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Chapter 1

Matrices

1.1 Matrix operations

In the following there will be two cases: numbers are real numbers, or numbers
are complex numbers. Much of what we say will apply to either case. The real
case will be in mind most of the time, but the complex case will sometimes
prove useful. Sometimes numbers are called scalars.

An m be n matrix A is an array of numbers with m rows and n columns.
The entry in the ith row and jth column is denoted Aij . There are three kinds
of operations.

(1) Vector space operations. If A and B are both m by n matrices, then
the sum matrix A + B satisfies (A + B)ij = Aij + Bij . Furthermore, if λ is a
number, then the scalar multiple matrix λA satisfies (λA)ij = λAij .

There is always a matrix −A = (−1)A. Subtraction is a special case of
addition, since A − B = A + (−B). There is an m by n zero matrix 0 with all
entries equal to zero.

(2) Matrix multiplication. If A is an m by n matrix, and B is an n by p
matrix, then the product matrix AB is defined by (AB)ik =

∑n
j=1 AijBjk.

For each n there is an n by n matrix I called the n bt n identity matrix. It
is defined by Iij = δij , where the object on the right is the Kronecker symbol.

(3) Transpose or conjugate transpose. In the real case the transpose A′ is
defined by (A′)ij = Aji. In the complex case the conjugate transpose A∗ is
defined by (A∗)ij = Āji.

A m by 1 matrix may be identified with an m component vector (or column
vector). A 1 by n matrix may be identified may be identified with an n compo-
nent covector or linear form (or row vector). If m = n the product of a covector
with a vector (in that order) is a 1 by 1 matrix, which may be identified with
a scalar. The product of a vector with a covector (in that order) is an m by n
matrix.

If u and v are real vectors, then when they have the same number of com-
ponents their inner product is u′v. In general their outer product is uv′. The
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6 CHAPTER 1. MATRICES

inner product is a scalar, while the outer product is a square matrix. (In the
complex case one would use the conjugate transpose instead of the transpose.)

1.2 Problems

1. A real square matrix R is said to be orthogonal if R′R = I. Prove that
the product of two orthogonal matrices is orthogonal. That is, show that
if R is orthogonal and S is orthogonal, then RS is orthogonal.

2. Let R be a matrix with R2 = I and R = R′. Prove that R is orthogonal.

3. Let R be a 2 by 2 matrix with R2 = I and R = R′. Show that from these
conditions it follows that

R =

[
a b
b −a

]
or R is diagonal. Give an exact description of all such matrices, including
whatever additional conditions the entries must satisfy.

4. Let P be a real square matrix with P 2 = P and P = P ′. Let Q be another
such matrix. Show that if P and Q commute, then PQ is yet another such
matrix.

5. Let P be a 2 by 2 matrix with P 2 = P and P = P ′. Show that from these
conditions it follows that

P =

[
a ±

√
ad

±
√
ad d

]
with 0 ≤ a ≤ 1, 0 ≤ d ≤ 1 and a+ d = 1, or P is diagonal. Give an exact
description of all such matrices, including whatever additional conditions
the entries must satisfy.

6. Show that in the non-diagonal case of the previous problem the matrix P
may be written

P =

[
c2 cs
cs s2

]
.

Write this in the form of an outer product.

7. Consider a real square matrix N with N2 = 0. Is it possible that each
entry of N is non-zero? Give a proof that your answer is correct.

8. Consider a real square matrix N with N2 = 0. Suppose that N is sym-
metric, that is, N ′ = N . Does it follow that N = 0? Prove or disprove.

9. If M2 = 0 and N2 = 0, does it follow that (MN)2 = 0? Prove or disprove.

10. If M2 = 0 and N2 = 0, does it follow that (M+N)2 = 0? Give a complete
argument.



Chapter 2

Applications

2.1 Matrix transformations

An m by n matrix A can define a linear transformation from Rn to Rm by
defining the value of A on the column vector x to be the transformed vector
x′ = Ax.

This is particularly interesting when A is a square n by n matrix, so the
transformation is from Rn to itself. Then the transformation can be repeated.

The following examples are 2 by 2 examples. The original input vector and
the transformed output vector are both in R2. Thus the transformed vector is[

x′

y′

]
=

[
a b
c d

] [
x
y

]
. (2.1)

In the first example the vector is a geometric vector in the plane. In the second
example the vector is a probability vector.

2.2 Orthogonal matrices

A matrix is orthogonal if R′R = I. Define the rotation matrix corresponding to
angle θ by

Rθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (2.2)

This matrix is an orthogonal matrix. Notice that every matrix of the form

R =

[
a −b
b a

]
(2.3)

with a2+ b2 = 1 may be written as a rotation matrix. The rotation matrix acts
as a linear transformation of vectors. It rotates them.

7



8 CHAPTER 2. APPLICATIONS

Now define the projection matrix Pχ as the outer product

Pχ =

[
cos(χ)
sin(χ)

] [
cos(χ) sin(χ)

]
=

[
cos2(χ) sin(χ) cos(χ)

sin(χ) cos(χ) sin2(χ)

]
.

(2.4)
This projects vectors from the plane onto a line through the origin. Notice that
P 2
χ = Pχ and Pχ = P ′

χ. It is easy to see that this is equal to

Pχ =
1

2

[
1 + cos(2χ) sin(2χ)
sin(2χ) 1− cos(2χ)

]
. (2.5)

Now define the reflection matrix Hχ = Pχ−(I−Pχ) = 2Pχ−I. This reflects
vectors across the same line. Then

Hχ =

[
cos(2χ) sin(2χ)
sin(2χ) − cos(2χ)

]
. (2.6)

This matrix is an orthogonal matrix. Notice that every matrix of the form

H =

[
a b
b −a

]
(2.7)

with a2 + b2 = 1 may be written as a reflection matrix.

2.3 Approach to equilibrium

Consider a land where each day is either a day of rain or a day of sun. Suppose
that the conditional probability of tomorrow’s weather given the past weather
depends only on today’s weather. In fact, suppose that the probability of sun
tomorrow given rain today is p, and the probability of rain tomorrow given sun
today is q. For the moment all we know is that 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1.

Suppose that on a certain day the probability of rain is a and the probability
of sun is b. Here a + b = 1. Then the next day the probability of rain is a′

and the probability of sun is b′. The relation is that a′ = (1 − p)a + qb and
b′ = pa+ (1− q)b. Notice that also a′ + b′ = 1.

This equation may be written in matrix form as[
a′

b′

]
=

[
1− p q
p 1− q

] [
a
b

]
. (2.8)

The first question is whether there is an equilibrium probability where a′ = a
and b′ = b. The answer is obtained by solving the system. The answer is that
the equilibrium is given by a∗ = q/(p+q) and b∗ = p/(p+q). At least this makes
sense when either p > 0 or q > 0. (If they are both zero, then every choice of
a and b with a+ b = 1 gives an equilibrium probability. This is because in this
situation the weather never changes.)



2.4. PROBLEMS 9

A more interesting question is the approach to equilibrium. Say that you
start with initial probabilities a = a∗ + c and b = b∗ − c. Then the probability
after n days is given by the matrix power[

an
bn

]
=

[
1− p q
p 1− q

]n [
a
b

]
. (2.9)

This may be written[
an
bn

]
=

[
1− p q
p 1− q

]n [
a∗

b∗

]
+

[
1− p q
p 1− q

]n [
c
−c

]
. (2.10)

Each time one applies the matrix to the equilibrium probability one just gets the
same equilibrium probability. (The equilibrium is an eigenvector with eigenvalue
1.) Each time one applies the matrix to the vector with sum zero one simply
multiplies the vector by a scalar factor of λ = 1− p− q. (The sum zero vector
is an eigenvector with eigenvalue λ.) So[

an
bn

]
=

[
a∗

b∗

]
+ (1− p− q)n

[
c
−c

]
. (2.11)

The multiplicative factor satisfies −1 ≤ λ = 1 − p − q ≤ 1. If it satisfies
−1 < λ = 1 − p − q < 1, then the powers approach zero, and in the long run
the weather will settle down to its equilibrium.

The result may also be written simply as a property of the matrix power.
In fact, the first column of the matrix power may be recovered by taking a = 1
and b = 0, and the second column comes from a = 0 and b = 1. The conclusion
is that[

1− p q
p 1− q

]n
=

[
a∗ a∗

b∗ b∗

]
+ (1− p− q)n

[
b∗ −a∗

−b∗ a∗

]
. (2.12)

Note: In most serious treatments of Markov chains the probability vectors
are row vectors, and the transition matrices have row sum equal to one. In
other words, everything is the transpose of what we have here. The only reason
for having probability vectors as column vectors and transition matrices with
column sum one is to have the matrices act on the vectors to the right, according
to the custom in elementary linear algebra.

2.4 Problems

1. Prove the projection matrix formula involving the double angle. That is,
start with the projection matrix formula involving cos(χ) and sin(χ) that
is obtained directly from the computing the outer product. Derive from
this the following projection matrix formula involving cos(2χ) and sin(2χ).

2. Show that the product of two rotation matrices with angles θ2 and θ1 is
a rotation matrix with angle θ1 + θ2.
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3. Show that the product of two reflection matrices with angles χ2 and χ1 is
a rotation matrix with a certain angle. What is this angle?

4. Solve the system of equations involving the transition probability matrix
to obtain the equilibrium values for a∗ and b∗.

5. Prove the assertions about the eigenvalues of the transition probability
matrix.

6. If p = 1/3 and q = 1/6, then roughly how many days does it take until an
equilibrium is reached, at least for practical purposes?

7. What happens if p = q = 1? Describe both mathematically and in terms
of a story about the weather. How would a weather forecaster deal with
such a weather pattern?

8. What happens if p + q = 1? What are the equilibrium probabilities?
What weather pattern over time does this describe? How would a weather
forecaster deal with such a weather pattern?



Chapter 3

Systems of Linear
Equations

3.1 Gauss elimination

Gaussian elimination is a method for solving systems of linear equations. The
basic technique is to replace an equation by the the sum of the equation with
another equation. When this is done correctly, at each stage one more zero is
introduced, without destroying the ones that have already been introduced. In
the end one gets a row echelon form system, for which the solution is easy.

Gaussian Example 1. Say that the equation is Ax = b, specifically 2 3 −1
4 4 −3
−2 3 −1

 x1

x2

x3

 =

 5
3
1

 . (3.1)

All we care about is the coefficients in the augmented matrix

Ab =

 2 3 −1 5
4 4 −3 3
−2 3 −1 1

 . (3.2)

The rows correspond to the equations, and the first three columns correspond
to the three variables.

Add -2 times the first row to the second row. Add 1 times the first row to
the third row. The result is two zeros in the first column. Add 3 times the
second row to the third row. The result is one zero in the second column. So a
row echelon form is

Jd =

 2 3 −1 5
0 −2 −1 −7
0 0 −5 −15

 . (3.3)

11



12 CHAPTER 3. SYSTEMS OF LINEAR EQUATIONS

The corresponding equation Jx = d is 2 3 −1
0 −2 −1
0 0 −5

 x1

x2

x3

 =

 5
−7
−15

 . (3.4)

Such an equation may be solved by first solving for x3, then for x2, and finally
for x1. Thus the solution is x3 = 3, x2 = 2, and x1 = 1.

Here is the algorithm for Gaussian elimination. It works to solve an arbitrary
linear systems Ax = b, where A is an m by n matrix. The way it works it this.
At a certain stage of the computation one has a matrix with the first j columns
in row echelon form. Each of these columns is either a pivot column or a non-
pivot column. A pivot column has a non-zero entry (the pivot entry) with
all entries to the left and below equal to zero. A non-pivot column has only
non-zero entries in rows that correspond to pivot entries to the left.

Suppose that there are k pivot columns among the j columns. To get the
j + 1st column in the appropriate form, see if all the entries from k + 1 down
are zero. If so, then this is a non-pivot column, and nothing needs to be done.
Otherwise, interchange two rows in the range from k+1 to m to bring a non-zero
entry to the k + 1, j + 1 pivot position. Then put zeros below this by replacing
the rows below by their sums with appropriate multiples of the k + 1 row. The
result is a pivot column. So now the first j+1 columns are in row echelon form.

Gaussian Example 2. Say that the equation is Ax = b, specifically 2 1 2
4 2 4
−2 −1 3

 x1

x2

x3

 =

 10
20
−5

 . (3.5)

All we care about is the coefficients in the augmented matrix

Ab =

 2 1 2 10
4 2 4 20
−2 −1 3 −5

 . (3.6)

The rows correspond to the equations, and the first three columns correspond
to the three variables.

