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1 Graphs, connected graphs, trees

A graph on a set V is a given by specifying V and a set E of two-element subsets.
An element of V is called a vertex, and an element of E is called an edge. Each
vertex in an edge is an end point of the edge. A vertex and edge are incident
if the vertex belongs to the edge. Two vertices incident to the same edge are
adjacent.

Suppose V has n elements. The number of graphs on V is gn = 2(n
2). It

follows that the exponential generating function is

G(x) =
∞∑

n=0

2(n
2) xn

n!
. (1)

Unfortunately, there is no simple formula for G(x).
A graph on a non-empty vertex set is a connected graph if there is no partition

of V into two or more blocks such with the property that no edge has endpoints
in different blocks. In general, given an arbitrary graph, there is a partition
of the vertex set into blocks with a connected graph on each block. Each such
block is called a connected component. This is true even for the graph on the
empty set of vertices. The set of blocks in the corresponding partition is empty.

This last observation gives a way of counting connected graphs. Let C(x)
be the exponential generating function for connected graphs. Then every graph
is obtained by giving a partition and a connected graph on each block. Thus

G(x) = eC(x). (2)

It follows that

C(x) =
∞∑

m=1

cm
xm

m!
= log(G(x)). (3)

Unfortunately, computing the logarithm is a nuisance. Therefore, this formula
is awkward to use to find the number cm of connected graphs on an m element
set.

A tree on a vertex set is a minimal connected graph. That is, it is a connected
graph with the property that removing an edge automatically disconnects it. If
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the vertex set has n elements, then a tree on this vertex set has n − 1 edges.
There is a famous theorem of Cayley that says that the number of trees on a
set with n elements is nn−2 for each n ≥ 1. This theorem has many proofs; one
is given below.

Sometimes it is useful to consider a graph with a particular vertex that may
be used as a starting point. A rooted graph is a pair consisting of a graph on a
vertex set and a particular vertex. The number of rooted graphs is g•n = ngn.
The number of rooted connected graphs is c•n = ncn. The number of rooted
trees is t•n = ntn.

Rooted graphs give another approach to counting connected graphs. Every
rooted graph defines an ordered pair consisting of a subset of the vertex set with
a rooted connected graph, together with another complementary subset of the
vertex set with a graph. This proves that

G•(x) = C•(x)G(x). (4)

We conclude that

C•(x) =
∞∑

m=1

mcm
xm

m!
=

G•(x)
G(x)

. (5)

Now the problem is to compute the quotient. Finding the number cm of con-
nected graphs on an m element set is not easy.

2 Rooted trees

Let w = f(z) = T •(z) be the exponential generating function for rooted trees.
Then w satisfies the equation

w = zew. (6)

This says that a rooted tree consists of a pair consisting of a root point and a
partition of the rest of the points into blocks, each of which has a rooted tree.
This recursive construction underlies the utility of rooted trees.

This equation has inverse

z = g(w) = we−w. (7)

The Lagrange inversion theorem applies to exactly such a situation. It says that
if w is defined by w = zφ(w), where φ(0) 6= 0, then the nth coefficient of the
expansion of w in terms of z is 1/n times the n − 1th coefficient of φ(w)n in
terms of w. In this case φ(w) = ew, so φ(w)n = enw. The n− 1th coefficient of
the expansion of enw is 1

(n−1)!n
n−1. It follows that

w = f(z) = T •(z) =
∞∑

n=1

nn−1 xn

n!
. (8)

This proves that the number of rooted trees on a set with n elements is t•n = nn−1

for n ≥ 1. As a consequence we get Cayley’s theorem that says that the number
of trees on a set with n elements is tn = nn−2 for n ≥ 1.
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3 Functions

The exponential generating functions for permutations is

S(x) =
1

1− x
. (9)

According to Cayley’s theorem the exponential generating function for rooted
trees is

T •(z) =
∞∑

n=1

nn−1 zn

n!
. (10)

The generating function for endofunctions is

F (z) =
∞∑

n=0

nn zn

n!
. (11)

Write it in a more interesting way as

F (z) =
1

1− T •(z)
. (12)

This says for each endofunction on a set there is a partition of the set into blocks
with rooted trees, together with a permutation of the blocks. The permutation
of the blocks may be thought of as a permutation of the roots of the trees. The
corresponding function maps each vertex that is not a root to the next vertex
closer to the root, and it maps each root vertex to another root vertex given by
the permutation.

