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1 Graphs, connected graphs, trees

A graph on a set V is a given by specifying V and a set E of two-element subsets.
An element of V is called a vertex, and an element of F is called an edge. Each
vertex in an edge is an end point of the edge. A vertex and edge are incident
if the vertex belongs to the edge. Two vertices incident to the same edge are
adjacent.

Suppose V' has n elements. The number of graphs on V is g, = 2(;) It
follows that the exponential generating function is

G(z) = 22(3)%. (1)

Unfortunately, there is no simple formula for G(z).

A graph on a non-empty vertex set is a connected graph if there is no partition
of V into two or more blocks such with the property that no edge has endpoints
in different blocks. In general, given an arbitrary graph, there is a partition
of the vertex set into blocks with a connected graph on each block. Each such
block is called a connected component. This is true even for the graph on the
empty set of vertices. The set of blocks in the corresponding partition is empty.

This last observation gives a way of counting connected graphs. Let C(x)
be the exponential generating function for connected graphs. Then every graph
is obtained by giving a partition and a connected graph on each block. Thus

G(z) = @, (2)
It follows that - /
C(a) = Y em— = log(G(x)). (3)

Unfortunately, computing the logarithm is a nuisance. Therefore, this formula
is awkward to use to find the number ¢, of connected graphs on an m element
set.

A tree on a vertex set is a minimal connected graph. That is, it is a connected
graph with the property that removing an edge automatically disconnects it. If



the vertex set has n elements, then a tree on this vertex set has n — 1 edges.
There is a famous theorem of Cayley that says that the number of trees on a
set with n elements is n"~2 for each n > 1. This theorem has many proofs; one
is given below.

Sometimes it is useful to consider a graph with a particular vertex that may
be used as a starting point. A rooted graph is a pair consisting of a graph on a
vertex set and a particular vertex. The number of rooted graphs is g5 = ng,.
The number of rooted connected graphs is ¢?, = nc,. The number of rooted
trees is ty = nty,.

Rooted graphs give another approach to counting connected graphs. Every
rooted graph defines an ordered pair consisting of a subset of the vertex set with
a rooted connected graph, together with another complementary subset of the
vertex set with a graph. This proves that

G*(z) = C*(2)G(x). (4)
We conclude that -
C*(z) = Zlmcm% = %((;)) (5)

Now the problem is to compute the quotient. Finding the number c,, of con-
nected graphs on an m element set is not easy.

2 Rooted trees

Let w = f(z) = T*(z) be the exponential generating function for rooted trees.
Then w satisfies the equation
w = zev. (6)

This says that a rooted tree consists of a pair consisting of a root point and a
partition of the rest of the points into blocks, each of which has a rooted tree.
This recursive construction underlies the utility of rooted trees.

This equation has inverse

z=g(w) =we ™. (7)

The Lagrange inversion theorem applies to exactly such a situation. It says that

if w is defined by w = z¢(w), where ¢(0) # 0, then the nth coefficient of the

expansion of w in terms of z is 1/n times the n — 1th coefficient of ¢(w)" in

terms of w. In this case ¢(w) = €¥, so ¢p(w)™ = ™. The n — 1th coefficient of
the expansion of ™ is ﬁn”_l. It follows that

oo xn

_ . ° _ n—1%

w=f(z) = T(z) = St (8)

n=1

n!

This proves that the number of rooted trees on a set with n elements is t& = n"~1

for n > 1. As a consequence we get Cayley’s theorem that says that the number
of trees on a set with n elements is ¢, = n™ 2 for n > 1.



3 Functions

The exponential generating functions for permutations is

(9)

According to Cayley’s theorem the exponential generating function for rooted

trees is
n

T°(2) = Zn”*%. (10)

The generating function for endofunctions is

F(z)= Zn"%y:. (11)
n=0 '

Write it in a more interesting way as

1

(12)
This says for each endofunction on a set there is a partition of the set into blocks
with rooted trees, together with a permutation of the blocks. The permutation
of the blocks may be thought of as a permutation of the roots of the trees. The
corresponding function maps each vertex that is not a root to the next vertex
closer to the root, and it maps each root vertex to another root vertex given by
the permutation.
The geometric series may be expanded as

F(z) =Y T*(2)". (13)
k=0

Now T*(z)" is the exponential generating function for forests of k rooted trees

together with an ordering of the trees. This number may be computed by a

slightly more general form of Lagrange inversion. It says that if w is defined by

w = z¢(w), where ¢(0) # 0, then the nth coefficient of the expansion of w* in

terms of z is k/n times the n — kth coefficient of ¢(w)™ in terms of w. In this

case ¢p(w) = e¥, so ¢p(w)™ = ™. The n — kth coefficient of the expansion of
1

e is (n_k)!n”*k. We can also write this as (Zj)n”*kkl/n!. So the number of

forests of k rooted trees, together with an ordering of the trees, is (Z:})n”*k k!
This is the same as the number of forests of k rooted trees together with a

permutation of the roots. So we have

T*(2)" = i <Z: Dn"‘kk'j: (14)



Hence

It follows that

4 Appendix: Laurent series and residues

Consider a formal Laurent series

o0
H(z)= Y Apz*. (17)
k=—oc0
This has formal derivative
dH(z)/dz = H'(z) = Y kAF 1= Y (m+ DA™ (18)
k=—o00 m=—o00

