Multinomial coefficients

notes from Math 447-547 lectures

February 16, 2011

1 Multi-sets and multinomial coefficients

A multinomial coefficient is associated with each (finite) multiset taken from the set of natural numbers. Such a multi-set is given by a list k_{1}, \ldots, k_{n}, where numbers may be repeated, and where order does not matter.

If the elements of the multiset are $k_{1}, k_{2}, \ldots, k_{n}$ and $k_{1}+k_{2}+k_{3}+\cdots+k_{n}=k$, then the multinomial coefficient is

$$
\begin{equation*}
\binom{k}{k_{1} k_{2} k_{3} \cdots k_{n}}=\frac{k!}{\prod_{i=1}^{k} k_{i}!} \tag{1}
\end{equation*}
$$

A multiset of natural numbers determines a type vector $p_{1}, p_{2}, p_{3}, \ldots$. Thus p_{j} is the number of times j occurs in the list k_{1}, \ldots, k_{n}. Then $p_{1} 1+p_{2} 2+p_{3} 3+$ $\cdots=k$. The multinomial coefficient is also given by

$$
\begin{equation*}
\binom{k}{k_{1} k_{2} k_{3} \cdots k_{n}}=\frac{k!}{\prod_{j}(j!)^{p_{j}}} . \tag{2}
\end{equation*}
$$

There is a problem when the multiset has 0 s in it, since the type vector does not determine the number of zeros. However, suppose that each $k_{i} \geq$ 1. Thus the multiset consists only of strictly positive natural numbers. In that case the type vector determines the multiset. Furthermore, it follows that $p_{1}+p_{2}+p_{3}+\cdots=n$.

A multiset taken from the set of strictly positive natural numbers with sum k is called a integer partition of k. Each number k_{i} in the sum is called a part. We write $p(k)$ for the number of integer partitions of k and $p(k, n)$ for the number of integer partitions of k into n parts.

2 Functions and surjective functions

Let A have k points and B have n points. Let f be a function from A to B. Then f defines a multi-set taken from B. This may be given by listing some elements of B (repetitions allowed, order irrelevant). Or it may be given by a multi-index N, a function from B to the natural numbers. The value of N on
a point y in B is the number of points x with $f(x)=y$. The total number of such multi-indices is $\left(\binom{n}{k}\right)$.

The multi-index N determines a multi-set k_{1}, \ldots, k_{n} taken from the natural numbers. This multi-set consists of the values of the function N. It has less information in it than the multi-index N, since it has lost the information about which elements of B index the numbers.

The number of functions from A to B with given multi-index N is determined by the values k_{1}, \ldots, k_{n} of the multi-index N. It is given by the multinomial coefficient

$$
\begin{equation*}
\binom{k}{N}=\binom{k}{k_{1} k_{2} k_{3} \cdots k_{n}}=\frac{k!}{\prod_{i=1}^{k} k_{i}!} . \tag{3}
\end{equation*}
$$

To prove this, think of B as being ordered. Then for each function $f: A \rightarrow B$ with the given multi-indices the inverse images form an ordered family of n subsets of A with cardinalities k_{i}. Give in addition an ordering of each subset. The pairs consisting of a suitable function together with orderings of the subsets correspond to orderings of A. This shows that the number of functions times $k_{1}!\cdots k_{n}$! is equal to $k!$.

One obvious consequence of this is that

$$
\begin{equation*}
n^{k}=\sum_{N}\binom{k}{N} \tag{4}
\end{equation*}
$$

The total number of functions is obtained by summing the number of functions corresponding to each multi-index.

Each set partition of A partitions A into disjoint non-empty sets. Each set in the set partition is called a block. Say that there are n blocks. Write $B(n)$ for the number of set partitions, and $S(k, n)$ for the number of set partitions into n blocks.

Now consider the case of surjective functions from A to B. This determines a multi-index N on B with each value at least one. The number of such multiindices is $\left(\binom{n}{k-n}\right)$. In particular the values $k_{i} \geq 1$, so we have an integer partition of k into n parts. Furthermore, the surjective function determines a set partition of A into n blocks. The number of set partitions is $S(k, n)$. The number of surjective functions is thus $n!S(k, n)$, since to determine the function all one has to do is to give the image of each of the n blocks.