The geometric series may be expanded as

F (z) =
∞∑

k=0

T •(z)k
. (13)

Now T •(z)k is the exponential generating function for forests of k rooted trees
together with an ordering of the trees. This number may be computed by a
slightly more general form of Lagrange inversion. It says that if w is defined by
w = zφ(w), where φ(0) 6= 0, then the nth coefficient of the expansion of wk in
terms of z is k/n times the n − kth coefficient of φ(w)n in terms of w. In this
case φ(w) = ew, so φ(w)n = enw. The n − kth coefficient of the expansion of
enw is 1

(n−k)!n
n−k. We can also write this as

(
n−1
k−1

)
nn−kk!/n!. So the number of

forests of k rooted trees, together with an ordering of the trees, is
(
n−1
k−1

)
nn−kk!.

This is the same as the number of forests of k rooted trees together with a
permutation of the roots. So we have

T •(z)k =
∞∑

n=k

(
n− 1
k − 1

)
nn−kk!

zn

n!
. (14)
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Hence

F (z) =
∞∑

n=0

n∑

k=0

(
n− 1
k − 1

)
nn−kk!

zn

n
(15)

It follows that

nn =
n∑

k=0

(
n− 1
k − 1

)
nn−kk!. (16)

4 Appendix: Laurent series and residues

Consider a formal Laurent series

H(z) =
∞∑

k=−∞
Akzk. (17)

This has formal derivative

dH(z)/dz = H ′(z) =
∞∑

k=−∞
kAkzk−1 =

∞∑
m=−∞

(m + 1)Am+1z
m. (18)

Notice that the term in z−1 has coefficient zero.
Consider a function

h(z) =
∞∑

k=−∞
akzk (19)

expanded in a Laurent series with a possible singularity at z = 0. The residue of
this form is the coefficient a−1 of 1/z. We have seen that if h(z) = dH(z)/dz =
H ′(z), where H(z) has a similar Laurent series, then the residue is automatically
zero. Conversely, if the residue is zero, then the antiderivative is a Laurent series

H(z) =
∑

k 6=−1

1
k + 1

akzk+1 =
∑

m 6=0

1
m

am−1z
m. (20)

Say that h(z) is an arbitrary Laurent series. Let

g(w) =
∞∑

n=1

bnwn (21)

be a change of coordinates with g(0) = 0 and g′(0) = b1 6= 0. Consider the new
function

h(g(w))g′(w) =
∞∑

m=−∞
cmwn. (22)

The residue theorem says that the residue is the same: c−1 = a−1.
Here is the proof. First, note that

g′(w) = b1 +
∞∑

n=2

nbnwn−1 = b1 +
∞∑

m=1

(m + 1)bm+1w
m (23)
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starts with constant term b1. Furthermore,

g(w)
w

= b1 +
∞∑

n=2

bnwn−1 = b1

[
1 +

∞∑
m=1

bm+1

b1
wm

]
(24)

has the same b1 as a factor. Consider

h(g(w))g′(w) =
∞∑

k=−∞
akg(w)kg′(w). (25)

If k 6= −1, then the term

g(w)kg′(w) =
1

k + 1
d

dw
g(w)k+1 (26)

has no residue. So the only problem is with k = −1. Write

g′(w)
g(w)

= g′(w)
w

g(w)
1
w

. (27)

This has residue b−1/b−1 = 1. So the residue c−1 of h(g(w))g′(w) is the residue
of a−1g

′(w)/g(w) which is a−1.