Add -2 times the first row to the second row. Add 1 times the first row to
the third row. The result is two zeros in the first column. The first column
is a pivot column. The second column is a non-pivot column. Interchange the
last two rows. The third column is a non-pivot column. The fourth column is
non-pivot. So a row echelon form is

Jd =

 2 1 2 10
0 0 5 5
0 0 0 0

 . (3.7)

The corresponding equation Jx = d is 2 1 2
0 0 5
0 0 0

 x1

x2

x3

 =

 10
5
0

 . (3.8)



3.2. LINEAR COMBINATIONS 13

To solve such an equation, look at the variables corresponding to non-pivot
columns. These may be assigned arbitrary values. Then solve for the pivot
column variables. Thus the solution is x3 = 1 and x1 = 4− 1

2x2.

3.2 Linear combinations

Let a1, . . . ,an be a list (finite sequence) of m-component vectors. If c1, . . . , cn
are scalars, then the vector c1a1 + · · · + cnan is called a linear combination of
the list of vectors. (If the list has zero vectors in it, then there is precisely one
linear combination, the zero vector.)

Let a1, . . . ,an be a list of vectors. The set of all possible linear combinations
of these vectors is the span of the list of vectors.

Theorem 3.1 (Linear dependence theorem) A list of vectors is linearly
dependent if and only if one of the vectors is a linear combination of a list
involving the other vectors.

Theorem 3.2 (Vector-Matrix Correspondence) Let A be an m by n ma-
trix with column vectors a1, . . . ,an. Let c be the column vector with entries
c1, . . . , cn. Then

Ac =
n∑

j=1

cjaj . (3.9)

Thus a matrix times a column vector is the same as a linear combination of the
columns of the matrix.

Theorem 3.3 (Span-Range Correspondence) Let A be a matrix with columns
a1, . . . ,an. Then a vector b is in the span of the columns, that is,

n∑
j=1

xjaj = b (3.10)

if and only if there is a solution x of the matrix equation

Ax = b. (3.11)

Let a1, . . . ,an be a list of vectors. It is said to be linearly independent if
whenever c1a1 + · · · cnan = 0, then it follows that c1 = 0, . . . , cn = 0.

Theorem 3.4 (Linear Independence—Trivial Null-space Correspondence)
Let A be a matrix with columns a1, . . . ,an. The fundamental identity implies
the columns are linearly independent if and only if the only solution x of the
homogeneous matrix equation

Ax = 0 (3.12)

is the zero solution x = 0.
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Theorem 3.5 (Uniqueness of coefficients) Let A be a matrix with columns
a1, . . . ,an. Suppose that the columns are linearly independent. If for some
vector b we have x1a1 + · · ·+ xnan = ban = b, then the coefficients x1, . . . , xn

are uniquely determined.

Theorem 3.6 (Uniqueness of solution) If the columns of A are linearly in-
dependent, then the matrix equation

Ax = b (3.13)

can have at most one solution x.

3.3 The Hermite matrix

Let A be an m by n matrix with columns a1, . . . ,an. A column aj is called a
pivot column if it is not a linear combination of previously defined pivot columns
to the left of it. The number of pivot columns is the rank of A.

The pivot columns of A are linearly independent. To prove this, consider
a linear combination of the pivot columns that gives the zero vector. Suppose
that there were a coefficient that was non equal to zero. Take the last such
coefficient. The corresponding pivot vector would then be a linear combination
of the previous pivot vectors. This is a contradiction. Therefore every coefficient
must be zero.

Each non-pivot column of A is a linear combination of the pivot columns
of A to the left. The coefficients in such a linear combination are uniquely
determined, because of the linear independence of the pivot columns.

Example: Take

A =


1 2 1 2 0 2 4
3 6 0 3 3 3 6
0 0 2 2 −2 1 2
2 4 3 5 −1 4 9

 . (3.14)

The pivot columns are 1, 3, 6. The rank is 3.

Let H be an m by n matrix. Then A is a Hermite (or reduced row echelon
form) matrix if it has the following form. The pivot columns are the standard
basis vectors e1, . . . , er, ordered from left to right. Each remaining column is a
linear combination of the pivot columns that occur to the left of it.

Each m by n matrix A defines a unique Hermite matrix H by the following
rule. The pivot columns of A define the pivot columns of H. The non-pivot
columns of A are expressed as linear combinations of pivot columns to the left
with certain coefficients, and the same coefficients are used for H.

The Hermite matrix H of A is a description of how the columns of A depend
on the pivot columns of A to the left.
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Example: The associated Hermite matrix is

H =


1 2 0 1 1 0 1
0 0 1 1 −1 0 1
0 0 0 0 0 1 1
0 0 0 0 0 0 0

 . (3.15)

3.4 Invertible matrices

A square matrix A is invertible if there is a matrix B with AZ = ZA = I. If A
is invertible, then its inverse Z = A−1 is unique, and

AA−1 = A−1A = I. (3.16)

The identity matrix I is invertible, and it is its own inverse. If A is invertible,
then so is A−1. Finally, if A,B are both invertible, then their matrix product
AB is invertible, and

(AB)−1 = B−1A−1. (3.17)

Theorem 3.7 (Left Multiplication) Let A be an m by n matrix. Let b be
an n component vector. Left multiplication by an invertible m by n matrix does
not change the solution set of Ax = b. That is, x is a solution of Ax = b if
and only if x is a solution of EAx = Eb.

As a special case, left multiplication of A by an invertible matrix does not
change the linear dependence relations among the columns of A. This is because
the linear dependence relations among the columns of A are just the solutions
of the homogeneous system Ax = 0.

Let A be an m by n matrix. There are three elementary row operations that
one can perform on A. They are:

1. Interchange two rows;

2. Replace a row by a non-zero scalar multiple of itself;

3. Replace a row by the sum of the row with a scalar multiple of another
row.

Let I be the m by m identity matrix. There are three kinds of elemen-
tary matrices obtained by performing the three kinds of row operations on this
identity matrix. They are:

1. Reflect across a diagonal;

2. Multiply by a non-zero scalar in a coordinate direction.

3. Shear in a coordinate direction according to a multiple of the value of
another coordinate.
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Each of these elementary matrices is invertible.
Let A be an m by n matrix, and let E be an elementary matrix. Then EA

is the matrix obtained from A by performing the elementary row operation. In
other words, an elementary row operation is the same as left multiplication by
an elementary matrix.

3.5 Computing the Hermite matrix

Theorem 3.8 (Hermite form) Let A be an m by n matrix. Then there is an
invertible matrix E such that EA = H is the Hermite matrix of A.

Proof: Gauss-Jordan elimination is Gauss elimination followed by further
operations to bring the matrix to Hermite form. The proof uses Gauss-Jordan
elimination.

The invertible matrix is built up as a product of elementary matrices. The
Hermite matrix is built up from left to right, column by column. Suppose that by
a product of elementary matrices A has been transformed so that the first j ≥ 0
columns form a Hermite matrix. Suppose that there are k ≤ j pivot vectors
in the first j columns. Look at column j + 1. If the entries from k + 1, j + 1
to m, j + 1 are all zero, then the first j + 1 columns are already in Hermite
form. The column is a non-pivot column. Otherwise, interchange two rows in
the range from k+1 to m to get a non-zero element in the k+1, j+1 position.
Multiply the k+1st row to make this element equal to 1. Then use multiples of
the k+1st row to produce zeros in the entries from k+1, j+1 to m, j+1. Also
use multiplies of the k+1st row to produce zeros in the entries from 1, j +1 to
k− 1, j + 1. This produces a standard basis vector in the j + 1 column. In this
case the column is a pivot column. The process may be continued until the last
column on the right is reached. This ends the proof.

3.6 Solving linear systems

Theorem 3.9 (General solution of homogeneous equation) Let A be an
m by n matrix, and consider the homogeneous equation

Ax = 0. (3.18)

Let H be the Hermite form of A. Then the solutions are the same as the solutions
of Hx = 0. Suppose that A and H each have rank r. Let y be an n−r component
vector consisting of variables corresponding to the non-pivot columns of H. The
solutions are of the form x = Ny, where the nullspace matrix N is an n by n−r
matrix of rank n− r. Thus every solution of the homogeneous equation may be
expressed as a linear combination of the columns of N .

Theorem 3.10 (Particular solution of inhomogeneous equation) Let A
be an m by n matrix, and consider the equation

Ax = b. (3.19)
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Augment A with an extra column b or the right. Let H, c be the Hermite form
of A,b. There is a solution if and only if c is a non-pivot column. Then a
particular solution is obtained by solving Hx = c with the variables correspond-
ing to non-pivot columns of H set equal to zero. This expresses b as a linear
combination of the pivot columns of A.

Theorem 3.11 (General solution of inhomogeneous equation) Let A be
an m by n matrix, and consider the equation

Ax = b. (3.20)

Let p be a particular solution of the homogeneous equation. Then the general
solution

x = p+Ny (3.21)

is the sum of the particular solution with the general solution of the homogeneous
equation.

Example: Say that after Gauss-Jordan elimination the equation reduces to
associated Hermite matrix is


1 0 a b 0 c 0
0 1 d e 0 f 0
0 0 0 0 1 g 0
0 0 0 0 0 0 1





x1

x2

x3

x4

x5

x6

x7


=


p
q
r
s

 . (3.22)

The pivot columns are 1, 2, 5. The general solution is expressed in terms of
variables corresponding to the non-pivot columns. Thus it is

x1

x2

x3

x4

x5

x6

x7


=



p
q
0
0
r
0
s


+



−a −b −c
−d −e −f
1 0 0
0 1 0
0 0 −g
0 0 1
0 0 0


 x3

x4

x6

 . (3.23)

Every solution may be expressed as a sum of the particular solution column
vector with a linear combination of the three columns vectors of the nullspace
matrix.

3.7 Canonical forms

There are two basic computations. The first starts with a matrix A and com-
putes its Hermite matrix H. This matrix is also called the reduced row echelon
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form or the row canonical form. This matrix displays the dependencies of later
columns on earlier columns.

The second starts with a matrix A and computes its null-space matrix N .
This is the matrix obtained by solving Hx = 0 and expressing the solution
x = Ny, where y is the vector of non-pivot variables, in order of increasing
index. The null-space matrix N gives a parametric description of all solutions
of the homogeneous equation Ax = 0.

As an example, suppose that

A =

 1 1 −2 4 5
2 2 −3 1 3
3 3 −4 −2 1

 . (3.24)

Then the Hermite form (reduced row echelon form) is

H =

 1 1 0 −10 −9
0 0 1 −7 −7
0 0 0 0 0

 . (3.25)

This tells us, for instance, that in the original matrix A the fourth column is
−10 times the first column plus −7 times the third column. Also, we learn that
the pivot columns 1 and 3 in the original matrix A are linearly independent.

The Hermite form above has three non-pivot columns. Therefore the null-
space matrix N has three columns. It is

N =


−1 10 9
1 0 0
0 7 7
0 1 0
0 0 1

 . (3.26)

If one reflects this matrix across the diagonal that runs from lower right to upper
left (not the usual transpose), one gets the matrix

Nh =

 1 0 7 0 9
0 1 7 0 10
0 0 0 1 −1

 . (3.27)

Curiously enough, this matrix is a Hermite matrix. (What is its null-space
matrix?)

Say that we wanted to solve the inhomogeneous system for which A is the
augmented matrix. This is equivalent to solving the homogeneous system with
one more variable, where the last column is the right hand side. Then one only
looks at solutions where the last variable is given the value −1. In other words,
in the N matrix above one uses all the columns but the last (without the bottom
row) to get the general solution of the homogeneous equation, and one uses the
negative of the last column (without the bottom entry) to get the particular
solution of the inhomogeneous equation.
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3.8 Problems

1. Consider the four columns of the matrix in Gaussian example 1. Are
the first two columns linearly independent? Are the first three columns
linearly independent? Are the first four columns linearly independent.
Give complete proofs.

2. Consider the four columns of the matrix in Gaussian example 2. Are
the first two columns linearly independent? Are the first three columns
linearly independent? Are the first four columns linearly independent.
Give complete proofs.

3. Consider the four columns of the matrix in Gaussian example 1. Is the
fourth column in the span of the first three columns? Give a complete
proof.

4. Consider the matrix in Gaussian example 1. Is every 3 component vector
in the span of the first three columns? Give a complete proof.

5. Consider the four columns of the matrix in Gaussian example 2. Is the
fourth column in the span of the first three columns? Give a complete
proof.

6. Consider the matrix in Gaussian example 2. Is every 3 component vector
in the span of the first three columns? Give a complete proof.

