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Abstract

These lectures give a brief and elementary introduction to quantum mechan-
ics that starts from zero and leads to ideas from current research. The topics
are:

• The uncertainty principle. This is an account of the general physical
significance of quantum mechanics. The uncertainty principle gives a pic-
turesque way of thinking about what quantum mechanics is about. How-
ever it can also be given a precise mathematical formulation. In this
account the uncertainty principle for quantum mechanics is deduced from
an uncertainty principle for diffusion.

• The geometry of quantum mechanics. Throughout these lectures the ac-
count will be of quantum mechanics formulated in the finite dimensional
case. The fundamental probability interpretation of quantum mechanics is
related to the geometry of inner product spaces, in particular to the theo-
rem of Pythagorus. There is a different version of the uncertainty principle
that may be formulated in the context of such elementary geometry.

• Commutation relations. There is more to quantum mechanics than ab-
stract geometry; the geometry must be related to physical quantities like
position and momentum. This lecture presents a characterization of a
quantum mechanical system describing a particle present in a finite one-
dimensional crystal consisting of N points (arranged in a circle). A simple
commutation relation has an essentially unique solution that characterizes
the physical system.

• Extended and localized states. The ultimate goal of quantum mechanics
is to compute quantities associated to the energy. It is easy to compute
functions of the kinetic energy associated to the particle moving in the
crystal. However the total energy, consisting of kinetic energy and po-
tential energy, is more complicated. One question considered in current
research is whether the states of fixed energy are extended over the crys-
tal, or localized near particular places. The usual picture of conduction
electrons in a metal is via extended states. However in one dimension
the smallest amount of randomness is enough to destroy this and produce
localization. What happens in higher dimensions is largely unknown, at
least as far as rigorous mathematical results are concerned.



Chapter 1

The uncertainty principle

1.1 Planck’s constant

The characteristic sign of quantum mechanics is the rationalized Planck’s con-
stant

h̄ = 1.054× 10−27 erg-sec. (1.1)

(To say that it is a rationalized constant means in this case that it incorporates
a factor of 1/(2π).) The units of this quantity are energy times time, or momen-
tum times distance. In other words, the units are those of area in phase space.
When considering an area in phase space smaller than this scale, the world must
be regarded in a radically different way. This is the quantum theory.

The most famous expression of this new way of looking at the world is the
Heisenberg uncertainty principle. This says that the product of the uncertainties
of the momentum p and the position x satisfy

∆p∆x ≥ h̄

2
. (1.2)

Let us be more precise about what we mean by uncertainty. Suppose that
the probability density of position is given by a density ρ(x). This is a positive
function with integral over the x axis equal to one. Then the average (mean,
expected value) of x is

〈x〉 =

∫ ∞
−∞

xρ(x) dx. (1.3)

The average squared deviation (variance) of x is

(∆x)2 = 〈(x− 〈x〉)2〉 =

∫ ∞
−∞

(x− 〈x〉)2ρ(x) dx. (1.4)

The square root ∆x of this is the uncertainty (standard deviation). Sometimes
this is called the root mean square (RMS) deviation.
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Suppose there is some other probability density ρ̃(p) for momentum. In the
same way we define the mean value of p as

〈p〉 =

∫ ∞
−∞

pρ̃(p) dp. (1.5)

The mean square of p is

(∆p)2 = 〈(p− 〈p〉)2〉 =

∫ ∞
−∞

(p− 〈p〉)2ρ̃(p) dp. (1.6)

The root mean square is ∆p.
The uncertainty principle says that the two probability densities are such

that the product of the standard deviations is bounded below by a small but
strictly positive number, h̄/2. If one density is strongly peaked, then the other
must be somewhat spread out. Note that the principle deals with the two
probability distributions for momentum and position separately. In quantum
mechanics there is no joint distribution for these two quantities. This is inter-
preted as saying that measurement of one quantity precludes in principle the
measurement of the other quantity.

1.2 The size of atoms

Now we give a physical argument that is very non-rigorous. However there is a
rigorous version of it. This can be found, for instance, in my article “Inequalities
and uncertainty principles,” J. Math. Phys. 19 (1978), 461–466.

The non-rigorous argument is the following. Consider a system consisting of
a nucleus and an electron. The nucleus is regarded as fixed. The kinetic energy
of the electron is

T =
p2

2m
, (1.7)

where m is the mass of the electron. The kinetic energy is always positive, and
it is zero when the momentum p is zero.

The potential energy of the electron is

V = −e
2

r
(1.8)

where e is proportional to the charge of the electron. Here r is the distance of
the electron from the fixed nucleus. The potential energy is always negative. It
is close to zero when the electron is far away from the nucleus, but it becomes
extremely negative when the electron is very close to the nucleus.

The total energy is the sum

H = T + V =
p2

2m
− e2

r
(1.9)

of the kinetic and potential energies. In classical mechanics the state of lowest
energy would be when p = 0, r = 0, and H = −∞. This is a rather singular
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situation. However quantum mechanics, in the form of the uncertainty principle,
comes to the rescue.