Notice that the term in z~! has coefficient zero.
Consider a function

o0
h(z) = Z apz” (19)
k=—o00
expanded in a Laurent series with a possible singularity at z = 0. The residue of
this form is the coefficient a_; of 1/z. We have seen that if h(z) = dH (z)/dz =
H'(z), where H(z) has a similar Laurent series, then the residue is automatically
zero. Conversely, if the residue is zero, then the antiderivative is a Laurent series

_ 1 k+1 1 m
k#—1 m##0

Say that h(z) is an arbitrary Laurent series. Let
g(w) =" byuw" (21)
n=1

be a change of coordinates with g(0) = 0 and ¢’(0) = by # 0. Consider the new
function

h(g(w)g'(w) = Y epuw™ (22)

The residue theorem says that the residue is the same: c_; = a_y.
Here is the proof. First, note that

g (w) = by + Z nbpw™ ! = by + Z (m 4 1)bpprw™ (23)
n=2

m=1



starts with constant term b;. Furthermore,

% = b + gbnw"—l =b |1+ gjl b’zjlwml (24)
has the same b; as a factor. Consider
h(g(w))g' (w) = i arg(w)*g'(w). (25)
k=—o00
If k # —1, then the term
0¥ (0) = 1 gl (26)

has no residue. So the only problem is with £k = —1. Write

(27)

This has residue b_; /b_; = 1. So the residue ¢_; of h(g(w))g’(w) is the residue
of a_1¢'(w)/g(w) which is a_;.

5 Appendix: Lagrange inversion

Say that z = g(w) with ¢g(0) = 0 and ¢’(0) # 0 is a known function. Consider
the inverse function w = f(z) with f(0) = 0. We want to find the Taylor
expansion

w=f(z) = Z bn2". (28)

This is a problem about substitution, since the relation between the two func-
tions is

flg(w)) = w. (29)
The idea of Lagrange inversion is that this substitution problem can be reduced
to a division problem.
The Lagrange inversion theorem starts with the fact that the nth coefficient
of the unknown inverse function f(z) is a residue

S

n = Tes

(30)

The theorem states that the coefficient is expressed in terms of the known func-
tion g(w) by another residue

(31)



Here is the proof. Write

f(z) w 1 1
b, = res gD = Tes () g (w) = s ) (32)
This last equation comes from
1d w 1 1 w ,
() == — . 33
vt () = s g @ %)

An easy application is to the function w = z(1 4+ w)? that occurs in the
enumeration of isomorphism classes of binary trees. Here z = g(w) = w/(1 +
w)?. To find the coefficient b,, in the series expansion of w = f(z) we need to

find the residue of (1 +w)?" /w™. Since (1 +w)?" = Yo" (3")w", the residue
is (n2_"1). So b, = %(f_"l) This may be written in a more symmetrical way
as follows. First note that (n 4 1) (n2f1) = n(%?) This is because we can

either choose a subset with n — 1 elements and a point in the complement,

or, equivalently, a subset with n elements and a point inside. It follows that

b, = —= (27?) This is called a Catalan number.

n+1
The most obvious application is to the equation w = ze® for the exponential
generating function for rooted trees. We have z = g(w) = we™™. The desired

inverse function is w = f(z). So we see that the coefficient is

w

1 1
b, = —res = —resw "e"". (34)
n g n

This residue comes from the n—1 term in the expansion of ™, which is (nw)"~*

divided by (n — 1)!. Thus
_ 1 1 n—1 __ n—1
It is worth noting that the Lagrange inversion theorem is sometimes formu-
lated in terms of the function w™/g(w)™ with no singularity at w = 0. The
theorem then states that the coefficient b,, is 1/n times the n — 1th coefficient
in the expansion of w™/g(w)™.
A more general form of Lagrange inversion gives the Taylor expansion of

H(w) = H(f(2)) = 3 Baz". (36)

n=1

The result is the improved Lagrange inversion theorem
1 H'

B, = —res (w) (37)

no g(w)”

Here is the proof. Write
H(f(z)) H(w) 1 H(w)

B, = res T = Tes W{J (w) = - res S (38)



This last equation comes from

1d (Hw)\ 1H(w) Hw) |,
n dw (g(w)") = wgtwr  glwyn? @) (39)

Consider again the equation w = ze™ for the exponential generating function
for rooted trees. We have z = g(w) = we™". The inverse function is w = f(z).
Let us take H(w) = w* = g(z)*, which is the exponential generating function
for forests consisting of k rooted trees together with an ordering of the trees.
The coefficient is
k wk_l k k—1—n

B, = res gy = resw e"v. (40)

This residue comes from the n — k power term in the exponential function and
is k )
B, = —————n""k, 41

" n(n—k) (41)
To get the exponential generating function for forests consisting of k rooted trees
(in no particular order), we need to divide by k!. To get the actual number we
need to find the coefficient of ™ /n!, so we need also to multiply by n!. This
gives the coeflicient that enumerates such forests as

nlk 1 & n—1 K
- Y P) (ol R, 42
k!n(n—k)!n (k—l)n (42)