7. Consider the 3 by 4 augmented matrix in Gaussian example 1. Find its
Hermite matrix. Also find its 4 by 1 null-space matrix.

8. Show how the previous problem gives the solution of the original inhomo-
geneous equation in three unknowns (as a 3 by 1 column vector).

9. Consider the 3 by 4 augmented matrix in Gaussian example 2. Find its
Hermite matrix. Also find its 4 by 2 null-space matrix.

10. Show how the previous problem gives the solution of the inhomogeneous
equation in three unknowns as the sum of a particular solution vector (3
by 1) and the null-space solution (given by a 3 by 1 matrix).
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Chapter 4

Invertible matrices

4.1 Left and right inverses

Consider an m by n matrix A. The null-space of A is the set of all n-component
vector solutions x of the homogeneous equation Ax = 0. The range is the set
of all m-component vectors of the form Ax, for some vector x.

Theorem 4.1 (Left inverse theorem) If A has a left inverse B with BA =
I, then the null-space of A is trivial, that is, it consists only of the n-component
vector with all zeros.

Theorem 4.2 (Right inverse theorem) If A has a right inverse B with AB =
I, then every m-component vector is in the range of A.

An m by n matrix is A invertible if there is another n by n matrix B with
both AB = I and BA = I. This matrix is denoted A−1. So if A−1 exists, then

AA−1 = A−1A = I. (4.1)

Theorem 4.3 (Two sided inverse theorem) Suppose that A is a square ma-
trix that has a left inverse B and also has a right inverse C. Then B = C, and
so A has an inverse.

The proof is purely algebraic. Suppose that BA = I and AC = I. Then

B = BI = BAC = IC = C. (4.2)

For 2 by 2 matrices the inverse is easy. Suppose

A =

[
a b
c d

]
. (4.3)

Then

A−1 =
1

ad− bc

[
d −b
−c a

]
. (4.4)

This formula should be memorized.

21
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4.2 Finding inverses

Theorem 4.4 (Null space criterion) Suppose that A is a square matrix with
trivial null-space. Then A is invertible.

The proof follows by writing A = ER, where E is a product of elementary
matrices, and R is a Hermite matrix. Suppose that R is not the identity matrix.
Since R is a square matrix, it then must have at least one non-pivot column.
However then the equation Rx = 0 has a non-trivial solution x. Therefore
Ax = 0. This contradicts the assumption that A has trivial null-space. We
conclude that R = I. Hence A = E is a product of elementary matrices, and
hence A is invertible.

It is now clear how to compute the inverse of a matrix A. Start with A
and augment it by I. Apply the elementary row operations to A and the same
elementary row operations to I. Then we get R augmented by E, where R = EA
is in Hermite form, and E is a product of elementary matrices. Then A is
invertible precisely when R = I. In that case I = EA, and so A−1 = E.

Theorem 4.5 (Range criterion) Suppose that A is a n by n matrix with all
n-component vectors in its range. Then A is invertible.

The proof follows by writing A = ER, where E is a product of elementary
matrices, and R is a Hermite matrix. Suppose that R is not the identity matrix.
Since R is a square matrix, it then must have at least one non-pivot column, so
the bottom row must be zero. Consider the vector c that is zero except for a
1 in the bottom entry. Let b = E−1c. Suppose that Ax = b. Then Rx = c.
However this implies that 0 = 1, which leads to a contradiction. Therefore
R = I. Hence A = E is a product of elementary matrices, and hence A is
invertible.

4.3 Problems

1. Find the inverse of the 3 by 3 matrix in Gaussian example 1.

2. Let A be a square matrix. Its quadratic form is the function that sends a
column vector x to the number x′Ax. Prove that A and A′ have the same
quadratic form, that is, x′Ax = x′A′x. Also, show that if A′ = −A, then
its quadratic form is zero.

3. Show that if A is a square matrix with A′ = −A, then I−A has an inverse.
Hint: Show that (I −A)x = 0 implies x = 0. To accomplish this, use the
previous problem.

4. Suppose that A is a square matrix with A′ = −A. Prove that R =
(I +A)(I −A)−1 is an orthogonal matrix.
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5. Say that P (t) is a square matrix that depends on time, and suppose that
P (0) = I. Suppose that A = −A′ is a square matrix, and that

dP (t)

dt
= AP (t). (4.5)

Prove that for each t the matrix P (t) is orthogonal. Hint: Differentiate
P (t)′P (t).

6. Say that A is the matrix

A =

[
0 −ω
ω 0

]
. (4.6)

Find P (t). Hint: Write this explicitly as a system of two ordinary differ-
ential equations.

7. For computer calculations it is common to approximate the differential
equation by fixing a small h ̸= 0 and solving

1

h
(P (t+ h)− P (t)) =

1

2
(AP (t+ h) +AP (t)) (4.7)

for P (t+h) in terms of P (t). The average on the right is supposed to help
with the stability of the calculation. Show that P (t+ h) is an orthogonal
matrix Q times P (h).

8. For the two by two matrix A above, compute this orthogonal matrix Q
explicitly.

9. We know that if AB has an inverse, then so does BA. Show that if I−AB
has an inverse, then so does I −BA.
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Chapter 5

Vector spaces

5.1 Axioms

In the following the field of scalars will be either the real number field or the
complex number field. In most of our thinking it will be the real number field.

The elements of a field form an abelian group under addition, with 0 as
the additive identity and negation giving the additive inverse. The non-zero
elements of a field form an abelian group under multiplication, with 1 as the
multiplicative identity and the reciprocal as the multiplicative inverse. The
multiplication is related to the addition by the distributive law.

Explicitly, the additive axioms state that

a+ b = b+ a (5.1)

(a+ b) + c = a+ (b+ c) (5.2)

a+ 0 = a (5.3)

a+ (−a) = 0. (5.4)

The multiplicative axioms state that for every a ̸= 0, b ̸= 0, c ̸= 0

ab = ba (5.5)

(ab)c = a(bc) (5.6)

a1 = a (5.7)

aa−1 = 1. (5.8)

The distributive law states that

a(b+ c) = ab+ ac. (5.9)

A vector space is an abelian group together with scalar multiplication satis-
fying certain axioms.

The abelian group axioms describe the addition of vectors. For every ordered
pair of vectors u,v in the vector space V there must be a sum vector u+v. This

25
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operation is commutative and associative. There is a zero vector 0, and every
vector u has an additive inverse vector −u. These axioms are summarized as

u+ v = v + u (5.10)

(u+ v) +w = u+ (v +w) (5.11)

u+ 0 = u (5.12)

u+ (−u) = 0. (5.13)

There is also an operation that sends every pair a,u into a vector au. This
scalar multiplication satisfies the axioms

a(u+ v) = au+ av (5.14)

(a+ b)u = au+ bu (5.15)

(ab)u = a(bu) (5.16)

1u = u. (5.17)

The first axiom is group addition to group addition, the second axiom is field
addition to group addition, the third axiom is field multiplication to composi-
tion of transformations, and the fourth axiom is field multiplicative identity to
identity transformation.

5.2 Subspaces

A subspace (or vector subspace) of a vector space V is a subset W that is itself
a vector space when one restricts the vector space operations to vectors in W .

In order for a subset W to be a subspace, one needs three conditions:

1. 0 ∈ W

2. u,v ∈ W imply u+ v ∈ W

3. a scalar, u ∈ W imply au ∈ W

Examples: Consider the vector space V = R3. There are four kinds of
subspaces. One consists only of the zero vector. Another is a line through the
origin. Another is a plane through the origin. The final one is V itself.

Consider a list (finite sequence) of vectors u1, . . . ,uk. A linear combination
of these vectors is a vector of the form

u = c1u1 + · · ·+ ckuk. (5.18)

The set of all linear combinations of a list of vectors is called the span of the
list of vectors. The span of a list of vectors is always a subspace.

The standard example of a vector space with real scalars is the vector space
Rn of n-component column vectors. Once we have this example, we can find
others by looking at subspaces.

Another example of a vector space is the space C([a, b] of all continuous real
functions p on the interval [a, b]. An example of a subspace would be the set of

all such functions satisfying the additional condition
∫ b

a
p(y) dy = 0.
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5.3 Bases and dimension

A list of vectors is linearly independent if the only linear combination of the
vectors that gives the zero vector is the trivial linear combination in which each
of the scalar coefficients is equal to zero.

A list of vectors has span W if every vector in W is a linear combination of
the vectors in the list.

A basis for W is a list of vectors that are linearly independent and span W .
(In some treatments this is called an ordered basis.)

Theorem 5.1 (Dimension comparison theorem) Let u1, . . . ,uk be linearly
independent in W . Let v1, . . . ,vm span W . Then k ≤ m.

The proof starts by writing each uj as a linear combination

uj =
m∑
i=1

bijvi. (5.19)

This can be done because the vi span W . Suppose that a linear combination of
the columns of the m by k matrix B is zero, that is, that

n∑
j=1

cjbij = 0 (5.20)

for each i. Then
n∑

j=1

cjuj =

m∑
i=1

n∑
j=1

cjbijvi = 0. (5.21)

Since the uj are linearly dependent, it follows that the coefficients cj are each
zero. This argument proves that the columns of the m by k matrix B are
linearly independent. Thus the Hermite form of the m by k matrix B has all
pivot columns, which forces k ≤ m.

Theorem 5.2 (Dimension characterization theorem) Let W be a vector
space with a finite basis. Then every basis for W has the same number of vectors.

This theorem says that if u1, . . . ,uk is a basis for W , and v1, . . . ,vm is
a basis for W , then k = m. The proof is easy. Since u1, . . . ,uk is linearly
independent, and v1, . . . ,vm span W , it follows that k ≤ n. Since v1, . . . ,vm is
linearly independent, and u1, . . . ,uk span W , it follows that m ≤ k. These two
inequalities imply that k = m.

The number of vectors in a basis for W is called the dimension of W .
Example. Consider a list of column vectors in Rn. Let W be their span.

The problem is to find a basis for this subspace W . The solution is simple.
Let A be the matrix with the vectors as columns. The pivot columns of A are
the basis. (To find the pivot columns, one must find the Hermite form of the
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matrix. However the pivot columns that form the basis are the pivot columns
of the original matrix A.)

As a specific example, consider the matrix

A =

 −1 −2 2 1
1 2 2 3
4 8 2 6

 . (5.22)

The four columns of this matrix span a subspace ofR3. A basis for this subspace
is given by the columns of

B =

 −1 2
1 2
4 2

 . (5.23)

This shows that the subspace has dimension two. It is a plane through the
origin. Of course all four columns of A are in this plane, but both the second
and fourth column of A may be expressed as a linear combination of the first
and third columns.

Example: Consider a homogeneous equation Ax = 0. The set of solutions
of such an equation is a subspace, the null-space of A. The problem is to find a
basis for this subspace. The solution is simple. Let N be the null-space matrix
constructed from A. Then the columns of N are a basis for the null-space of A.

As a specific example, consider the problem of finding a basis for the solutions
of x1 + x2 + x3 = 0. The matrix A = [1 1 1]. The subspace is spanned by the
columns of

N =

 −1 −1
1 0
0 1

 . (5.24)

The null-space has dimension two. It is a plane through the origin. Both the
column vectors are in this plane, since the sum of the entries is zero.

5.4 The standard basis

In some contexts it is useful to speak of the standard basis for Rn. This is the
basis e1, . . . , en consisting of the columns of the identity matrix I. The vector
ej is called the jth standard unit basis vector.

5.5 Problems

1. Consider the matrix

A =


1 1 3 1 5
2 3 8 4 13
1 3 7 6 13
3 5 13 9 25
2 3 8 7 19

 . (5.25)
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Find a basis for its null-space (the space of solutions of the homogeneous
equation). Find the dimension of the null-space.

2. Consider the subspace spanned by the five columns of the matrix A in the
preceding problem. Find a basis for this subspace. Find the dimension.

3. Let R∞ be the set consisting of all sequences c = (c1, c2, c3, . . .) of real
numbers. If a, b are two such sequences, define their sum by (a + b)j =
aj + bj . Define the scalar multiple ta by (ta)j = taj . Which vector space
axioms are satisfied by R∞, and which are not?

4. Let ℓ2 be the set consisting of all sequences c = (c1, c2, c3, . . .) of real
numbers such that the squared length

∑∞
j=1 c

2
j < ∞. Prove that this set

of sequences is a subspace of the vector space of the previous problem.
(This vector space is called Hilbert space.) Hint: What you need to prove
is that if a and b are such sequences, then c = a + b is such a sequence.
Here cj = aj+bj . First prove that (aj+bj)

2 = a2j +2ajbj+b2j ≤ 2a2j +2b2j .
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Chapter 6

Linear transformations

6.1 Functions

A function f : S → T is a rule that assigns to each element of a set S (the
domain) a unique element of another set T (the target). The value of the
function f on x in S is f(x) in T .

