matrix entries

$\mathrm{A}=[\mathrm{abc} ; \mathrm{def} ; \mathrm{ghi} ; \mathrm{jkl}]$ (A becomes 4 by 3 matrix)
size(A)
A(i,j) (where i,j are indices: gives scalar)
$\mathrm{j}: \mathrm{k}$ (gives index (row) vector with consecutive entries)
A(I,J) (where I, J are index vectors: gives submatrix)
[A B C] (concatenates horizontally)
[A ; B ; C] (concatenates vertically)
$\operatorname{diag}(\mathrm{x})$ (takes vector x to diagonal matrix)
$\operatorname{diag}(\mathrm{A})$ (takes matrix A to column vector formed from diagonal)
vector space operations
$A+B$
$A-B$
s * A
zeros (m,n)
matrix multiplication
A * B
A ^n
$\operatorname{inv}(\mathrm{A})$
eye(n)
$\operatorname{det}(\mathrm{A})$
trace(A)
reduced row echelon form and null space
$\operatorname{rank}(\mathrm{A})$
$R=\operatorname{rref}(A)(R$ becomes reduced row echelon form of $A)$
$\mathrm{U}=\operatorname{rref}([\mathrm{A}$ eye $(\mathrm{m})])$
$\mathrm{J}=\mathrm{n}+1: \mathrm{n}+\mathrm{m}$
$\mathrm{E}=\mathrm{U}(:, \mathrm{J})(\mathrm{E}$ becomes matrix with $\mathrm{E} \mathrm{A}=\mathrm{R})$
$\mathrm{N}=\operatorname{null}\left(\mathrm{A}, \mathrm{r}^{\prime}\right)(\mathrm{N}$ becomes rational basis for null space, $\mathrm{AN}=0)$
eigenvalues and eigenvectors
$[\mathrm{P}, \mathrm{D}]=\operatorname{eig}(\mathrm{A})(\mathrm{P}$ and D become matrices with $\mathrm{AP}=\mathrm{PD}$, where D is diagonal)

transpose

A'