Let us assume (this is the non-rigorous part) that the lowest energy situation
in quantum mechanics is when we take 〈p〉 = 0 and that the remaining kinetic
energy has an average value

T =
(∆p)2

2m
. (1.10)

Let us also assume that the distance r of the electron from the nucleus may be
regarded as comparable to r = 2∆x. (The factor of two is for convenience; it
makes the final formulas look nicer.) Thus we write

V = − e2

2∆x
. (1.11)

Finally, we assume that we have the least possible uncertainty: in the form
∆p∆x = h̄/2. From these equations we get that the total energy is

H =
(∆p)2

2m
− e2∆p

h̄
. (1.12)

This has its minimum value when

∆p

m
=
e2

h̄
. (1.13)

The corresponding radius is

r = 2∆x =
h̄2

me2
. (1.14)

How big are these numbers? The quantity e2/h̄ is a velocity, very roughly
equal to

e2

h̄
= 2× 108 cm/sec. (1.15)

The quantity h̄/m is a diffusion constant, which for the case of an electron
is roughly equal to

h̄

m
= 1 cm2/sec. (1.16)

Thus the radius is about

r =
1

2
× 10−8 cm. (1.17)

Let us say that this is about half of the diameter of a typical atom, which
is 10−8 cm. Then the number of atoms in a cubic centimeter would have to
be about 1024. This is in fact rather close to the number used in chemical
calculations.
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1.3 The uncertainty principle in diffusion

Is the uncertainty principle unique to quantum mechanics? Not really. Let us
look at how such an uncertainty principle might occur in a probability problem.

Let us make the postulate that particles are diffusing with diffusion constant
σ2/2. This means that the flow of particles is given by −(σ2/2) dρ(x)/dx, where
ρ(x) is the density of particles. The particles diffuse from a region of higher
density to a region of lower density.

Let us also assume that equilibrium is maintained by a tendency of the
particles to drift at a velocity u(x). This should be thought of as a terminal
velocity that results from an external force and opposing frictional force. Then
the flow of particle due to this drift is u(x)ρ(x).

The detailed balance between these two effects that produces equilibrium is

u(x)ρ(x)− σ2

2

dρ(x)

dx
= 0. (1.18)

As an example, one can think of the case when x represents height and u(x)
represents the terminal velocity of a falling particle. Then u(x) would be neg-
ative. This would compensate the positive flow of particles due to diffusion.
The density would be decreasing with height in such a way as to maintain the
balance given by this equation.

We have the following uncertainty principle for diffusion.

Theorem 1.1 Consider a smooth probability density ρ(x) that goes to zero suf-
ficiently fast at infinity. Define u(x) by the detailed balance equation. Then
〈u〉 = 0 and

∆u∆x ≥ σ2

2
. (1.19)

This says that it is impossible to concentrate the probability near its average
value (∆x very small) unless the drift that maintains the equilibrium has values
that are far from constant (∆u very large).

Proof: First we compute

〈u〉 =

∫ ∞
−∞

u(x)ρ(x) dx =
σ2

2

∫ ∞
−∞

dρ(x)

dx
dx = 0. (1.20)

Then we use the identity

d

dx
(x− 〈x〉)ρ(x) = ρ(x) + (x− 〈x〉) d

dx
ρ(x). (1.21)

When we integrate this, the integral of the left hand side is zero. Therefore we
get

1 = −
∫ ∞
−∞

(x− 〈x〉) d
dx
ρ(x) dx. (1.22)

This is the same as

σ2

2
= −

∫ ∞
−∞

(x− 〈x〉)u(x)ρ(x) dx. (1.23)
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This says that the deviation has a non-zero negative correlation with the drift
that maintains equilibrium. The proof of the uncertainty principle is concluded
by an application of the Schwarz inequality, so

σ2

2
≤

√∫ ∞
−∞

u(x)2ρ(x) dx

√∫ ∞
−∞

(x− 〈x〉)2ρ(x) dx. (1.24)

1.4 The uncertainty principle in quantum me-
chanics

In quantum mechanics the physics is much more mysterious. The fundamental
quantity is the wave function ψ(x), which is a complex valued function. The
relation of the wave function to the position probability density is

ρ(x) = |ψ(x)|2. (1.25)

Define the osmotic velocity u(x) and the current velocity v(x) by

u(x) + iv(x) =
h̄

m

1

ψ(x)

dψ(x)

dx
. (1.26)

It may be shown in quantum mechanics that 〈u〉 = 0 and that

〈p〉 = m〈v〉. (1.27)

This identity says that the expected momentum is the mass times the expected
current velocity. It is more subtle than it looks. The expectation on the left
is taken with respect to the quantum mechanical momentum distribution ρ̃(p),
while the expectation on the right is taken with respect to the position distri-
bution ρ(x).

It may be shown in quantum mechanics that

∆p = m
√

(∆u)2 + (∆v)2. (1.28)

This identity relates the uncertainty in the momentum to the uncertainties in
the osmotic and current velocities. Again the left hand side is computed with
respect to the quantum mechanical momentum density, while the right hand
side is computed with respect to the position density.

The conclusion is that if we define the quantum mechanical diffusion constant
by

σ2 =
h̄

m
, (1.29)

then the diffusion uncertainty principle implies the quantum mechanical uncer-
tainty principle

∆p∆x ≥ h̄

2
. (1.30)
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Chapter 2

Geometry of quantum
mechanics

2.1 Complex inner product space

This section introduces the notion of complex inner product space. For simplic-
ity, we shall consider only the cases when the space is finite-dimensional.