Consider a function f : S → T . The function f is injective (or one-to-one)
if for every y in T there is at most one x in S with f(x) = y. (That is, f is
injective if f(x) = f(x′) implies x = x′.) The function f is surjective (or onto)
if for every y in T there is at least one x in S with f(x) = y. The function f is
bijective if it is both injective and surjective.

The range or image of a function S is the set of all y in T for which there
exists x in S with f(x) = y. A function is surjective precisely when its range is
the same as the target.

Say that f : S → T and g : R → S are functions. Their composition f ◦ g
is the function defined by (f ◦ g)(t) = f(g(t)). If S is a set, then the identity
function 1S is defined by 1S(x) = x for x in S. Notice that f ◦ 1S = f and
1T ◦ f = f .

If f : S → T is a bijective function, then there is a unique inverse function
f−1 : T → S. Thus f−1(y) = x if and only if f(x) = y. The relation between f
and f−1 may also be expressed by saying that f−1 ◦ f = 1S and f ◦ f−1 = 1T .
In other words, f−1 is a (two-sided) inverse of f under composition.

A great part of mathematics falls naturally within this framework. Say that
f : S → T is a function, and y is in T . A common problem is to solve the
equation f(x) = y for x. This is called an implicit description of x. If f is
injective, the solution is unique. If f is surjective, then the solution exists for
each y in T . When the solution is not unique, then there is an entire set Sy ⊆ S
of solutions of f(x) = y. Then an explicit or parametric solution is an injective
function g : R → S with range Sy. The set R is the parameter space. Finding
such a function g is often what is meant by ”solving” a math problem.

Here is the obvious linear algebra example. For a homogeneous system
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Ax = 0 of m linear equations in n unknowns, the solution set is the null-space,
defined implicitly. It is a space of dimension n− r, where r is the rank. When
one ”solves” the system, this amounts to giving the solution in parametric form.
This is determined by a n by n− r matrix N that defines an injective function
from Rn−r (the non-pivot variables) to the solution space.

6.2 Linear transformations

Let V and W be vector spaces. A linear transformation (or linear mapping
f : V → W is a function that always satisfies

f(u+ v) = f(u) + f(v) (6.1)

f(au) = af(u). (6.2)

The standard example of a linear transformation is when V = Rn and
W = Rm and f(x) = Ax, where A is an m by n matrix.

Consider the vector spaces C([a, b]) consisting of all continuous real functions
on the interval [a, b]. Consider the subspace C1([a, b]) consisting of all real
functions on the interval [a, b] that have a derivative that is continuous on [a, b].
An example of a linear transformation would be D : C1([a, b]) → C([a, b], that
is, differentiation. Thus

(Dp)(x) = p′(x). (6.3)

Another example would be the integration transformation Ia from C([a, b])
to C1([a, b]) defined by

(Iaq)(x) =

∫ x

a

q(y) dy. (6.4)

Notice that the range of this transformation is the subspace of functions p that
have the zero value p(a) = 0 at a. The relation between these two transforma-
tions is

DIaq = q, (6.5)

that is, the derivative of the integral is the original function. On the other hand,
we have a more complicated relation in the other direction. Thus

IaDp = p− p(a), (6.6)

that is, the integral of the derivative is the original function with a suitably
adjusted constant of integration.

Example: Consider the following linear transformation. Its domain consists
of the subspace of C1([a, b]) consisting of all p with p(a) = 0. Its target is
C([a, b]). The transformation sends p to Dp+ cp. Show that it is bijective. To
do this, we must solve the differential equation

d

dx
p(x) + cp(x) = s(x) (6.7)



6.2. LINEAR TRANSFORMATIONS 33

for an arbitrary continuous function s and find a unique solution. Multiply by
ecx. This gives

d

dx
(ecxp(x)) = ecx. (6.8)

Integrate and multiply by the decay factor e−cx. This gives

p(x) =

∫ x

a

e−c(x−y)s(y) dy. (6.9)

Because of the boundary condition p(a) = 0 the constant of integration is
uniquely determined to be zero.

Given a linear transformation f : V → W , there are two associated sub-
spaces. The null-space or kernel of f consists of all solutions u of the equation
f(u) = 0. It is a subspace of the domain V . The range or image of f is the set
of all vectors w such that there is a solution of the equation f(x) = w. It is a
subspace of the target space W .

It is clear that a linear transformation f : V → W is surjective if and only if
its range is W . When is it injective? Clearly, if it is injective, then its null-space
consists only of the zero vector.

Theorem 6.1 (Null space theorem) Assume f : V → W is a linear trans-
formation. Suppose its null-space consists only of the zero vector. Then f is
injective.

This theorem is more or less obvious. Suppose that the null-space of f
consists only of the zero vector. Suppose that f(u) = f(v). Then by linearity
f(u − v) = f(u) − f(v) = 0. Therefore u − v is in the null-space. Hence
u− v = 0 and so u = v. This proves that f(u) = f(v) implies u = v. This is
enough to prove that f is injective.

Say that f : V → W is linear and both injective and surjective. Then f is
called a linear isomorphism, or, when the context is clear, an isomorphism.

Theorem 6.2 (Rank-nullity theorem) Let f : V → W be a linear transfor-
mation from an n finite-dimensional vector space to an m dimensional vector
space. The the dimension r of the range (the rank) plus the dimension of the
null-space (the nullity) equals the dimension n of the domain space.

Here is an illustration of the theorem in the case of a matrix transformation.
Let A be an m by n matrix. Let N be its null-space matrix. This has columns
corresponding to the non-pivot columns of A. Take also r columns corresponding
to the pivot-columns of A, in such a way that the jth column is the jth unit
basis vector. (The images of these columns form a basis for the range of A.) Let
L be n by n matrix with these columns. Then the columns of L form a basis
for Rn that includes a basis for the null-space of A.

As an example, take

A =

 1 1 −2 4 5
2 2 −3 1 3
3 3 −4 −2 1

 . (6.10)
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The pivot columns are the first and third. The basis matrix L is

L =


1 −1 0 10 9
0 1 0 0 0
0 0 1 7 7
0 0 0 1 0
0 0 0 0 1

 . (6.11)

The first and third columns are unit basis vectors, corresponding to the fact
that the rank is 2. The second, fourth, and fifth columns are basis vectors for
the null-space, corresponding to the fact that the nullity is 3. And indeed, the
sum of the rank and the nullity is 5.

6.3 Affine transformations

In advanced mathematics it is customary to distinguish between linear trans-
formations and affine transformations. (In elementary mathematics these are
all called linear.)

An example of a linear transformation is the transformation that sends the
column vector x to the column vector y = Ax.

A scalar constant c can define a linear transformation by sending x to cx.
This is the same as the linear transformation cI. For this kind of linear transfor-
mation the output is proportional to the input. A linear transformation given
by a matrix corresponds to a more general concept of proportionality.

An example of an affine transformation is the transformation that sends
the column vector x to the column vector y = Ax + b. Here b is a fixed
column vector. According to the definitions of linear algebra, this is not a linear
transformation (unless b is the zero vector).

There is a trick that reduces a affine transformations to linear transforma-
tions acting on a special kind of vector. Thus one can write[

y
1

]
=

[
A b
0 1

] [
x
1

]
. (6.12)

So that is why we mainly concentrate on linear transformations.

6.4 Problems

1. List all 64 functions from S = {1, 2, 3} to T = {a, b, c, d}.

2. Say that S and T are finite, with S having k elements and T having n
elements. How many functions f : S → T are there?

3. Say that S is finite with k elements and T has two points. How many
functions f : S → T are there? How many subsets of S are there? What
is the explanation for the coincidence that you observe?
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4. List all 24 injective functions from S = {1, 2, 3} to T = {a, b, c, d}. List
all 4 subsets of T with precisely 3 elements.

5. Say that S and T are finite, with k and n elements. How many injective
functions f : S → T are there? How many subsets of T with k elements
are there? What is the relation between the two results?

6. Say that f : S → T is a function. Suppose that it has a left inverse
g : T → S with g ◦ f = 1S . Show that f is injective.

7. Say that g : T → S is a function. Suppose that it has a right inverse
f : S → T with g ◦ f = 1S . Show that g is surjective.

8. Say that f : S → T is an injective function and that S ̸= ∅. Show that it
has a left inverse g : T → S with g ◦ f = 1S .

9. Say that g : T → S is a surjective function. Show that it has a right
inverse f : S → T with g ◦ f = 1S .

10. Consider the matrix

A =


1 1 3 1 5
2 3 8 4 13
1 3 7 6 13
3 5 13 9 25
2 3 8 7 19

 . (6.13)

Each column of the null-space matrix belongs to R5, and these columns
form a basis for a subspace of R5. Find a basis for R5 that consists of
null-space matrix columns together with unit basis vectors.

11. Consider the following linear transformation. Its domain consists of C1([a, b]),
and its target is C([a, b]). The transformation sends p to Dp + cp. Show
that it is surjective. Find its null-space.

12. Consider the following linear transformation. Its domain consists of the
functions p in C1([a, b]) with p(a) = 0 and p(b) = 0. Its target is C([a, b]).
The transformation sends p to Dp+ cp. Show that it is injective. Find its
range.
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Chapter 7

Linear transformations and
matrices

7.1 From vector to coordinates

Let V be a vector space. Let u1, . . . ,un be a list of vectors in V . The corre-
sponding linear transformation L : Rn → V is defined by

Lc =
n∑

j=1

cjuj . (7.1)

This transformation associates to each column vector a corresponding vector.
It is tempting to write this as L = [u1, . . . ,un] as if the vectors were the column
vectors of a matrix. This transformation could be called the coordinate to vector
transformation.

Theorem 7.1 (Linear independence-injective correspondence) Consider
a list of n vectors in V . Then they are linearly independent if and only if the
corresponding linear transformation L : Rn → V is injective.

Theorem 7.2 (Span-surjective correspondence) Consider a list of n vec-
tors in V . Then they span V if and only if the corresponding linear transfor-
mation L : Rn → V is surjective.

Theorem 7.3 (Basis-isomorphism correspondence) Consider a list of n
vectors in V . Then they are a basis for V if and only if the corresponding linear
transformation L : Rn → V is an isomorphism (in particular bijective).

In the case when L represents a basis, there is an inverse transformation
L−1 : V → Rn. It takes a vector v =

∑n
j=1 cjuj and sends it to the coordinate

column vector with components cj . This could be called the vector to coordinate
transformation. Some texts introduce a special notation for this: the column
vector L−1v is called [v]L.

37
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7.2 From linear transformation to matrix

A matrix A defines a linear transformation from Rn to Rn that sends each
column vector x to the matrix product Ax. Conversely, a linear transformation
from Rn to Rn defines a unique matrix that gives the linear transformation in
this way. This is called the standard matrix of the linear transformation. We
shall see later that this is the matrix of the linear transformation with respect to
the standard basis (the basis consisting of the columns of the identity matrix).

Say that f : V → V is a linear transformation from a vector space to the
same vector space. Let u1, . . . ,un be a basis for V . Let L be the corresponding
linear transformation. Then the matrix of f with respect to this basis is the
standard matrix of

A = L−1fL : Rn → Rn. (7.2)

Thus
n∑

i=1

(Ac)iui = f(
n∑

j=1

cjuj). (7.3)

Theorem 7.4 (Linear transformation-matrix correspondence) Let f : V →
V be a linear transformation. Suppose that u1, . . . ,un is a basis for V . Let A
be the matrix of L with respect to this basis. Then A may be computed directly
from the action of f on basis vectors by expanding

f(uj) =
n∑

i=1

Aijui. (7.4)

In other words, the jth column of A is the coordinate vector of f(uj) with respect
to the basis.

The proof is a computation. By definition and the linearity of f we have

n∑
i=1

n∑
j=1

Aijcjui =
n∑

j=1

cjf(uj). (7.5)

The only way this can happen is that for each j

n∑
i=1

Aijui = f(uj). (7.6)

Example. Consider the 2-dimensional vector space of functions with basis
cos(θ), sin(θ). Let f = d/dθ. The matrix of f with respect to this basis is ob-
tained by finding the matrix of the linear transformation that sends the column
vector [c1 c2]

′ to c1 cos(θ)+c2 sin(θ) to c2 cos(θ)−c1 sin(θ) to the column vector
[c2 − c1]′. This matrix is a rotation by −π/2.

