Graph Topics

Notes for Math 447

May 3, 2011

1 Graphs, connected graphs, trees

A graph on a set V is a given by specifying V and a set E of two-element subsets. An element of V is called a vertex, and an element of E is called an edge. Each vertex in an edge is an end point of the edge. A vertex and edge are incident if the vertex belongs to the edge. Two vertices incident to the same edge are adjacent.

Suppose V has n elements. The number of graphs on V is $g_{n}=2\binom{n}{2}$. It follows that the exponential generating function is

$$
\begin{equation*}
G(x)=\sum_{n=0}^{\infty} 2^{\binom{n}{2}} \frac{x^{n}}{n!} . \tag{1}
\end{equation*}
$$

Unfortunately, there is no simple formula for $G(x)$.
A graph on a non-empty vertex set is a connected graph if there is no partition of V into two or more blocks such with the property that no edge has endpoints in different blocks. In general, given an arbitrary graph, there is a partition of the vertex set into blocks with a connected graph on each block. Each such block is called a connected component. This is true even for the graph on the empty set of vertices. The set of blocks in the corresponding partition is empty.

This last observation gives a way of counting connected graphs. Let $C(x)$ be the exponential generating function for connected graphs. Then every graph is obtained by giving a partition and a connected graph on each block. Thus

$$
\begin{equation*}
G(x)=e^{C(x)} \tag{2}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
C(x)=\sum_{m=1}^{\infty} c_{m} \frac{x^{m}}{m!}=\log (G(x)) \tag{3}
\end{equation*}
$$

Unfortunately, computing the logarithm is a nuisance. Therefore, this formula is awkward to use to find the number c_{m} of connected graphs on an m element set.

A tree on a vertex set is a minimal connected graph. That is, it is a connected graph with the property that removing an edge automatically disconnects it. If
the vertex set has n elements, then a tree on this vertex set has $n-1$ edges. There is a famous theorem of Cayley that says that the number of trees on a set with n elements is n^{n-2} for each $n \geq 1$. This theorem has many proofs; one is given below.

Sometimes it is useful to consider a graph with a particular vertex that may be used as a starting point. A rooted graph is a pair consisting of a graph on a vertex set and a particular vertex. The number of rooted graphs is $g_{n}^{\bullet}=n g_{n}$. The number of rooted connected graphs is $c_{n}^{\bullet}=n c_{n}$. The number of rooted trees is $t_{n}^{\bullet}=n t_{n}$.

Rooted graphs give another approach to counting connected graphs. Every rooted graph defines an ordered pair consisting of a subset of the vertex set with a rooted connected graph, together with another complementary subset of the vertex set with a graph. This proves that

$$
\begin{equation*}
G^{\bullet}(x)=C^{\bullet}(x) G(x) \tag{4}
\end{equation*}
$$

We conclude that

$$
\begin{equation*}
C^{\bullet}(x)=\sum_{m=1}^{\infty} m c_{m} \frac{x^{m}}{m!}=\frac{G^{\bullet}(x)}{G(x)} . \tag{5}
\end{equation*}
$$

Now the problem is to compute the quotient. Finding the number c_{m} of connected graphs on an m element set is not easy.

2 Rooted trees

Let $w=f(z)=T^{\bullet}(z)$ be the exponential generating function for rooted trees. Then w satisfies the equation

$$
\begin{equation*}
w=z e^{w} \tag{6}
\end{equation*}
$$

This says that a rooted tree consists of a pair consisting of a root point and a partition of the rest of the points into blocks, each of which has a rooted tree. This recursive construction underlies the utility of rooted trees.

This equation has inverse

$$
\begin{equation*}
z=g(w)=w e^{-w} \tag{7}
\end{equation*}
$$

The Lagrange inversion theorem applies to exactly such a situation. It says that if w is defined by $w=z \phi(w)$, where $\phi(0) \neq 0$, then the nth coefficient of the expansion of w in terms of z is $1 / n$ times the $n-1$ th coefficient of $\phi(w)^{n}$ in terms of w. In this case $\phi(w)=e^{w}$, so $\phi(w)^{n}=e^{n w}$. The $n-1$ th coefficient of the expansion of $e^{n w}$ is $\frac{1}{(n-1)!} n^{n-1}$. It follows that

$$
\begin{equation*}
w=f(z)=T^{\bullet}(z)=\sum_{n=1}^{\infty} n^{n-1} \frac{x^{n}}{n!} \tag{8}
\end{equation*}
$$

This proves that the number of rooted trees on a set with n elements is $t_{n}^{\bullet}=n^{n-1}$ for $n \geq 1$. As a consequence we get Cayley's theorem that says that the number of trees on a set with n elements is $t_{n}=n^{n-2}$ for $n \geq 1$.