We consider a complex vector space H. Thus if ψ and φ are vectors in H
and z and w are complex numbers, the linear combination zψ + wφ is defined
and is in H. The usual vector space axioms are satisfied.

The vector space has a given inner product. For every pair of vectors the
inner product 〈φ, ψ〉 is a complex number. Furthermore, reversing the order of
the vectors is equivalent to complex conjugation, so

〈ψ, φ〉 = 〈φ, ψ〉∗, (2.1)

where the star denotes complex conjugation. We also make the convention that
the inner product is linear in the second variable. Thus

〈χ, zψ + wφ〉 = z〈χ, ψ〉+ w〈χ, φ〉. (2.2)

It follows that it is conjugate linear in the first variable:

〈zψ + wφ, χ〉 = z∗〈ψ, χ〉+ w∗〈φ, χ〉. (2.3)

(This is the most common convention in physics. In mathematics the opposite
convention is prevalent.) Finally, we assume that 〈ψ,ψ〉 ≥ 0 and that it is zero
only for the zero vector.

The norm of a vector ψ is

‖ψ‖ =
√
〈ψ,ψ〉. (2.4)

Thus it is always true that ‖ψ‖ ≥ 0, and this is zero only for the zero vector.
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The distance between two vectors is defined to be the norm of their difference.
With this notion of distance, the vector space H is a metric space.

Two vectors φ and χ are said to be orthogonal or perpendicular if 〈φ, χ〉 = 0.
The following result is the theorem of Pythagoras:

Theorem 2.1 If φ and χ are orthogonal, then

‖φ‖2 + ‖χ‖2 = ‖φ+ χ‖2. (2.5)

If M is a subspace of the space H, then M⊥ is defined to be the set of all
vectors χ perpendicular to every vector in M . It is also a subspace of H.

The following theorem is fundamental. It is known as the projection theorem.

Theorem 2.2 Consider a finite dimensional complex inner product space H.
Let M be a linear subspace of H. Let ψ be a vector in H. Then there are unique
vectors φ in M and χ in M⊥ such that

ψ = φ+ χ. (2.6)

We call φ the orthogonal projection of ψ onto M .

2.2 Quantum mechanics

We consider quantum mechanics in the finite-dimensional case. Let H be a com-
plex inner product space. The collection of all the one-dimensional subspaces of
H is called a complex projective space. In the following we choose to represent
a one-dimensional subspace by a unit vector ψ in the space. Two unit vectors
determine the same one-dimensional subspace if and only if one is a multiple of
the other by a complex number of absolute value one.

1. There is a complex inner product space H such that the states of the
system correspond to the one-dimensional subspaces of H. Such a state
is represented by a unit vector ψ in the one-dimensional subspace.

2. The quantum events are in one-to-one correspondence with the linear sub-
spaces M of the Hilbert space H.

3. The probability of an event M when the state is given by the unit vector
ψ is

Pψ[M ] = ‖φ‖2, (2.7)

where φ is the orthogonal projection of ψ onto M .

2.3 Negation

For each quantum event M there is a complementary event M⊥, the orthogonal
complement. We can use notation from mathematical logic and write this as
¬M , the negation of M . We have the following fundamental result:

Pψ[M ] + Pψ[¬M ] = 1. (2.8)
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This of course is just the theorem of Pythagoras in quantum mechanical lan-
guage. The interpretation of this is that the event ¬M happens precisely when
the event M does not happen. So it is reasonable that the probabilities add to
one. Sometimes we say that the zero subspace represents the impossible event
and the entire space H represents the sure event. Whatever the state, the prob-
ability of the impossible event is zero, while the probability of the sure event is
one.

2.4 Conjunction

Given two closed subspaces M and N , M ∩N is also a closed subspace. We say
that two quantum events M and N are compatible if every vector in H may
be written as a sum of its projections on the four subspaces M ∩N , M ∩N⊥,
M⊥ ∩N , and M⊥ ∩N⊥.

If M and N are compatible, then define the conjunction of the two events
to be

M&N = M ∩N. (2.9)

This makes sense, because for compatible events we have the identity

Pψ[M&N ] + Pψ[M&¬N ] + Pψ[¬M&N ] + Pψ[¬M&¬N ] = 1 (2.10)

for every vector ψ. In particular, we have the identity

Pψ[M ] = Pψ[M&N ] + Pψ[M&¬N ] (2.11)

for every vector ψ.
If M and N are not compatible, then we do not try to define the conjunction.

Subspaces in general position tend not to be compatible. In ordinary probability
theory there is no obstacle to forming the conjunction of two events. This is the
main distinction between quantum mechanics and probability.

The philosophical justification for incompatible quantum events is often
taken to be the following. An experiment that measures whether one event
occurs or not may preclude an experiment that measures whether the other
event occurs or not. So in principle it is meaningless to speak of the joint
occurrence of the events.

2.5 An uncertainty principle

Even when the conjunction of two events M and N is not defined, it is possible
to compute the probabilities of the two events separately. We want to give an
uncertainty principle relating these probabilities.