The most remarkable fact about this correspondence is that composition of
linear transformations gives rise to multiplication of matrices. Say that g : V →
V is another linear transformation. Then B = L−1gL is the matrix of g with
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respect to the basis for V . The composition g ◦ f : V → V then has a matrix
L−1g ◦ fL = L−1gLL−1fL = BA.

Some texts use a notation like [f ]L for the matrix of f with respect to the
basis L. Then this fact about composition could be written [f ◦ g]L = [f ]L[g]L,
where the operation on the right is matrix multiplication. Of course this is
already obvious from L−1(f ◦ g)L = L−1f ◦ LL−1 ◦ gL = (L−1fL)(L−1gL).

Say that V = Rn consists of column vectors, and f : V → V is multiplication
by an n by n matrix F . Then these ideas still apply. If the basis is the standard
basis given by the columns of the identity matrix, then the matrix of F with
respect to this basis is F itself. However if we take some other basis L, then F
is represented by the matrix A = L−1FL.

7.3 Similar matrices

Say that L : Rn → V and L̃ : Rn → V are two bases for V . Thus L−1 : V → Rn

and L̃−1 : V → Rn are both coordinate mappings. The coordinate transition
matrix from the L̃ coordinates to the L coordinates is the standard matrix of

Q = L−1L̃ : Rn → Rn. (7.7)

That is, the jth column of Q consists of the L coordinates of the jth vector in
the basis L̃.

Theorem 7.5 (change of basis: similarity) Let f : V → V be a linear
transformation. Say that L : Rn → V is the linear transformation associ-
ated with one basis, and L̃ : Rn → V is the linear transformation associated
with another basis. Let A = L−1fL be the matrix of f with respect to L, and
let Ã = L̃−1fL̃ be the matrix of f with respect to L̃. Let Q be the coordinate
transition matrix from L̃ to L. Then

Ã = Q−1AQ. (7.8)

The proof is just

Ã = L̃−1fL̃ = L̃−1LL−1fLL−1L̃ = Q−1AQ. (7.9)

When two matrices A, Ã are related by Ã = Q−1AQ, then they are said to
be similar. The theorem says that if two matrices represent the same linear
transformation from a vector space to itself, then the two matrices are similar.
This is an exciting concept which will eventually lead to the important concept
of eigenvalue.

In the notation used by some texts, [v]L is the coordinate representation of
the vector v with respect to the basis L. Also [f ]L is the matrix representation
of f with respect to the basis L. If Q is the coordinate transition matrix
from basis L̃ to basis L, then for every vector v we have Q[v]L̃ = [v]L. The
similarity relation is expressed by [f ]Q̃ = Q−1[f ]LQ. Of course both these

relations are obvious: the first from (L−1L̃)L̃−1v = L−1v, the second from
L̃−1fL̃ = (L̃−1L)(L−1fL)(L−1L̃).
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7.4 Appendix: The case of two vector spaces

Say that f : U → V is a linear transformation from a vector space U to the
vector space V . Let K : Rn → U represent a basis for U , and let L : Rm → V
represent a basis for V . Then the matrix of f with respect to these bases is the
matrix of

A = L−1fK : Rn → Rm. (7.10)

Say that g : V → W is another linear transformation. Let M : Rp → W
represent a basis for W . Then B = M−1gL is the matrix of g with respect to
the bases for V and W . The composition g ◦ f : U → W then has a matrix
M−1g◦fK = M−1gLL−1fK = BA. The composition of linear transformations
corresponds to the product of matrices.

Theorem 7.6 (change of basis: equivalence) Let f : U → V be a linear
transformation. Say that K : Rn → U is the linear transformation associated
with one basis, and K̃ : Rn → U is the linear transformation associated with
another basis. Say that L : Rm → V is the linear transformation associated
with one basis, and L̃ : Rm → V is the linear transformation associated with
another basis. Let A = L−1fK be the matrix of f with respect to K,L, and
let Ã = L̃−1fK̃ be the matrix of f with respect to K̃, L̃. Let the coordinate
transition matrix from K̃ to K be the matrix P , and let the coordinate transition
matrix from L̃ to L be the matrix Q. Then

Ã = Q−1AP. (7.11)

The proof is just

Ã = L̃−1fK̃ = L̃−1LL−1fKK−1K̃ = Q−1AP. (7.12)

When two matrices A, Ã are related by Ã = Q−1AP , then they are said
to be equivalent. The theorem says that if two matrices represent the same
linear transformation from a vector space to another vector space, then the two
matrices are equivalent. This is a boring concept; all that matters is the rank
of the matrix.

7.5 The standard matrix

It is easy to get confused about linear transformations defined by matrices. If
F is an n by n matrix, then it defines a linear transformation on the vector
space Rn by f(x) = Fx (matrix multiplication). If L is an n by n matrix whose
columns form a basis for Rn, then the matrix of this linear transformation with
respect to L is A = L−1FL.

How do we get the original matrix? Take L = I to be the matrix whose
columns form the standard basis for Rn. Then the matrix of the linear trans-
formation with respect to this standard basis is the standard matrix F itself.
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The same ideas apply to an m by n matrix F . Think of F as defining a
linear transformation from Rn to Rm. Let the columns of K form a basis for
Rn, and let the columns of L form a basis for Rm. The matrix of the linear
transformation with respect to these bases is A = L−1FK.

If we take in particular the standard bases K = In and L = Im, then we get
the matrix of the linear transformation to be the standard matrix F that we
started with.

7.6 Problems

1. Consider the 5 dimensional space spanned by the functions 1, sin(θ),
cos(θ), sin(2θ), cos(2θ). Find the matrix of d/dθ with respect to this
basis. Hint: Each column is found by expressing the derivative of one of
these functions as a linear combination of all five, and then extracting the
coefficients.

2. Consider the 5 dimensional space spanned by the functions 1, sin(θ),
cos(θ), sin2(θ), sin(θ) cos(θ). Find the matrix of d/dθ with respect to
this basis.

3. This problem refers to the previous two problems. Find the change of
coordinates matrix from the coordinates given by the second basis to the
coordinates given by the first basis. Check that this gives the correct
relation between the two matrices of the linear transformation d/dθ. In
other words, show by explicit calculation that they are similar. Hint:
Each column is found by taking one of the five functions in the second
basis and expressing it as a linear combination of all five in the first basis,
then extracting the coefficients.

4. An n by n matrix F can always be thought of as the standard matrix
associated with a linear transformation. (That is, it is the matrix of the
linear transformation with respect to the standard basis of Rn.) However
the linear transformation may have a particularly nice matrix with respect
to some other basis than the standard basis. If the basis consists of the
columns of L, then the matrix with respect to this basis is A = L−1FL.
Use this to find a nice matrix representation of the linear transformation
with standard matrix

F =

 2 1 −2
2 3 −4
1 1 −1

 . (7.13)

Hint: Take the basis to be the columns of

L =

 1 2 1
−1 0 2
0 1 1

 . (7.14)
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Chapter 8

Determinants

8.1 Permutations

A function f : S → S is called a (discrete time) dynamical system. An orbit of
an element x of S consists of the sequence x, f(x), f(f(x)), f(f(f(x))), . . ..

If S is finite, each orbit eventually enters a cycle, that is, it assumes a certain
value and that value is repeated later, periodically.

As example, we can take S = {1, 2, 3, . . . , n}. There are several ways of
describing dynamical systems. One is to simply list the values of the function in
order. Thus the function 3, 5, 5, 1, 3, 1 is the function f with f(1) = 3, f(2) = 5,
f(3) = 5, f(4) = 1, f(5) = 3, f(6) = 1.

Another way to describe a dynamical system is to describe its cycles and
the way the function feeds into the cycles. The example above has the cycle
3, f(3) = 5. Since f(5) = 3 this is a cycle of period 2. The element 2 feeds into
the cycle at 5. The elements 6 and 4 both feed into 1, while 1 feeds into the
cycle at 3.

If S is finite and f : S → S is a bijection, then f is called a permutation.
Then every orbit is a cycle.

In studying permutations it is common to take S = {1, 2, 3, . . . , n}. There
are several ways of describing permutations. One is to simply list the values of
the function in order. Thus the permutation 5, 3, 6, 2, 1, 4 is the function f with
f(1) = 5, f(2) = 3, f(3) = 6, f(4) = 2, f(5) = 1, f(6) = 4.

Another way is to describe a permutation is to describe its cycles. The
permutation in the example above has the cycle 1, f(1) = 5, f(5) = 1 and the
cycle f(2) = 3, f(3) = 6, f(6) = 4, and f(4) = 2. An abbreviated notation for
this is to say that the cycles are (1, 5) and (2, 3, 6, 4). (In this example it would
be equivalent to say that the cycles are (6, 4, 2, 3) and (5, 1).)

Example: Take S = {1, 2, 3}. The six permutations may be listed as se-
quences 1, 2, 3 and 2, 3, 1 and 3, 1, 2 and 1, 3, 2 and 3, 2, 1 and 2, 1, 3.

Example: Take S = {1, 2, 3}. The six permutations may be listed as cycles.
They are (1)(2)(3) and (123) and (132) and (1)(23) and (2)(13) and (12)(3). It
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is often convenient to make the writing shorter by leaving out the one-cycles.
With this convention one would write the six permutations as ( ) and (123) and
(132) and (23) and (13) and (12).

A two-cycle is called a transposition. It just interchanges two thing and
leaves everything else alone. An k + 1-cycle is may be obtained by successively
applying k transpositions. For instance, the cycle (12345) is obtained by first
applying (12), then (23), then (34) and finally (45). This is written (12345) =
(45)(34)(23)(12).

A permutation is said to be even if it may be written by applying an even
number of transpositions. Otherwise it is odd. Thus an k+1 cycle is even if k is
even. A permutation with any number of even cycles and with an even number
of odd cycles is even. The only way a permutation can be odd is to have an odd
number of odd cycles.

Example: Take S = {1, 2, 3, 4}. The twelve even permutations are listed as
cycles. They are ( ) and (123) and (213) and (124) and (214) and (134) and
(143) and (234) and (243) and (12)(34) and (13)(24) and (14)(23). The twelve
odd permutations are (12) and (13) and (14) and (23) and (24) and (34) and
(1234) and (1243) and (1324) and (1342) and (1423) and (1432).

If the set S has n elements, then there are n! permutations in all. It is
remarkable fact that half of the permutations are even and half of the permu-
tations are odd.

8.2 The determinant of a matrix

If A is an n by n matrix, then the determinant of A is a sum over all n!
permutations of certain signed products. More precisely,

detA =
∑
σ

(−1)σ
n∏

j=1

aσ(j),j . (8.1)

For a 2 by 2 matrix there are only two permutations. So

det

[
a11 a12
a21 a22

]
= a11a22 − a21a12. (8.2)

For a 3 by 3 matrix there are six permutations. So

det

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 = a11a22a33+a21a32a13+a31a12a23−a11a32a23−a31a22a13−a21a12a33.

(8.3)
The three positive terms correspond to the identity ( ) and the two 3-cycles
(123) and (132). The three negative terms correspond to the three 2-cycles
(23), (13), (12).

Three fundamental properties of the determinant are that it is multi-linear
in the columns, alternating in the columns, and the determinant of I is 1.
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Theorem 8.1 (product property of determinants) Let A, B be n by n
matrices. Then

det(AB) = det(A) det(B). (8.4)

This theorem may be proved by a calculation. Let C = AB. Since cik =∑
j aijbjk, it follows that the kth column of C is

ck =
n∑

j=1

bjkaj . (8.5)

By multi-linearity

detC = det[c1, . . . , cn] =
n∑

j1=1

. . .
n∑

jn=1

bj1 1 · · · bjn n det[aj1 , . . . ,ajn ]. (8.6)

However det[aj1 , . . . ,ajn ] = 0 whenever two columns are the same. So the only
contributions to the sum are from bijections. Thus the equation may be written

detC =
∑
σ

bσ(1)1 · · · bσ(n)n det[aσ(1), . . . ,aσ(n)]. (8.7)

By the alternating property, we can bring the columns of the matrix to their
standard order at the price of introducing a sign. Thus

detC =
∑
σ

(−1)σbσ(1)1 · · · bσ(n)n det[a1, . . . ,an]. (8.8)

This immediately gives the conclusion.
From this it is easy to see that the determinant of an inverse matrix is the

reciprocal of the determinant. In particular, if the matrix has an inverse, then
the determinant is non-zero.

This theorem gives a practical way of calculating determinants. Write EA =
H, where E is a product of elementary matrices. Then A = FH, where F is
a product of elementary matrices (the inverses in opposite order). The deter-
minants of the elementary matrices are easy to compute. The determinant of a
reflection across a diagonal is −1. The determinant of a multiplication of a co-
ordinate by s ̸= 0 is s. The determinant of a shear is 1. (And the determinants
of their inverses are −1, 1/s and 1.) Finally, the determinant of the Hermite
matrix H is 1 if H = I and 0 otherwise.