From this we see that

$$
\begin{equation*}
n!S(k, n)=\sum_{N \geq 1}\binom{k}{N} \tag{5}
\end{equation*}
$$

The total number of surjective functions is obtained by summing the number of functions corresponding to each multi-index that only strictly positive values.

3 Set partitions and integer partitions

For each set partition of A we have a corresponding integer partition which consists of the sizes of the blocks of the set partition. The corresponding type
vector p_{j} is just the number of blocks of size j.
The claim is that the number of set partitions of A with given integer partition is given by the formula

$$
\begin{equation*}
\binom{k}{k_{1} k_{2} k_{3} \cdots k_{n}} \frac{1}{\prod_{j} p_{j}!}=\frac{k!}{\prod_{j}(j!)^{p_{j}}} \frac{1}{\prod_{j} p_{j}!} . \tag{6}
\end{equation*}
$$

The proof is the following. Consider an n element set with multi-index N having values given by the integer partition. Consider a partition of A into blocks with sizes given by the integer partition. Each block of size k_{i} must map into a point in B with multi-index value k_{i}. The surjective function from A to B with multi-index N is determined by two kinds of data: the partition and the mappings from the p_{j} blocks of given size j to the p_{j} points in B with multiindex value j. Therefore the number of partitions times $\prod_{j} p_{j}$! is the number of functions.

As a consequence we get that the number of set partitions of a k element set A into n parts is

$$
\begin{equation*}
S(k, n)=\sum_{P} \frac{k!}{\prod_{j}(j!)^{p_{j}}} \frac{1}{\prod_{j} p_{j}!} \tag{7}
\end{equation*}
$$

where the sum is over all type vectors $p_{1}, p_{2}, p_{3}, \ldots$ with $p_{1}+p_{2}+p_{3}+\cdots=n$ and $p_{1} 1+p_{2} 3+p_{3} 3+\cdots=k$, in other words, over all integer partitions of k into n parts.

4 Two kinds of multinomial coefficient

There is another, more illuminating way, to get this kind of result. We look at the number of surjective functions $f: A \rightarrow B$ that define a given integer partition $p_{1}, p_{2}, p_{3}, \ldots$. This will be the number of surjective functions per multiindex on B times the number of multi-indices on B per integer partition. We know that the number of surjective functions with multi-index N is given by a multinomial coefficient. However a type vector is itself a special kind of multiindex, one defined on the strictly positive natural numbers. So the number of multi-indices on B giving a particular type vector is also given by a multinomial coefficient

$$
\begin{equation*}
\binom{n}{P}=\frac{n!}{\prod_{j} p_{j}!} \tag{8}
\end{equation*}
$$

The result is that the number of surjective functions with given integer partition is the product of two multinomial coefficients

$$
\begin{equation*}
\binom{k}{N}\binom{n}{P}=\frac{k!}{\prod_{j}(j!)^{p_{j}}} \frac{n!}{\prod_{j} p_{j}!} . \tag{9}
\end{equation*}
$$

In particular, we recover a variant on the previous result:

$$
\begin{equation*}
n!S(k, n)=\sum_{P} \frac{k!}{\prod_{j}(j!)^{p_{j}}} \frac{n!}{\prod_{j} p_{j}!}, \tag{10}
\end{equation*}
$$

where the sum is over all type vectors $p_{1}, p_{2}, p_{3}, \ldots$ with $p_{1}+p_{2}+p_{3}+\cdots=n$ and $p_{1} 1+p_{2} 2+p_{3} 3+\cdots=k$, in other words, over all integer partitions of k into n parts. This is a remarkable formula: It writes the number of surjective functions as a sum over integer partitions of terms each of which is a product of two multinomial coefficients.

5 Acknowledgements

Thanks to Johann Wagner and Muhammad Jawaherul Alam for each taking the time to look at this material with a fresh eye.