Given two subspaces, we want to define the minimum angle between these
two subspaces. It will be an angle θ between 0 and π/2. The definition is that
cos2(θ) is the maximum value of |〈ψ, φ〉|2 for unit vectors ψ in M and φ in N . If
cos2(θ) is near zero, then θ is near π/2, and the subspaces are nearly orthogonal.
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If cos2(θ) is close to one, then θ is near zero, and the subspaces can be rather
close to each other.

The uncertainty principle is stated in the following theorem.

Theorem 2.3 Let M and N be two subspaces corresponding to quantum events.
Let θ be the minimum angle (between 0 and π/2) between the two subspaces. Let
ψ be a unit vector representing a quantum state. Then

Pψ[M ] + Pψ[N ] ≤ 1 + cos(θ). (2.12)

Thus if the angle θ is close to π/2, the subspaces are nearly orthogonal,
cos(θ) is close to zero, and the right hand side is close to one. This says that
the two probabilities cannot both be close to one. This is the sense in which
this is an uncertainty principle.

Consider two intervals, an interval I of position values and and interval Ĩ
of momentum values. Suppose that the length of I is δx and the length of Ĩ is
∆p. (Here ∆x and ∆p are arbitrary positive numbers, not necessarily arising as
standard deviations.) It will be shown in the next lecture that if M is the event
that the position x is in the interval I and N is the event that the momentum
p is in the interval Ĩ, then

cos(θ) ≤
√

∆x∆p

2πh̄
. (2.13)

Thus when the product of the two lengths is small with respect to Planck’s
constant, the cosine is close to zero, and the uncertainty principle constrains
the probabilities. For example, if the product of the numbers ∆x and ∆p
happens to be 1

100 of 2πh̄, the sum of the probabilities that x is in the space

interval I and p is in the momentum interval Ĩ can be at most 1
10 . This is quite

far from the maximum value of 2 that one would get classically by constraining
the position and momentum to be in these intervals with probability one. For
example, if the probability that x is in I is close to one, then the probablity
that p is in Ĩ is close to zero.

Technical note: Hilbert space
These lectures for the main part only consider quantum mechanics in which

the complex inner product space is finite dimensional. However the geometric
picture of states and quantum events also works in the infinite dimensional case.
There is an additional condition on the complex inner product space H. It must
be a Hilbert space, which means that it is a complete metric space with respect
to the norm. The quantum events are then identified with those linear subspaces
that are themselves Hilbert spaces. Since a subset of a complete metric space
is complete if and only if it is closed, these are the same as the closed linear
subspaces. With this restriction, the projection theorem remains true, and the
theory proceeds as above.
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Chapter 3

Commutation relations

3.1 Unitary operators

As before we consider a finite dimensional complex inner product space H.
We have seen that the fundamental quantities in quantum mechanics are the

states (given by unit vectors) and the quantum events (given by subspaces).
Let A be a linear transformation from H to itself. We shall call such a linear

transformation an operator. We need the concept of adjoint operator A∗. This
is the operator that satisfies the identity

〈A∗φ, ψ〉 = 〈φ,Aψ〉 (3.1)

for all pairs of vectors φ and ψ.
We also need the concepts of self-adjoint operator and unitary operator. A

self-adjoint operator is equal to its own adjoint: A∗ = A. A unitary operator is
an operator whose adjoint is equal to its inverse: U∗ = U−1. In particular,

〈U−1φ, ψ〉 = 〈φ,Uψ〉 (3.2)

which means that
〈χ, ψ〉 = 〈Uχ,Uψ〉. (3.3)

A unitary operator preserves the inner product.

3.2 Projections

We can identify the subspaces by the corresponding projection operators. If M
is a closed subspace of H, then there is an operator E of orthogonal projection
onto M . This is a linear transformation E from H to itself such that E is self-
adjoint and idempotent, that is, such that E = E∗ and E2 = E. Conversely,
given such a projection operator E, its range is a subspace M . So there is a
one-to-one correspondence between projection operators and quantum events.
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The logical operators on projections follow from the corresponding logical
operations on subspaces. The projection corresponding to the negation of E is
I−E. It is also a projection, since it is self-adjoint and (I−E)2 = I−2E+E2 =
I − 2E + E = I − E.

The logical operation of conjunction is multiplication, but it is only defined
when the projections commute. Thus if E and F are projections, the adjoint
is (EF )∗ = F ∗E∗ = FE, and the square is EFEF . If EF = FE, then
(EF )∗ = EF and EFEF = E2F 2 = EF . So when E and F commute, then
EF is also a projection.

Finally, the logical operation of disjunction is defined for commuting projec-
tions E and F by I − (I −E)(I − F ) = E + F −EF . From now on we identify
quantum events with projections.

We can write the probability of a quantum event E in the state ψ to be

Pψ[E] = ‖Eψ‖2 = 〈Eψ,Eψ〉 = 〈ψ,Eψ〉. (3.4)

The equivalence between the last two ways of writing this uses the relations
E = E∗ and E2 = E.

If U is a unitary operator and M is a subspace, then the image UM is
another subspace. If E is the projection on M , then the projection on UM is
UEU−1. In fact, it is easy to verify that UEU−1 = UEU∗ is a projection and
has range UM . The quantum mechanical probabilities are invariant under such
unitary transformations. This is expressed by the equation

PUψ[UEU−1] = Pψ[E]. (3.5)

Consequently, such an overall unitary transformation of both states and events
should not affect the physical predictions. This property is called the unitary
invariance of quantum mechanics.