In particular, this shows that if the determinant of A is not zero, then the
matrix A has an inverse.

8.3 The determinant of a linear transformation

Let f : V → V be a linear transformation of a finite-dimensional vector space.
Let L : Rn → V determine a basis for V . Define A = L−1AL to be the matrix
of f . Then det f is defined to be detA.
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One could worry that this depends on the choice of basis. However, if Ã =
L̃−1fL̃ is the matrix of f with respect to some other basis, then Ã = Q−1AQ.
So Ã and A have the same determinant.

8.4 Problems

1. Find the cycle structure of the permutation that sends 1, 2, 3, 4, 5, 6, 7, 8, 9
to 2, 7, 3, 5, 8, 9, 1, 6, 4. Is it even or odd?

2. Consider the 3-dimensional vector space spanned by 1, cos(θ), and sin(θ).
Let f be the linear transformation d/dθ + c, where c is a constant. Find
the determinant of f .

3. A group is an algebraic system with an identity that is also closed under
multiplication and inverse. The group of all real n by n matrices that have
inverses is called GL(n,R) (the General Linear group). The subgroup
of all real n by n matrices that have determinant equal to one is called
SL(n,R) (the Special Linear group). Prove that this is in fact a subgroup,
that is, that the product of two matrices with determinant one is a matrix
with determinant one, and the inverse of a matrix with determinant one
is a matrix with determinant one.

4. The group of all real n by n orthogonal matrices is called O(n) (the Or-
thogonal group). Show that every matrix in this group has determinant
±1. (Each such matrix is a product of rotations and reflections.)

5. The group of all real n by n orthogonal matrices with determinant one
is called SO(n) (the Special Orthogonal group). Prove that SO(n) is
a subgroup of O(n). (Each such matrix is a product of rotations and
reflections, with an even number of reflections.)



Chapter 9

Eigenvalues

9.1 Eigenvalues and eigenvectors of matrices

Let f : V → V be a linear transformation. If there is a vector v in V that is
not the zero vector, and if

fv = λv, (9.1)

then v is said to be an eigenvector of f with eigenvalue λ.

Theorem 9.1 (Characterization of eigenvalues) A scalar λ is an eigen-
value of f if and only if the transformation λI − f is not invertible.

Theorem 9.2 (Linear independence of eigenvectors) Let f be a linear trans-
formation from V to V . Let λ1, . . . , λr be eigenvalues of f with corresponding
eigenvectors v1, . . . ,vr. If the eigenvalues λ1, . . . , λr are all distinct, then the
eigenvectors v1, . . . ,vr are linearly independent.

The proof uses the fact that if p(x) is a polynomial in x, then for each
eigenvector

p(f)v = p(λ)v. (9.2)

Suppose that the eigenvalues λi are all distinct. Let

c1v1 + · · ·+ cjvj + · · ·+ crvr = 0. (9.3)

The goal is to show that all the coefficients c1, . . . , cj , . . . , cr are zero. This
proves linear independence.

Fix j. The following argument will show that cj = 0. Since j is arbitrary,
this is all that is needed to prove linear independence.

Define a polynomial p(x) by multiplying factors (x − λi) for all i not equal
to j. This is expressed in symbols by

p(x) =
∏
i ̸=j

(x− λi). (9.4)
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Then for each i not equal to j we have p(λi) = 0. Furthermore, since the
eigenvalues are all distinct, we have p(λj) ̸= 0.

Now apply the linear transformation p(f). Since p(f) is linear, we have

c1p(f)v1+· · ·+cjp(f)vj+· · ·+crp(f)vr = p(f)(c1v1+· · ·+cjvj+· · ·+crvr) = p(f)0 = 0.
(9.5)

However p(f)vi = p(λi)vi. So this says that

c1p(λ1)v1 + · · ·+ cjp(λj)vj + · · ·+ crp(λr)vr = 0. (9.6)

From the choice of the polynomial, this says that

cjp(λj)vj = 0. (9.7)

Since vj ̸= 0, it follows that
cjp(λj) = 0. (9.8)

Since p(λj) ̸= 0, it follows that cj = 0. This completes the proof.
A linear transformation f : V → V is said to be diagonalizable if there is a

basis of V such consisting of eigenvectors of f .

Theorem 9.3 (Diagonalization theorem) Suppose that f : V → V is diag-
onalizable. Let L : Rn → V be the linear transformation associated with the
basis of eigenvalues. Then

fL = LD, (9.9)

where D is diagonal.

The proof is immediate. We have fvj = λjvj . Hence

f(
n∑

j=1

cjvj) =
n∑

j=1

λjcjvj . (9.10)

This says that
fLc = LDc, (9.11)

where (Dc)j = λjcj . In other words, fL = LD.
It is important to note that the diagonalization may be written in various

forms, all of which say that f and D are similar. Thus it says that f may be
transformed to a diagonal matrix:

D = L−1fL. (9.12)

Equivalently, it gives a representation of f as

f = LDL−1. (9.13)

This makes it clear that powers (iterates) of f may be computed by computing
powers of the eigenvalues:

fn = LDnL−1. (9.14)



9.1. EIGENVALUES AND EIGENVECTORS OF MATRICES 49

Let f : V → V be a linear transformation of a finite-dimensional vector
space. The characteristic polynomial of f is the polynomial

p(λ) = det(λI − f). (9.15)

The eigenvalues are the roots of the characteristic polynomial.

Theorem 9.4 (Distinct root criterion) Let f : V → V be a linear transfor-
mation of a finite-dimensional vector space. If the characteristic polynomial of
f has n distinct roots, then f is diagonalizable.

Here is an example of how all this works. Say that F is a linear transforma-
tion given by an n by n matrix. The eigenvalues λ of F are the solutions of the
polynomial equation

det(λI − F ) = 0. (9.16)

Say that this polynomial has n distinct roots λ1, . . . , λn. Then there are n
independent column eigenvectors u1, . . . ,un. These form a basis with matrix
L = [u1, . . . ,un. Then

L−1FL = D, (9.17)

, where D is diagonal with λ1, . . . , λn on the diagonal. In other words, F may
be represented as

F = LDL−1. (9.18)

Take, for instance,

F =

[
4 2
3 −1

]
. (9.19)

The characteristic polynomial is

det(λI−F ) = det

[
λ− 4 −2
−3 λ+ 1

]
= (λ−4)(λ+1)−6 = λ2−3λ−10. (9.20)

Since λ2−3λ−10 = (λ−5)(λ+2), the roots are λ1 = 5 and λ2 = −2. The first
eigenvector is obtained by finding a non-zero column vector in the null space of

5I − F =

[
1 −2
−3 6

]
. (9.21)

The second eigenvector is obtained by finding a non-zero column vector in the
null space of

−2I − F =

[
−6 −2
−3 −1

]
. (9.22)

These two column vectors combine to form a basis consisting of the columns of
the matrix

L =

[
2 −1
1 3

]
. (9.23)
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9.2 The trace

The trace of a square matrix is the sum of the diagonal entries. It is gen-
erally true that tr(AB) = tr(BA). From this it follows that tr(Q−1AQ) =
tr(AQQ−1) = tr(A). In other words, similar matrices have the same trace.

This gives a nice check on eigenvalue calculations. For example, in the last
section there was a matrix F with trace 4− 1 = 3. It was similar to a diagonal
matrix with diagonal entries 5,−2. This matrix also has trace 5−2 = 3. Maybe
the calculation was correct!

9.3 Problems

1. Let

F =

[
5 6
3 −2

]
. (9.24)

Find the eigenvalues of F .

2. In the preceding problem, find a basis consisting of eigenvectors of F .

3. In the preceding problem, let L be a matrix whose columns are the basis
vectors. Compute D = L−1FL.

4. In the preceding problem, find the matrix

G = lim
n→∞

1

7n
Fn. (9.25)

Hint: Use F = LDL−1.



Chapter 10

Inner product spaces

10.1 Inner products

An inner product is the same as a scalar product or dot product. It is a function
whose inputs are ordered pairs of vectors in a vector space V and whose outputs
are numbers. There are two notations in common use, the bracket notation and
the dot notation:

⟨u,v⟩ = u · v (10.1)

The axioms are

1. Symmetry: u · v = v · u.

2. Vector addition: u+ v ·w = u ·w + v ·w.

3. Scalar multiplication: cu · v = cu · v.

4. Positivity: u · u ≥ 0, and u · u = 0 implies u = 0.

The standard example is when the vector space is Rn and the inner product
of the column vector x with the column vector y is x · y = x′y, where x′ is the
row vector corresponding to x.

The length (or norm) of vector u is

∥u∥ =
√
u · u. (10.2)

A basic computation is

∥u+ v∥2 = ∥u∥2 + 2u · v + ∥v∥2. (10.3)

A vector is a unit vector if its length is one. For unit vectors u,v we have
0 ≤ ∥u∓v∥2 = 2∓2u ·v. Hence for unit vectors u,v it follows that ±u ·v ≤ 1.
This is a special case of the Cauchy-Schwarz inequality.

Theorem 10.1 (Cauchy-Schwarz inequality)

±u · v ≤ ∥u∥∥v∥. (10.4)

51



52 CHAPTER 10. INNER PRODUCT SPACES

The proof of the Cauchy-Schwarz inequality is to notice that it is automat-
ically true if either vector is the zero vector. Otherwise, u/∥u∥ and v/∥v∥ are
unit vectors, and the previous special case applied to these unit vectors gives
the result.

The inner product has a geometrical significance. In fact, we can write

u · v = ∥u∥∥v∥ cos(θ), (10.5)

where θ measures the angle between the two vectors. The Cauchy-Schwarz
inequality guarantees that this makes sense, that is, that the cosine is between
−1 and 1.

Two vectors u,v are said to be orthogonal (or perpendicular) if u · v = 0,
and in this case we write u ⊥ v.

Theorem 10.2 (Theorem of Pythagoras) If u ⊥ v, then

∥u+ v∥2 = ∥u2 + ∥v∥2. (10.6)

10.2 Projections

Given vectors u1, . . . ,up, their Gram matrix is the matrix of inner products

Gjk = uj · uk. (10.7)

The key property of the Gram matrix is that

∥c1u1 + · · ·+ cpup∥2 =

p∑
i=1

p∑
j=1

ciGijcj . (10.8)

Theorem 10.3 (Gram matrix condition) A list of vectors is linearly inde-
pendent if and only if its Gram matrix is invertible.

First we prove that invertibility of the Gram matrix implies linear inde-
pendence. Suppose that

∑
j cjuj = 0. Take the inner product with ui. This

gives
p∑

j=1

Gijcj = 0 (10.9)

for each i. Since the matrix is invertible, it follows that the coefficients cj are
all zero. This proves linear independence.

Then we prove that linear independence implies that the Gram matrix is
invertible. Consider a coordinate vector of cj that is in the null space of the
matrix G, that is, such that

p∑
j=1

Gijcj = 0 (10.10)
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for each i. It follows that

p∑
i=1

ci

p∑
j=1

Gijcj = 0. (10.11)

From the key property, it follows that
∑p

j=1 cjuj = 0. By linear dependence
the coefficients cj are all zero. This proves that the null space of G is trivial.
Therefore G is invertible.

If V is a vector space with an inner product, and W is a subspace of V ,
then the orthogonal projection of a vector v onto W is a vector w with the
properties:

1. w is in W .

2. v −w is orthogonal to W .

Theorem 10.4 (Orthogonal projection theorem) Let u1, . . . ,up be linearly
independent. Then the orthogonal projection onto the span of these vectors is
the vector w given by

w = Ev =

p∑
j=1

ui

 p∑
j=1

G−1
ij uj · v

 . (10.12)

To see this, write

w =

p∑
i=1

ciui. (10.13)

In order to have v −w orthogonal to each uj it is enough to have

uj ·w = uj · v. (10.14)

This says that
p∑

i=1

Gijci = uj · v. (10.15)

So to get ci one just has to solve this equation involving the Gram matrix. The
solution is given by the inverse to the Gram matrix

ci =

p∑
j=1

G−1
ij uj · v. (10.16)

10.3 Projection matrices

In this section the same ideas are presented in matrix language. For each sub-
space W of Rm there is a projection matrix E. This is the matrix that defines
the linear transformation of orthogonal projection onto W . It is characterized
by the following properties:
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1. For each y in Rm the projected vector ŷ = Ey is in W .
2. For each y in Rm the vector y − ŷ = y − Ey is perpendicular to W .
Thus y = ŷ + (y − ŷ) is the decomposition of y into the sum of a vector in

W and a vector in W⊥.