3 Functions

The exponential generating functions for permutations is

$$
\begin{equation*}
S(x)=\frac{1}{1-x} \tag{9}
\end{equation*}
$$

According to Cayley's theorem the exponential generating function for rooted trees is

$$
\begin{equation*}
T^{\bullet}(z)=\sum_{n=1}^{\infty} n^{n-1} \frac{z^{n}}{n!} \tag{10}
\end{equation*}
$$

The generating function for endofunctions is

$$
\begin{equation*}
F(z)=\sum_{n=0}^{\infty} n^{n} \frac{z^{n}}{n!} \tag{11}
\end{equation*}
$$

Write it in a more interesting way as

$$
\begin{equation*}
F(z)=\frac{1}{1-T^{\bullet}(z)} \tag{12}
\end{equation*}
$$

This says for each endofunction on a set there is a partition of the set into blocks with rooted trees, together with a permutation of the blocks. The permutation of the blocks may be thought of as a permutation of the roots of the trees. The corresponding function maps each vertex that is not a root to the next vertex closer to the root, and it maps each root vertex to another root vertex given by the permutation.

The geometric series may be expanded as

$$
\begin{equation*}
F(z)=\sum_{k=0}^{\infty} T^{\bullet}(z)^{k} \tag{13}
\end{equation*}
$$

Now $T^{\bullet}(z)^{k}$ is the exponential generating function for forests of k rooted trees together with an ordering of the trees. This number may be computed by a slightly more general form of Lagrange inversion. It says that if w is defined by $w=z \phi(w)$, where $\phi(0) \neq 0$, then the nth coefficient of the expansion of w^{k} in terms of z is k / n times the $n-k$ th coefficient of $\phi(w)^{n}$ in terms of w. In this case $\phi(w)=e^{w}$, so $\phi(w)^{n}=e^{n w}$. The $n-k$ th coefficient of the expansion of $e^{n w}$ is $\frac{1}{(n-k)!} n^{n-k}$. We can also write this as $\binom{n-1}{k-1} n^{n-k} k!/ n!$. So the number of forests of k rooted trees, together with an ordering of the trees, is $\binom{n-1}{k-1} n^{n-k} k$!. This is the same as the number of forests of k rooted trees together with a permutation of the roots. So we have

$$
\begin{equation*}
T^{\bullet}(z)^{k}=\sum_{n=k}^{\infty}\binom{n-1}{k-1} n^{n-k} k!\frac{z^{n}}{n!} . \tag{14}
\end{equation*}
$$

Hence

$$
\begin{equation*}
F(z)=\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n-1}{k-1} n^{n-k} k!\frac{z^{n}}{n} \tag{15}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
n^{n}=\sum_{k=0}^{n}\binom{n-1}{k-1} n^{n-k} k!. \tag{16}
\end{equation*}
$$

4 Appendix: Laurent series and residues

Consider a formal Laurent series

$$
\begin{equation*}
H(z)=\sum_{k=-\infty}^{\infty} A_{k} z^{k} \tag{17}
\end{equation*}
$$

This has formal derivative

$$
\begin{equation*}
d H(z) / d z=H^{\prime}(z)=\sum_{k=-\infty}^{\infty} k A_{k} z^{k-1}=\sum_{m=-\infty}^{\infty}(m+1) A_{m+1} z^{m} \tag{18}
\end{equation*}
$$

Notice that the term in z^{-1} has coefficient zero.
Consider a function

$$
\begin{equation*}
h(z)=\sum_{k=-\infty}^{\infty} a_{k} z^{k} \tag{19}
\end{equation*}
$$

expanded in a Laurent series with a possible singularity at $z=0$. The residue of this form is the coefficient a_{-1} of $1 / z$. We have seen that if $h(z)=d H(z) / d z=$ $H^{\prime}(z)$, where $H(z)$ has a similar Laurent series, then the residue is automatically zero. Conversely, if the residue is zero, then the antiderivative is a Laurent series

$$
\begin{equation*}
H(z)=\sum_{k \neq-1} \frac{1}{k+1} a_{k} z^{k+1}=\sum_{m \neq 0} \frac{1}{m} a_{m-1} z^{m} \tag{20}
\end{equation*}
$$