3.3 Discrete position and momentum

As an example of a quantum mechanical system we consider a one-dimensional
periodic system with N points arranged in a circle. We think of the N points
mathematically as the set 0, 1, 2, . . . , N − 1 with addition defined modulo N .
Thus this is a finite commutative group. Physically, we think of the points as
the sites in a one-dimensional crystal. The crystal is taken to be periodic for
mathematical convenience, but it turns out that many physical predictions do
not depend heavily on this assumption.

It turns out that in this model the momentum will also assume a finite set of
N values. This seems curious, but it is actually quite common in the description
of matter at the atomic level, in the context of solid state physics. Of course
the value of N will be extremely large, perhaps on the order of 108. (Even more
common are two or three dimensional systems, where the number of crystal sites
would be 1016 or 1024.)

The initial description of this system will be one in which the inner product
space H has a specific form as a space of functions (actually finite sequences).
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Thus it is not in the spirit of unitary invariance. We shall see later in this lecture
how to give a description in the spirit of unitary invariance.

The complex vector space is CN with the usual inner product. We think
of this space as the space of all complex functions defined on the set of crystal
sites 0, 1, 2, . . . , N − 1. The inner product of two functions is

〈f, g〉 =

N−1∑
n=0

f(n)∗g(n). (3.6)

The superscript ∗ denotes complex conjugate.
Next we need some projections. The event Em that the position of the

particle is at m is the orthogonal projection onto the indicator function δm
whose value at n is given by the identity matrix δmn. Thus

Emf(n) = δmnf(m). (3.7)

Thus in the representation Em is a diagonal matrix with a 1 on the mth place
on the diagonal.

The event Fk that the momentum of the particle is k is the orthogonal
projection onto the normalized exponential function φk whose value at n is

φk(n) =
1√
N

exp(
2πikn

N
). (3.8)

Thus Fkf = φk〈φk, f〉, or more explicitly,

Fkf(n) = φk(n)

N−1∑
r=0

φk(r)∗f(r) =
1

N
exp(

2πikn

N
)

N−1∑
r=0

exp(−2πikr

N
)f(r). (3.9)

This is a rank one matrix.
Furthermore, we need unitary operators. The unitary operator that trans-

lates in space is
V f(n) = f(n− 1) (3.10)

where the subtraction is taken modulo N . This is a matrix most of whose
entries are ones just below the diagonal. It is a position shift because it takes
the indicator function δm to the indicator function δm+1. The effect of this on
the position projection operators is thus V EmV

−1 = Em+1. Furthermore, it is
possible to calculate that the position shift V may be expressed in terms of the
momentum operators Fk by

V =

N−1∑
k=0

exp(
−2πik

N
)Fk. (3.11)

This is because shifting the exponential function is the same as multiplying it
by the phase factor.
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The unitary operator that translates in momentum is

Uf(n) = exp(
2πin

N
)f(n). (3.12)

This is a diagonal matrix. It is a momentum shift because it takes the function
φk with momentum k to the function φk+1 with momentum k+1. The effect on
the momentum projection operators is thus UFkU

−1 = Fk+1. The momentum
shift may be expressed in terms of the position operators Em by

U =

N−1∑
m=0

exp(
2πim

N
)Em. (3.13)

We can summarize these results in the following list.

• The position projection Em projects onto the subspace spanned by the
indicator function δm.

• The momentum projection Fk projects onto the subspace spanned by the
exponential function φk.

• The position shift operator V shifts position according to V δm = δm+1,
or

V EmV
−1 = Em+1. (3.14)

It is a function of momentum.

• The momentum shift operator U shifts momentum according to Uφk =
φk+1, or

UFkU
−1 = Fk+1. (3.15)

It is a function of position.

There is a particularly elegant representation of these facts in terms of the
unitary operators alone. This is expressed in the following relations. The inter-
esting thing is that these relations are just different ways of writing the same
thing.

• The position shift operator V shifts U according to

V UV −1 = exp(−2πi

N
)U. (3.16)

• The momentum shift operator U shifts V according to

UV U−1 = exp(
2πi

N
)V. (3.17)

Note: For mathematical convenience we have been considering the position
n and quantum mechanical momentum k as having integer values. In actual
quantum mechanical calculations the position x is n δx, where δx is a distance
unit. Similarly, the momentum p is k δp, where δp is a momentum unit equal
to Planck’s constant h̄ times 2π/(Nδx).
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3.4 A discrete uncertainty principle

Let us look at the probability that a particle is simultaneously localized in space
and in momentum. Say that it is localized in a set A in space and a set B in
momentum. The corresponding projections are

E(A) =
∑
n∈A

En (3.18)

and
F (B) =

∑
k∈B

Fk. (3.19)

We know that
〈ψ,E(A)ψ〉+ 〈ψ, F (B)ψ〉 ≤ 1 + cos(θ), (3.20)

where θ is the minimum angle between the range of E(A) and the range of E(B).
Thus if cos(θ) is close to zero, that is, θ is close to π/2, then it is impossible
that the position is localized in A and the momentum in B.