Theorem 10.5 (Orthogonal projection) Let A be a m by p matrix with lin-
early independent columns. Let W be the column space of A, a p dimensional
subspace of Rm. Then the Gram matrix A′A is an invertible p by p matrix, and
the orthogonal projection onto W is given by the m by m matrix

E = A(A′A)−1A′. (10.17)

Furthermore E = E′ and E2 = E.

Proof:
The matrix A′A is a p by p square matrix. If x is in the null space of this

matrix, then A′Ax = 0. In particular, x′A′Ax = 0. However this says that
(Ax)′(Ax) = 0. It follows that Ax = 0. Since the null space of A is the zero
subspace, it follows that x = 0. This shows that the null space of A′A is the
zero subspace. Since A′A is square, it follows that A′A is invertible.

The next two steps show that the formula for E gives the projection onto
the column space of A.

1. Clearly Ey = Ax, where x = (A′A)−1A′y. This shows that Ey is in the
column space of A.

2. Let z = Ax be in the column space of A. Then the inner product of
y−Ey with z is (y−Ey)′z = yTAx− y′A(A′A)−1A′Ax = y′Ax− y′Ax = 0.

The proof that E = E′ and the proof that E2 = E are both simple compu-
tations.

10.4 Least squares

Let A be an m by p matrix (the design matrix), and let y be a vector in Rm

(the observation vector). A least squares vector is a vector x in Rp (a parameter
vector) such that the sum of squares ∥Ax− y∥2 is minimal.

Theorem 10.6 (Least squares solution) A vector x is a least squares vector
if and only if it is a solution of the normal equations

A′Ax = A′y. (10.18)

Proof: Let ŷ (the predicted vector) be the projection of y onto the column
space of A. Then a least squares vector is a vector such that Ax = ŷ.

The condition that Ax is the projection onto the column space of A is that
Ax is in the column space of A and that y − Ax is orthogonal to the column
space of A. The first condition is obviously satisfied. The second condition says
that (Az)′(y − Ax) = 0 for all z in Rp. This is the same as requiring that
z′A′(y −Ax) = 0 for all z in Rp.



10.5. EUCLIDEAN GEOMETRY 55

Here is a summary of these ideas. There is a m by n matrix A, the
parametrizing matrix, with linearly independent columns that span a subspace
of Rn. The matrix A′A is the Gram matrix and is invertible. The m by m
matrix E = A(A′A)−1A′ is the orthogonal projection onto the subspace. The
m by n matrix (A′A)−1A′ is sometimes called the pseudo-inverse of A.

Say that y is a data vector in Rm. Then the parameter vector x is the least
squares solution of the problem of minimizing the size of Ax−y. The formula for
x is given by the pseudo-inverse applied to the data vector, so x = (A′A)−1A′y.
The fitted vector ŷ is Ey = Ax. The residual vector is y − ŷ.

10.5 Euclidean geometry

In elementary geometry a Euclidean space is a space consisting of points, but
there is no preferred origin. However, the notion of Euclidean space is closely
related to that of vector space, provided that we realize that while that points
p and q of Euclidean space are not vectors, their difference p − q is a vector
v. Even though it does not make sense to add points in Euclidean space, it is
possible to add a vector v to a point q and get another point p.

It is possible to have points p and q and other points r and s with p−q = r−s
being the same vector. Thus if p − q = v, and u + q = s, u + p = r, then
v + s = v + u+ q = u+ v + q = u+ p = r, so also r − s = v.

An affine space is a non-empty set P together with a finite-dimensional
vector space V (the vector space of translations). There is also a function that
associates to every p in P and v in V another point v+p in P . Thus the sum of
a vector and a point is another point. It must satisfy the following properties:

1. Action of zero: 0+ p = p.
2. Action of vector sum: (v +w) + p = v + (w + p)
3. For every two points q and p in P , there is exactly one vector v such that

v + q = p.
If P is an affine space, the unique vector from q to p is a vector in V , and

this vector is denoted by p− q.
Thus the difference of two points is a vector. This operation satisfies the

following properties:
1. p− q = 0 is equivalent to p = q.
2. (p− q) + (q − r) = p− r.
2. To each q in P and v in V there is exactly one p in P with p− q = v.

Since the difference p − q of two points p and q is a vector, for every real
number t the scalar multiple t(p − q) is a vector. Thus t(p − q) + q is a point.
Thus it is possible to define

tp+ (1− t)q = t(p− q) + q.

The line passing through p and q consists of all points tp + (1 − t)q for t real.
The segment between p and q consists of all points tp+ (1− t)q for 0 ≤ t ≤ 1.
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Example: Let p, q, and r be three distinct points determining a triangle.
The point 1

2p+
1
2q is the midpoint of the segment from p to q. The point

2

3
(
1

2
p+

1

2
q) +

1

3
r =

1

3
p+

1

3
q +

1

3
r

is on the segment from this midpoint to r. It is not hard to see that the three
such lines, from the midpoints to the opposite corners, all meet in this point.

A Euclidean space is an affine space P for which the vector space of transla-
tions is an inner product space.

In an Euclidean space the distance between two points p and q is |p− q|, the
length of the vector p− q.

Example: A right triangle is determined by three distinct points p, q, r such
that the inner product of the vectors p − q and q − r is zero. Then p − r =
(p− q)+(q− r) as a vector sum, so when we compute the inner product of p− r
with itself the cross term drops out, and we get

|p− q|2 + |q − r|2 = |p− r|2.

This is the theorem of Pythagoras.

10.6 Problems

1. Say that u1, . . . ,up are orthogonal, in the sense that for each i ̸= j we
have ui · uj = 0. When are they linear independent? Relate this to the
invertibility of the Gram matrix.

2. Say that u1, . . . ,up are orthogonal and linearly independent. What is the
projection of a vector v onto their span in this case? Give the explicit
formula. Relate this to the formula in terms of the Gram matrix.

3. Let A be the 11 by 3 matrix whose ith row is 1, i, i2, for i = 0, 1, 2, . . . , 9, 10.
Find the Gram matrix, the pseudo-inverse matrix, and the projection
matrix.

4. In the preceding problem, let the data vector y = [120 82 173 148 92 155 152 103 43 22 35]′.
Find the parameter vector x. Find the fitted vector ŷ. Verify the theo-
rem of Pythagoras for the data vector, the fitted vector, and the residual
vector y − ŷ.



Chapter 11

Self-adjoint transformations

11.1 The adjoint

Let f : V → W be a linear transformation from a real inner product to another.
Then the adjoint f∗ is the transformation from W to V that satisfies

f∗(w) · v = w · f(v) (11.1)

for all v in V and w in W .
For real matrices the adjoint with respect to the standard inner product is

the transpose.

11.2 Orthogonal transformations

Let f : V → W be a linear transformation from a real inner product space to
another. Then f is said to be inner product preserving if f(u) · f(v) = u · v
for each u,v in V . (Another name for such a transformation is isometry.) An
inner product preserving transformation is automatically norm preserving, since
∥f(u)∥2 = ∥u∥2. It follows that it is injective.

Theorem 11.1 (Inner product preservation) A linear transformation f :
V → W from a real inner product space to another is inner product preserving
if and only if f∗f = I.

A list of vectors uj in an inner product space is an orthonormal family if

uj · uk = δjk. (11.2)

Theorem 11.2 (Orthonormal families) A linear transformation f : Rn →
W from Rn with the standard inner product to the real inner product space W
is inner product preserving if and only if it is of the form

f(c) =
n∑

j=1

cjuj , (11.3)
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where the uj form an orthonormal family of vectors.

Let f : V → W be a linear transformation from a real inner product space
to another. Then f is said to be an inner product isomorphism if it is inner
product preserving and is a bijection. (Another name for such a transformation
is orthogonal transformation.)

Theorem 11.3 (Inner product preservation) A linear transformation f :
V → W from a real inner product space to another is an inner product isomor-
phism if and only if f∗f = I and ff∗ = I.

Theorem 11.4 (Orthonormal bases) A linear transformation f : Rn → W
from Rn with the standard inner product to the real inner product space W is
an inner product isomorphism if and only if it is of the form

f(c) =

n∑
j=1

cjuj , (11.4)

where the uj form an orthonormal basis.

11.3 Self-adjoint transformations

Theorem 11.5 (Spectral theorem) Let f : V → V be a self-adjoint linear
transformation from an n dimensional real inner product space to itself. Then
there exists an orthonormal basis u1, . . . ,un of V such that

fuj = λjuj , (11.5)

where the eigenvalues λj are all real. Thus if we define the linear transformation
U : Rn → V by

Uc =
n∑

j=1

cjuj , (11.6)

then U is an inner product isomorphism, and

fU = UΛ, (11.7)

where Λ is a real diagonal matrix.

In the matrix case this says that if F is a real symmetric matrix, then there
is a real orthogonal matrix U and a real diagonal matrix Λ such that FU = UΛ.
In other words, every real symmetric matrix is similar to a real diagonal matrix.

The spectral theorem may also be thought of as a theorem about quadratic
forms. If A is a real symmetric matrix, the its quadratic form is x′Ax. The
theorem says that there is a transformation x = Uy via an orthogonal matrix
U such that

x′Ax = y′Λy = λ1y
2
1 + · · ·λny

2
n (11.8)
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is a sum of multiples of squares This works because U−1 = U ′ and so x′Ax =
y′U ′AUy = y′Λy.

As an example of the material of this chapter, take the problem of finding
the orthogonal diagonalization of the symmetric matrix

F =

 2 2 4
2 5 8
4 8 17

 . (11.9)

It is not too hard to compute its eigenvalues from the characteristic polynomial.
But it is even easier to use a computer program to guess that they are 1, 1, 22.
This means that we need to find the null spaces of

I − F =

 −1 −2 −4
−2 −4 −8
−4 −8 −16

 (11.10)

and of

22I − F =

 20 −2 −4
−2 17 −8
−4 −8 5

 . (11.11)

A matrix whose columns span the null space of I − F is

N1 =

 −2 −4
1 0
0 1

 . (11.12)

In fact, there is really only one equation to be satisfied, namely x1+2x2+4x3 =
0, and these two columns each satisfy this equation. However they are not
orthogonal. One way to find two orthogonal vectors is to solve x1+2x2+4x3 = 0
with the condition that the solution is orthogonal to [−2, 1, 0]′. This condition
gives the second equation −2x1+x2 = 0. This system of two equations in three
unknowns has solution [−4 − 8 5]′ (or any multiple).

There is another way to get the same result. Project the second column v of
N1 onto the subspace spanned by first column u. We get the projected vector
w = u(1/u ·u)u ·v. Then the difference v−w (or any multiple of it) is a vector
in the null space that is orthogonal to the first column of N1.

With either argument we see that

N̂1 =

 −2 −4
1 −8
0 5

 . (11.13)

has columns that give an orthogonal basis for the null space of I − F ..
The null space of 22I − F is only one dimensional. It is spanned by

N22 =
1

4

 1
2
4

 . (11.14)
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Since 1 ̸= 22 are distinct eigenvalues, the column in N22 is automatically or-
thogonal to the columns in N1.

To get unit vectors, we normalize each vector to have length one. This gives

U =

 −2/
√
5 −4/

√
105 1/

√
21

1/
√
5 −8/

√
105 2/

√
21

0 5/
√
105 4/

√
21

 . (11.15)

Since U is orthogonal, we have U−1 = U ′. Finally, we check that U ′FU = D.

11.4 Problems

1. Let F be the symmetric matrix

F =


1 −1 0 2
−1 2 1 0
0 1 1 2
2 0 2 −1

 . (11.16)

Find the eigenvalues. You can use the computer and then check that your
answer for λ is correct by calculating the null space of λI − F . Or you
can struggle with the characteristic polynomial, which should also work,
if you can guess a few roots.

2. In the previous problem, find a basis of eigenvectors (with rational entries).

3. In the previous problem, find an orthonormal basis of eigenvectors (square
roots needed).

4. In the previous problem, find U orthogonal andD diagonal with U−1FU =
D.



Chapter 12

Multiplication of vectors

12.1 Dot product and cross product

In physics and engineering it is customary to multiply vectors in more than one
way. The most common version in special to three dimensional space. This
chapter gives a brief summary of this theory.

Let V be a 3 dimensional real vector space with an inner product. We will
also assume that V has an orientation, so that we have a notion of when a basis
is right-handed.

