑
n=0

nk yn

n!
=

( ∞∑
n=0

S(k, n)yn

)
ey. (51)

This says that a function from A to B is obtained by decomposing B into the
range of the function and its complement. For fixed n this gives the remarkable
identity

nk =
∞∑

m=0

S(k,m) (n)m. (52)
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2.2.4 Permutations

Now let n!c(k, n) be the number of permutations of a k element set with n
cycles, where the cycles are labeled. The exponential generating function is

∞∑
n=0

∞∑

k=0

n!c(k, n)
xk

k!
yn

n!
= e− log(1−x)y =

(
1

1− x

)y

. (53)

This may be expanded by the binomial theorem as

(1− x)−y =
∞∑

k=0

(−y

k

)
(−x)k =

∞∑

k=0

(−y)k(−1)k xk

k!
. (54)

This shows that
∞∑

n=0

n!c(k, n)
yn

n!
= (−y)k(−1)k = (y)(k). (55)

Here (y)(k) is the rising factorial. For instance, (y)(2) = y(y +1) = y2 + y, while
(y)3 = y(y + 1)(y + 2) = y3 + 3y2 + 2y, and (y)(4) = y(y + 1)(y + 2)(y + 3) =
y4 + 6y3 + 11y2 + 6y. These polynomials give a convenient way of counting
permutations with a given number of cycles. For instance, for permutations of
a set with 4 elements there are 6 permutations with one cycle, 11 permutations
with two cycles, 6 permutations with three cycles, and 1 permutation with four
cycles.
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