Now it is not hard to see that

cos2(θ) ≤ tr(E(A)F (B)E(A)). (3.21)

It suffices to take ψ to be a unit vector in the range of E(A) and φ to be a
unit vector in the range of F (B), with |〈ψ, φ〉|2 maximal. This maximal value
is cos2(θ). Then the projection of ψ onto the range of F (B) is 〈φ, ψ〉φ. Finally,

〈ψ,E(A)F (B)E(A)ψ〉 = 〈ψ,F (B)ψ〉 = |〈ψ, φ〉|2 (3.22)

is a diagonal matrix element and so is a lower bound for the trace.
Let a be the number of points in A and b be the number of points in B.

Then

tr(E(A)F (B)E(A)) =
ab

N
. (3.23)

Thus if ab is considerably less than N , then the probabilities of simultaneous
localization in position and momentum cannot both be near one.

It is interesting to look at the continuum limit. Think of the points in space
as being spaced by δx. Then the points in momentum space are spaced by δp,
where

δp δx

2πh̄
=

1

N
. (3.24)

So the condition for the uncertainty principle to apply is that the area in phase
space divided by Planck’s constant be considerably less than one. The situation
is summarized in the following theorem.

Theorem 3.1 Consider intervals of length ∆x = aδx and ∆p = bδp, where
a and b are the number of points, and where δx and δp are the position and
momentum spacings. Then the minimum angle θ between the corresponding
position and momentum subspaces is constrained by

cos2(θ) ≤ ∆x∆p

2πh̄
. (3.25)
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3.5 A discrete commutation relation

Up to now we have considered the events by specifying them in a particular
representation of the vector space as a space CN of functions. It would be
nice to have a more intrinsic characterization of these physical quantities, one
compatible with the principle of unitary invariance. In this section we will see
that the structure of the position and momentum events and of the position
and momentum shift operators may be determined from abstract conditions
that make no assumption about the particular form of the vector space.

Thus we assume that we have a finite-dimensional complex inner product
space H. We have a number N and two unitary operators U and V . The
operator V will describe translation in space by one step, while the U will
describe translation in momentum by one step. In our case both space and
momentum are periodic with period N . Thus we require that UN = I and
V N = I. Finally we require that the operators satisfy the commutation relation

UV = exp(
2πi

N
)V U. (3.26)

The commutation relation relates shifts in space (according to V ) and in
momentum (according to U). If we write it as V UV −1 = exp(−2πi/N)U , then
it says that a shift in space given by V makes a phase change in the momentum
shift operator U . We shall see that the commutation relation not only relates the
operators to each other, but also restricts the form of the individual operators.

We already know examples of operators U and V satisfying these relations.
These are the concrete examples that we saw before, which for the moment we
will denote by Û and V̂ . In this standard representation the inner product space
is CN and the operators Û and V̂ are given by

Ûf(n) = exp(
2πin

N
)f(n) (3.27)

and
V̂ f(n) = f(n− 1). (3.28)

The goal is to show that every solution satisfying the commutation relations
together with a multiplicity condition is isomorphic to the standard representa-
tion. Thus one would like to show that there is a unitary operator W from CN

to H such that the operators U and V take the form

U = WÛW−1 (3.29)

and
V = WV̂W−1. (3.30)

Theorem 3.2 Let H be a complex inner product space of finite dimension. Sup-
pose that U and V are unitary operators with UN = I and V N = I. Suppose
that they satisfy the commutation relation. Finally, suppose that the eigenval-
ues of U and V have multiplicity one. Then U and V are isomorphic to the
momentum and position translation operators of the standard representation.
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Proof: First we construct the projection operator corresponding to the mth
point in space by

Em =
1

N

N−1∑
j=0

exp(−2πimj

N
)U j . (3.31)

We can recover the unitary operator U from these projection operators. In fact
the jth power of U is given by

U j =

N−1∑
m=0

exp(
2πimj

N
)Em. (3.32)

In particular from the case j = 0 we see that the projections Em sum to the
identity operator. Furthermore, if the eigenvalues of U have multiplicity one,
then the projections Em have one-dimensional ranges.

Then the commutation relation implies the relation

V Em = Em+1V. (3.33)

This relates shift in space by one unit to location in space. If we write it as
V EmV

−1 = Em+1, then it says that the position subspaces are shifted by the
position shift operator in the expected way.

Take a unit vector ψ in the range of E0. Then the relation above implies
that the vector V nψ is in the range of En. Since

∑
nEn = I, every vector

can be expanded in terms of these unit vectors. Thus the vectors V nψ form an
orthonormal basis for the vector space H.

Consider the space of all complex functions f in CN . Let

Wf =
∑
n

f(n)V nψ. (3.34)

Then W is unitary from CN to H. Furthermore,

VWf =
∑
n

f(n)V n+1ψ =
∑
n

f(n− 1)V nψ = WV̂ f. (3.35)

Also
EmWf = f(m)V mψ =

∑
n

δnmf(m)V nφ = WÊmf. (3.36)

Here
Êmf(n) = δnmf(m) (3.37)

is the position projection in the standard representation. This shows that
VW = WV̂ and EmW = WÊm. In other words, the operators V and Em
are isomorphic to the position shift and position localization operators in the
standard representation. It is then easy to see that UW = WÛ , so U is isomor-
phic to the momentum shift operator in the standard representation.