Say that $h(z)$ is an arbitrary Laurent series. Let

$$
\begin{equation*}
g(w)=\sum_{n=1}^{\infty} b_{n} w^{n} \tag{21}
\end{equation*}
$$

be a change of coordinates with $g(0)=0$ and $g^{\prime}(0)=b_{1} \neq 0$. Consider the new function

$$
\begin{equation*}
h(g(w)) g^{\prime}(w)=\sum_{m=-\infty}^{\infty} c_{m} w^{n} . \tag{22}
\end{equation*}
$$

The residue theorem says that the residue is the same: $c_{-1}=a_{-1}$.
Here is the proof. First, note that

$$
\begin{equation*}
g^{\prime}(w)=b_{1}+\sum_{n=2}^{\infty} n b_{n} w^{n-1}=b_{1}+\sum_{m=1}^{\infty}(m+1) b_{m+1} w^{m} \tag{23}
\end{equation*}
$$

starts with constant term b_{1}. Furthermore,

$$
\begin{equation*}
\frac{g(w)}{w}=b_{1}+\sum_{n=2}^{\infty} b_{n} w^{n-1}=b_{1}\left[1+\sum_{m=1}^{\infty} \frac{b_{m+1}}{b_{1}} w^{m}\right] \tag{24}
\end{equation*}
$$

has the same b_{1} as a factor. Consider

$$
\begin{equation*}
h(g(w)) g^{\prime}(w)=\sum_{k=-\infty}^{\infty} a_{k} g(w)^{k} g^{\prime}(w) . \tag{25}
\end{equation*}
$$

If $k \neq-1$, then the term

$$
\begin{equation*}
g(w)^{k} g^{\prime}(w)=\frac{1}{k+1} \frac{d}{d w} g(w)^{k+1} \tag{26}
\end{equation*}
$$

has no residue. So the only problem is with $k=-1$. Write

$$
\begin{equation*}
\frac{g^{\prime}(w)}{g(w)}=g^{\prime}(w) \frac{w}{g(w)} \frac{1}{w} \tag{27}
\end{equation*}
$$

This has residue $b_{-1} / b_{-1}=1$. So the residue c_{-1} of $h(g(w)) g^{\prime}(w)$ is the residue of $a_{-1} g^{\prime}(w) / g(w)$ which is a_{-1}.

5 Appendix: Lagrange inversion

Say that $z=g(w)$ with $g(0)=0$ and $g^{\prime}(0) \neq 0$ is a known function. Consider the inverse function $w=f(z)$ with $f(0)=0$. We want to find the Taylor expansion

$$
\begin{equation*}
w=f(z)=\sum_{n=1}^{\infty} b_{n} z^{n} \tag{28}
\end{equation*}
$$

This is a problem about substitution, since the relation between the two functions is

$$
\begin{equation*}
f(g(w))=w . \tag{29}
\end{equation*}
$$

The idea of Lagrange inversion is that this substitution problem can be reduced to a division problem.

The Lagrange inversion theorem starts with the fact that the nth coefficient of the unknown inverse function $f(z)$ is a residue

$$
\begin{equation*}
b_{n}=\operatorname{res} \frac{f(z)}{z^{n+1}} . \tag{30}
\end{equation*}
$$

The theorem states that the coefficient is expressed in terms of the known function $g(w)$ by another residue

$$
\begin{equation*}
b_{n}=\frac{1}{n} \operatorname{res} \frac{1}{g(w)^{n}} \tag{31}
\end{equation*}
$$

Here is the proof. Write

$$
\begin{equation*}
b_{n}=\operatorname{res} \frac{f(z)}{z^{n+1}}=\operatorname{res} \frac{w}{g(w)^{n+1}} g^{\prime}(w)=\frac{1}{n} \operatorname{res} \frac{1}{g(w)^{n}} . \tag{32}
\end{equation*}
$$

This last equation comes from

$$
\begin{equation*}
\frac{1}{n} \frac{d}{d w}\left(\frac{w}{g(w)^{n}}\right)=\frac{1}{n} \frac{1}{g(w)^{n}}-\frac{w}{g(w)^{n+1}} g^{\prime}(w) \tag{33}
\end{equation*}
$$