5 Appendix: Lagrange inversion

Say that z = g(w) with g(0) = 0 and g′(0) 6= 0 is a known function. Consider
the inverse function w = f(z) with f(0) = 0. We want to find the Taylor
expansion

w = f(z) =
∞∑

n=1

bnzn. (28)

This is a problem about substitution, since the relation between the two func-
tions is

f(g(w)) = w. (29)

The idea of Lagrange inversion is that this substitution problem can be reduced
to a division problem.

The Lagrange inversion theorem starts with the fact that the nth coefficient
of the unknown inverse function f(z) is a residue

bn = res
f(z)
zn+1

. (30)

The theorem states that the coefficient is expressed in terms of the known func-
tion g(w) by another residue

bn =
1
n

res
1

g(w)n
. (31)

5



Here is the proof. Write

bn = res
f(z)
zn+1

= res
w

g(w)n+1
g′(w) =

1
n

res
1

g(w)n
. (32)

This last equation comes from

1
n

d

dw

(
w

g(w)n

)
=

1
n

1
g(w)n

− w

g(w)n+1
g′(w). (33)

An easy application is to the function w = z(1 + w)2 that occurs in the
enumeration of isomorphism classes of binary trees. Here z = g(w) = w/(1 +
w)2. To find the coefficient bn in the series expansion of w = f(z) we need to
find the residue of (1 + w)2n/wn. Since (1 + w)2n =

∑2n
k=0

(
2n
k

)
wk, the residue

is
(

2n
n−1

)
. So bn = 1

n

(
2n

n−1

)
. This may be written in a more symmetrical way

as follows. First note that (n + 1)
(

2n
n−1

)
= n

(
2n
n

)
. This is because we can

either choose a subset with n − 1 elements and a point in the complement,
or, equivalently, a subset with n elements and a point inside. It follows that
bn = 1

n+1

(
2n
n

)
. This is called a Catalan number.

The most obvious application is to the equation w = zew for the exponential
generating function for rooted trees. We have z = g(w) = we−w. The desired
inverse function is w = f(z). So we see that the coefficient is

bn =
1
n

res
1

g(w)n
=

1
n

resw−nenw. (34)

This residue comes from the n−1 term in the expansion of enw, which is (nw)n−1

divided by (n− 1)!. Thus

bn =
1
n

1
(n− 1)!

nn−1 =
1
n!

nn−1. (35)

It is worth noting that the Lagrange inversion theorem is sometimes formu-
lated in terms of the function wn/g(w)n with no singularity at w = 0. The
theorem then states that the coefficient bn is 1/n times the n − 1th coefficient
in the expansion of wn/g(w)n.

A more general form of Lagrange inversion gives the Taylor expansion of

H(w) = H(f(z)) =
∞∑

n=1

Bnzn. (36)

The result is the improved Lagrange inversion theorem

Bn =
1
n

res
H ′(w)
g(w)n

. (37)

Here is the proof. Write

Bn = res
H(f(z))

zn+1
= res

H(w)
g(w)n+1

g′(w) =
1
n

res
H ′(w)
g(w)n

. (38)
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This last equation comes from

1
n

d

dw

(
H(w)
g(w)n

)
=

1
n

H ′(w)
g(w)n

− H(w)
g(w)n+1

g′(w). (39)

Consider again the equation w = zew for the exponential generating function
for rooted trees. We have z = g(w) = we−w. The inverse function is w = f(z).
Let us take H(w) = wk = g(z)k, which is the exponential generating function
for forests consisting of k rooted trees together with an ordering of the trees.
The coefficient is

Bn =
k

n
res

wk−1

g(w)n
=

k

n
res wk−1−nenw. (40)

This residue comes from the n− k power term in the exponential function and
is

Bn =
k

n

1
(n− k)!

nn−k. (41)

To get the exponential generating function for forests consisting of k rooted trees
(in no particular order), we need to divide by k!. To get the actual number we
need to find the coefficient of xn/n!, so we need also to multiply by n!. This
gives the coefficient that enumerates such forests as

n!
k!

k

n

1
(n− k)!

nn−k =
(

n− 1
k − 1

)
nn−k. (42)
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