Remark: We have assumed in the above theorem that the multiplicity of the
eigenvalues is one. If instead the multiplicity of the eigenvalues is q, then there
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is a unitary operator W from H to CNq so that under W the operators U and
V act like q copies of the standard example. Some applications require higher
multiplicities. For example, if we have a three dimensional crystal with N3

points, then there will be translations in three directions. The translations in
one specified direction will have multiplicity q = N2. This number corresponds
the number of points in a two dimensional layer that is carried along in the
translation.

17



Chapter 4

Extended and localized
states

4.1 Energy: the index of extension

The commutation relations determine the structure of quantum events. Which
events are important? By far the most important are the ones corresponding to
values of the energy. The energy H is a self-adjoint operator, and its eigenspaces
are the relevant subspaces. Thus for each λ that is an eigenvalue of H, the
corresponding subspace where H − λI is zero is the event that the energy has
value λ. In the following we shall write λα with α in some index set for the
possible energy eigenvalues. The corresponding projections onto the eigenspaces
are written Fα. If ψ is the state of the quantum system, then the probability
that the energy is λα is given by 〈ψ,Fαψ〉.

Each eigenspace corresponding to the energy λα consists of eigenvectors.
Denote a typical eigenvector by φα. Then Fαφα = φα, so the probability
〈φα, Fαφα〉 = 1. Thus φα represents a state in which the energy is sure to
be λα. These energy states are important in many physical problems. For this
reason it is customary to talk almost interchangeably about energy events and
energy states.

The energy H is the sum of two terms:

H = H0 + V. (4.1)

The first term represents kinetic energy; the second term represents potential
energy. The kinetic energy and the potential energy are each easy to under-
stand. The challenge is to understand the properties of the total energy. In
particular, we want to understand the properties of the eigenfunctions of H. In
the following we deal with the situation when the operator H acts in the space
CN corresponding to N sites in a periodic one-dimensional crystal.

Take a real number λ that is not an eigenvalue of H. Then the operator
(H − λI)−1 exists. Consider a site m, and let δm be the function that is one
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at m and zero elsewhere. It follows that (H − λI)−1δm is also a well-defined
function. The square of its norm is

‖(H − λI)−1δm‖2 =
∑
α

1

(λα − λ)2
〈δm, Fαδm〉. (4.2)

This can also be written as

‖(H − λI)−1δm‖2 =
∑
α

1

(λα − λ)2
|φα(m)|2, (4.3)

where φα is the eigenfunction corresponding to eigenvalue λα. This comes from
expanding the operator in eigenvectors of H. It is a measure of how many energy
events near λ have significant probability when the state is located at site m.
We shall use this quantity as an index of how much the individual energy events
are extended in space. If the energy events are each extended in space, then
they will all involve the site m, and the index ‖(H−λI)−1‖ will be large. If the
energy events are each localized in space, then only a few of these events will
involve the site m; the rest will be localized somewhere else. In this latter case
the index will be small.

In summary, the index of extension ‖(H−λI)−1δm‖2 measures the extent to
which eigenvalues close to λ have eigenfunctions that overlap significantly with
site m. When the number of sites N is large, there can be many eigenvalues
close to λ. The index of extension can still be bounded independently of N ,
provided that most of the eigenfunctions do not overlap very much with the
site m. When this happens for each site m, the eigenfunctions are said to be
localized.

4.2 Kinetic energy: extended energy states

We continue with the example of a one-dimensional periodic system with N
points arranged in a circle. The complex vector space is CN with the usual
inner product.

The kinetic energy operator is a function of momentum. Recall that the
unitary operator that translates in space is

V f(n) = f(n− 1) (4.4)

where the subtraction is taken modulo N . This is a function of momentum.
The adjoint operator is

V ∗f(n) = f(n+ 1). (4.5)

The kinetic energy operator is

H0 = −[V ∗ + V − 2I]. (4.6)

Thus it has the explicit form

H0f(n) = −[f(n+ 1)− 2f(n) + f(n− 1)]. (4.7)
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The expression in brackets is the second difference operator that is the discrete
analog of the second derivative.

The projection onto the subspace with the kth momentum value is the or-
thogonal projection onto the function whose value at n is

φk(n) =
1√
N

exp(
2πikn

N
). (4.8)

These are oscillatory functions that run over the entire crystal. Therefore they
are called extended states.

If we apply H0 to this function, we obtain

H0φk = 2[1− cos(
2πk

N
)]φk. (4.9)

This can also be written as

H0φk = 4 sin2(
πk

N
)φk. (4.10)

From this we see that the energy eigenvalues are all of the form

λk = 4 sin2(
πk

N
). (4.11)

The values of k run from 0 up to N − 1. There are N energy eigenvalues,
and they are all in the interval from 0 to 4. When N is large they are rather
closely spaced, in fact distance between adjacent eigenvalues is always bounded
by 4π/N .

This picture of a band of closely spaced energies is the usual picture of
a conduction band in the physics of solids. It describes those electrons in a
metallic crystal that are free to move from site to site. The state of each such
conduction electron is described by one of the energy states of H0. These are
extended states. So the probability for finding an electron is spread evenly over
the entire crystal.