An easy application is to the function $w=z(1+w)^{2}$ that occurs in the enumeration of isomorphism classes of binary trees. Here $z=g(w)=w /(1+$ $w)^{2}$. To find the coefficient b_{n} in the series expansion of $w=f(z)$ we need to find the residue of $(1+w)^{2 n} / w^{n}$. Since $(1+w)^{2 n}=\sum_{k=0}^{2 n}\binom{2 n}{k} w^{k}$, the residue is $\binom{2 n}{n-1}$. So $b_{n}=\frac{1}{n}\binom{2 n}{n-1}$. This may be written in a more symmetrical way as follows. First note that $(n+1)\binom{2 n}{n-1}=n\binom{2 n}{n}$. This is because we can either choose a subset with $n-1$ elements and a point in the complement, or, equivalently, a subset with n elements and a point inside. It follows that $b_{n}=\frac{1}{n+1}\binom{2 n}{n}$. This is called a Catalan number.

The most obvious application is to the equation $w=z e^{w}$ for the exponential generating function for rooted trees. We have $z=g(w)=w e^{-w}$. The desired inverse function is $w=f(z)$. So we see that the coefficient is

$$
\begin{equation*}
b_{n}=\frac{1}{n} \operatorname{res} \frac{1}{g(w)^{n}}=\frac{1}{n} \operatorname{res} w^{-n} e^{n w} \tag{34}
\end{equation*}
$$

This residue comes from the $n-1$ term in the expansion of $e^{n w}$, which is $(n w)^{n-1}$ divided by $(n-1)$!. Thus

$$
\begin{equation*}
b_{n}=\frac{1}{n} \frac{1}{(n-1)!} n^{n-1}=\frac{1}{n!} n^{n-1} . \tag{35}
\end{equation*}
$$

It is worth noting that the Lagrange inversion theorem is sometimes formulated in terms of the function $w^{n} / g(w)^{n}$ with no singularity at $w=0$. The theorem then states that the coefficient b_{n} is $1 / n$ times the $n-1$ th coefficient in the expansion of $w^{n} / g(w)^{n}$.

A more general form of Lagrange inversion gives the Taylor expansion of

$$
\begin{equation*}
H(w)=H(f(z))=\sum_{n=1}^{\infty} B_{n} z^{n} \tag{36}
\end{equation*}
$$

The result is the improved Lagrange inversion theorem

$$
\begin{equation*}
B_{n}=\frac{1}{n} \operatorname{res} \frac{H^{\prime}(w)}{g(w)^{n}} \tag{37}
\end{equation*}
$$

Here is the proof. Write

$$
\begin{equation*}
B_{n}=\operatorname{res} \frac{H(f(z))}{z^{n+1}}=\operatorname{res} \frac{H(w)}{g(w)^{n+1}} g^{\prime}(w)=\frac{1}{n} \operatorname{res} \frac{H^{\prime}(w)}{g(w)^{n}} \tag{38}
\end{equation*}
$$

This last equation comes from

$$
\begin{equation*}
\frac{1}{n} \frac{d}{d w}\left(\frac{H(w)}{g(w)^{n}}\right)=\frac{1}{n} \frac{H^{\prime}(w)}{g(w)^{n}}-\frac{H(w)}{g(w)^{n+1}} g^{\prime}(w) \tag{39}
\end{equation*}
$$

Consider again the equation $w=z e^{w}$ for the exponential generating function for rooted trees. We have $z=g(w)=w e^{-w}$. The inverse function is $w=f(z)$. Let us take $H(w)=w^{k}=g(z)^{k}$, which is the exponential generating function for forests consisting of k rooted trees together with an ordering of the trees. The coefficient is

$$
\begin{equation*}
B_{n}=\frac{k}{n} \operatorname{res} \frac{w^{k-1}}{g(w)^{n}}=\frac{k}{n} \operatorname{res} w^{k-1-n} e^{n w} \tag{40}
\end{equation*}
$$

This residue comes from the $n-k$ power term in the exponential function and is

$$
\begin{equation*}
B_{n}=\frac{k}{n} \frac{1}{(n-k)!} n^{n-k} . \tag{41}
\end{equation*}
$$

To get the exponential generating function for forests consisting of k rooted trees (in no particular order), we need to divide by $k!$. To get the actual number we need to find the coefficient of x^{n} / n !, so we need also to multiply by n !. This gives the coefficient that enumerates such forests as

$$
\begin{equation*}
\frac{n!}{k!} \frac{k}{n} \frac{1}{(n-k)!} n^{n-k}=\binom{n-1}{k-1} n^{n-k} . \tag{42}
\end{equation*}
$$