Traditionally there are two notions of multiplication. The dot product of u
and v is

u · v = ∥u∥∥v∥ cos(θ). (12.1)

If u and v are neither the zero vector, then there is a uniquely defined value
of θ with 0 ≤ θ ≤ π. Then −1 ≤ cos(θ) ≤ 1. When one of them is the zero
vector, then the dot product is zero. The dot product measures the tendency of
the two vectors to go in the same direction. For instance, if u is a unit vector,
then the size of u · v depends on the size of the projection of v onto the space
spanned by u.

The cross product of u and v is a vector of length

∥u× v∥ = ∥u∥∥v∥ sin(θ). (12.2)

Again 0 ≤ θ ≤ π, so 0 ≤ sin(θ) ≤ 1. The vector u×v is orthogonal to both u and
v. Furthermore, the triple u,v,u × v has a right-hand orientation. The cross
product measures the tendency of the two vectors to go in different directions.
If u,v are regarded as defining a parallelogram, then the magnitude of the cross
product is the area of this parallelogram.

The cross-product is anti-symmetric:

u× v = −v × u. (12.3)

It is linear in each variable, for instance

(u+ v)×w = u×w + v ×w (12.4)
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and
(au)× v = a(u× v). (12.5)

It also distributes over vector addition:

u× (v +w) = u× v + u×w. (12.6)

The unpleasant thing about the cross product is that it is not associative.
On the one hand, the triple vector product

u× (v ×w) = (u ·w)v − (u · v)w (12.7)

lies in the space spanned by v and w. On the other hand,

(u× v)×w = −w × (u× v) = −(w · v)u+ (w · u)v. (12.8)

lies in the space spanned by u and v.
Another interesting quantity is the triple scalar product

[u,v,w] = u · (v ×w). (12.9)

This is like a determinant, in that every time one interchanges two vectors, the
sign changes. Its magnitude represents the volume of the parallelepiped spanned
by the three vectors.

Sometimes a distinction is made between scalars and vectors, on the one
hand, and pseudo-scalars and pseudo-vectors, on the other hand. A pseudo-
scalar or a pseudo-vector is like an ordinary scalar or vector, except that its
sign depends on whether a right hand rule or a left hand rule is used.

With this distinction, the cross product of a vector and another vector is a
pseudo-vector. The triple scalar of three vectors is a pseudo-scalar. However
the vector triple product of three vectors is an ordinary vector. Notice that the
cross product of two pseudo-vectors is another pseudo-vector.

In elementary vector algebra an orientation is fixed (usually right-handed),
and there is only one kind of scalar and vector. More sophisticated treatments
do not require a fixed orientation, but then the objects can have properties that
are orientation-dependent. Thus there are are scalars and vectors (which do not
depend on the orientation) and also pseudo-scalars and pseudo-vectors (which
change sign when the orientation is reversed), and they are different objects.

Often vector algebra in three dimensions is described via a right-handed
orthonormal basis i, j,k. Then the cross product is defined by the equations

i× i = 0

j× j = 0

k× k = 0

i× j = k

j× k = i

k× i = j

j× i = −k

k× j = −i

i× k = −j. (12.10)
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12.2 Quaternion product

Some light is cast on the cross product and dot product by combining them in
a single product. The idea is to have objects that consist of a pair, a scalar and
a vector. Such an object is written a+ u as if it were a sum. Two such objects
are the same if they have the same scalar part and the same vector part. This
mathematical construct is called a quaternion.

The sum of two quaternions is defined in the obvious way:

(a+ u) + (b+ v) = (a+ b) + (u+ v). (12.11)

The product is much more interesting. It is defined by

(a+ u)(b+ v) = (ab− u · v) + (av + bu+ u× v). (12.12)

In particular, the quaternion product of two vectors u and v is

uv = −u · v + u× v. (12.13)

That is, the quaternion product combines the dot product and the cross product
in one multiplication operation.

One interesting identity is

(u · u)(v · v) = (u · v)2 + det

[
u · u u · v
v · u v · v

]
. (12.14)

It says that the square of the length of the quaternion product is the square of
the dot product plus the square of the length of the cross product. Notice that
both terms on the right are positive. The two terms in the identity measure
the tendency of the two vectors to be close to lying on a single line versus their
tendency to point in different directions.

Since the dot product is symmetric and the cross product is skew-symmetric,
it follows that the symmetric part of the quaternion product

1

2
(uv + vu) = −u · v (12.15)

gives the negative of the dot product, while the anti-symmetric part of the
quaternion product

1

2
(uv − vu) = u× v (12.16)

gives the cross product.
For every quaternion a+u there is a conjugate quaternion a−u. The product

of a quaternion with its conjugate is

(a− u)(a+ u) = a2 + u · u. (12.17)

This is the square of the length of the quaternion. This formula shows that
every non-zero quaternion has a multiplicative inverse, namely,

1

a+ u
=

a− u

a2 + u · u
. (12.18)
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The best thing about the quaternion multiplication is that it is associative.
For example, the product of three vectors is

u(vw) = u(−v·w+v×w) = u·(v×w)−(v·w)u+u×(v×w) = u·(v×w)−(v·w)u+(u·w)v−(u·v)w.
(12.19)

The other product (uv)w works out to be exactly the same. So, in summary,
the quaternion product of three vectors is

uvw = [u,v,w] + {u,v,w}. (12.20)

The scalar part [u,v,w] is the triple scalar product. Here the vector part will
be written {u,v,w} and called the quaternion triple vector product. This vector

{u,v,w} = −(v ·w)u+ (u ·w)v − (u · v)w (12.21)

is a linear combination of all three input vectors. It measures the tendency of
the three vectors to lie in a plane. Thus if they are all three orthogonal, then
the quaternion triple vector product is the zero vector. On the other hand, if
u is a unit vector, then the quaternion triple vector product {u,v,u} is the
reflection of v in the plane orthogonal to u, and so it has the same length as v.

Again there is an interesting identity. It says that

(u · u)(v · v)(w ·w) = det

 u · u u · v u ·w
v · u v · v v ·w
w · u w · v w ·w

+ {u,v,w} · {u,v,w}.

(12.22)
Each term on the right is greater than or equal to zero. The two terms in the
identity measure the tendency of the three vectors to point in rather different
directions versus their tendency to be close to lying in a single plane. The last
term has the explicit form

{u,v,w}·{u,v,w} = (v·w)2u·u+(u·w)2v·v+(u·v)2w·w−2(u·v)(v·w)(w·u).
(12.23)

The quaternion product is also sometimes described via an orthonormal basis
i, j,k together with the number 1. Then the quaternion product is defined by
the equations

i i = −1

j j = −1

kk = −1

i j = k

j k = i

k i = j

j i = −k

k j = −i

i k = −j. (12.24)
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12.3 Quaternions and rotations

In this section we shall see that quaternions may be used to describe reflections
and rotations in three dimensional space.

Theorem 12.1 (Quaternion reflection) Let u be a unit vector in R3. Then
u defines a linear transformation from R3 to R3 by the quaternion product

r 7→ uru. (12.25)

This is a reflection that sends u to −u.

To see this, take r = u. Then uru = uuu = −u. On the other hand, take
r ⊥ u. Then ru = −ur, so uru = −uur = r.

What happens when there are two reflections, one after the other? Let u
and v be two unit vectors in R3. Say that θ is the angle from u to v. Then
their quaternion product is

uv = − cos(θ) + sin(θ)w, (12.26)

where w is a unit vector parallel to u × v. Reflect along u and then along v.
The result is the linear transformation of R3 defined by

r 7→ vuruv = (− cos(θ)− sin(θ)w)r(− cos(θ) + sin(θ)w). (12.27)

We shall now see that this is a rotation.

Theorem 12.2 (Quaternion rotation) Let w be a unit vector and define
unit quaternions cos(θ) ± sin(θ)w. The linear transformation of R3 defined
by

r 7→ (cos(θ) + sin(θ)w)r(cos(θ)− sin(θ)w). (12.28)

is a rotation in the plane orthogonal to w by an angle 2θ.

To see that it defines a rotation, first note that if we take r = w, we get
vuwuv = −vuuwv = vwv = −vvw = w. So the axis of rotation w is
unchanged. Now let p and q be orthogonal unit vectors that are each orthogonal
to the unit vector w such that p× q = w. We have

(cos(θ) + sin(θ)w)p(cos(θ)− sin(θ)w) = (cos(θ) + sin(θ)w)(cos(θ)p+ sin(θ)q)

= (cos2(θ)− sin2(θ))p+ 2 sin(θ) cos(θ)q

= cos(2θ)p+ sin(2θ)q. (12.29)

Similarly

(cos(θ) + sin(θ)w)q(cos(θ)− sin(θ)w) = (cos(θ) + sin(θ)w)(cos(θ)q− sin(θ)p)

= (cos2(θ)− sin2(θ))q− 2 sin(θ) cos(θ)p

= cos(2θ)q− sin(2θ)p. (12.30)
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Thus in the plane orthogonal to the axis the transformation is

ap+ bq 7→ a(cos(2θ)p+ sin(2θ)q) + b(cos(2θ)q− sin(2θ)p) =

(cos(2θ)a− sin(2θ)b)p+ (sin(2θ)a+ cos(2θ)b)q. (12.31)

This is a rotation by angle 2θ.
The conclusion is that the quaternion − cos(θ) + sin(θ)w defines a rotation

about the w axis by an angle 2θ. This doubling of the angle is a deep and
mysterious fact. Among other things, it fundamental to the quantum theory of
electron spin.

The group of unit quaternions of the form cos(θ)+sin(θ)w is called Spin(3).
The group of rotations in called SO(3). The correspondence from Spin(3) to
SO(3) is two to one. Changing the sign of the quaternion gives the same rotation.
This has a beautiful geometric explanation.

Each unit quaternion in Spin(3) is described by an angle θ with 0 ≤ θ ≤ π
and a vector z of length sin(θ). The quaternion itself is cos(θ) + z. The angle
θ describes the angle of rotation in SO(3). The vector z describes the axis of
rotation. If one replaces θ by π − θ and z by −z this changes the sign of the
quaternion in Spin(3), but it gives the same rotation in SO(3).

One can think of the group Spin(3) as a three dimensional sphere sitting in
the four dimensional space of all quaternions. The north pole of this sphere is
at θ = 0. For 0 < θ < π the set of constant latitude is a 2-dimensional sphere
consisting of all z of radius sin(θ). The south pole of the sphere is at θ = π.

The rotation group SO(3) consists of this sphere with opposite points identi-
fied. Or one may restrict the angle θ to be in the range 0 ≤ θ ≤ π/2. Even then,
for θ = π/2 the axes z and −z are unit vectors describing the same rotation by
angle π/2 about this axis. The group SO(3) is not a sphere; it is a geometric
object known as 3-dimensional projective space.

12.4 Clifford algebra

There is a generalization of these ideas to the case of an n dimensional real vector
space V with an inner product. The vectors generate an algebra of dimension
2n called the Clifford algebra. This algebra has a 2n−1 dimensional subalgebra
called the even Clifford algebra.

In the case n = 3 the even Clifford algebra has dimension 4, and it is the
algebra of quaternions. These should be thought of as the scalars and the
pseudo-vectors. If i, j,k form a basis for the three-dimensional space of pseudo-
vectors, then 1, i, j,k form a basis for the even Clifford algebra, and the usual
quaternion multiplication rule holds.

In the case n = 3 the full Clifford algebra has dimension 8. This should be
thought of as the algebra consisting of the scalars and the pseudo-vectors (the
even subalgebra), together with the vectors and the pseudo-scalars.

In the case n = 2 the full Clifford algebra has dimension 4. One can think
of the plane as sitting inside a three dimensional space. The Clifford algebra
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consists of the scalars, the vectors in the plane, and the one-dimensional space
of pseudo-vectors orthogonal to the plane. These last are the planar equivalent
of pseudo-scalars. The even subalgebra consists of the scalars and these planar
pseudo-scalars. While in the case n = 3 the even subalgebra is the quaternion
algebra, in the case n = 2 it is a realization of the complex number algebra.

It may be helpful to think of the case n = 2 in terms of an orthonormal
basis. If one takes j,k as an orthonormal basis for the vectors in the plane, then
jk = i plays the role of the pseudo-scalar. The Clifford algebra is spanned by
1, j,k, i. The even-subalgebra is spanned by 1, i.

In the case n = 1 the full Clifford has dimension 2 (scalar and vector), and
the even subalgebra consists of scalars.

There is charm to the fact that the three classic numbers systems R, C, and
H (real numbers, complex numbers, Hamilton’s quaternions) correspond to the
even Clifford algebras in dimensions 1, 2, and 3. However this analogy breaks
down in higher dimensions.