One mathematical representation of this fact is as follows. As usual, let δm
be the function that is equal to 1 at site m and zero elsewhere. Then the position
projection Em is the projection onto δm. The probability that the position is
at m when the state is φk is

〈φk, Emφk〉 =
1

N
. (4.12)

This is the same probability for all sites.
There is a complementary result in which the state has fixed position and

one is interested in the value of the momentum. Recall that the projection onto
the eigenspace for the kth momentum value is

Fkf(n) =
1

N

N−1∑
r=1

exp(
2πik(n− r)

N
)f(r). (4.13)
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Conssider again the function δm that is 1 at site m and zero elsewhere. This
represents a state at which the particle is sure to be at site m. It is easy to see
that the probability that the momentum is k in this state is

〈δm, Fkδm〉 =
1

N
. (4.14)

For the kinetic energy the index of extension is

‖(H0 − λI)−1δm‖2 =
∑
k

1

(λk − λ)2
1

N
. (4.15)

If λ is in the range from 0 to 4, then it is within a distance 2π/N from some
λk. This shows that

‖(H0 − λI)−1δm‖2 ≥
(
N

2π

)2
1

N
=

N

4π2
. (4.16)

When N is large, the index of extension is huge. This is because each momentum
eigenvector is extended over the whole crystal, and so all of them contribute to
energy associated with the state at site m.

4.3 Potential energy: localized energy states

The potential energy is a function of position. It is specified by giving a sequence
of real numbers vn for n = 0, 1, 2, . . . , N − 1. The potential energy operator is

V =
∑
n

vnEn. (4.17)

This acts on a function by the formula

V f(n) = vnf(n). (4.18)

Thus V is given by a diagonal matrix.
For the potential energy the index of extension at site m is just

‖(V − λI)−1δm‖2 =
1

(vm − λ)2
. (4.19)

This will be small unless by accident vm happens to be close to λ. In any case, it
is independent of N . A state located at m will only experience the one value of
potential energy associated with m. The other potential energy eigenvectors do
not overlap with m at all. This is localization at its most extreme manifestation.

4.4 Random environments

The Anderson model is an attempt to model a disordered system. This is given
by taking each coefficient vn to be random. Perhaps the simplest scheme is to
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take the vn to be independent and to have uniform distribution on the interval
[−ε, ε]. Each list of values of the vn coefficients is represented by a point in an
N dimensional cube of side 2ε. The probability associated with a subset S of
the cube is just

Prob[S] =
volume(S)

volume(cube)
=

volume(S)

(2ε)N
, (4.20)

where the volume is the volume in the N dimensional space. Since this is not
the quantum mechanical probability, but rather is imposed from the outside,
we shall refer to it as the environmental probability.

To think of these probabilities in a more intuitive manner, imagine a random
number generator that generates random numbers uniformly in the interval −ε
to ε. The values of the potential function are obtained by running the random
number generator and recording the value, once for each site.

In the Anderson model we can compute environmental probabilities associ-
ated with the index of extension for the potential energy. Thus for −ε < λ < ε
we have

Prob[‖(V − λI)−1δm‖2 ≥ K] = Prob[|vm − λ| ≤
1√
K

] =
1

ε
√
K

(4.21)

for large K. Thus for fixed ε > 0 the probability that the index is very large is
small.

4.5 Total energy: localized energy states

The one-dimensional Anderson model describes a quantum mechanical particle
with a random potential energy function. It would seem natural that if the
randomness is rather small, then the eigenfuctions would somewhat resemble
the eigenfunctions for the kinetic energy, and they would thus be extended
in space. However, it turns out that the total energy in the one-dimensional
Anderson model has only localized eigenfunctions.

The total energy is given by the operator

H = H0 + V. (4.22)

Again this operator will have eigenvalues λα and corresponding projections Fα
onto the eigenspaces. But now they will be much more difficult to compute.

For the random potential energy function of the Anderson model, the cor-
responding H is a random operator. This means that it is a function of the vn
coefficients, and one computes probabilities with respect to the environmental
probability measure defined above.

The following is the fundamental result about the index of extension for the
Anderson model. It says that the index of extension is not likely to be large,
no matter how large the crystal. If the crystal is large, there are more energy
eigenfunctions, but the number that have significant overlap with the site m
always remains about the same.
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Theorem 4.1 Let H be the energy operator in the crystal with N points. It is
the sum of the kinetic energy H0 with the potential energy V defined by a random
potential function with independent values v(n), each uniformly distributed on
[−ε, ε]. For every ε > 0 there are constants C < ∞ and s > 0 such that for all
N and for all energy values λ and index bounds K we have

Prob[‖(H − λI)−1δm‖2 ≥ K] ≤ C

Ks
. (4.23)

The theorem says that by taking K extremely large, the environmental prob-
ability that ‖(H−λI)−1δm‖ exceeds K can be made so small that this will never
be observed in practice. The remarkable thing is that this is independent of the
size N of the crystal.

How can this be, if the eigenvalues λα are close to λ? They are going to be
very close for large N , since the λα will be very closely spaced. The answer is
that although λα is likely to be close to λ, this is more than compensated by the
fact that the eigenfunction associated with λα is likely to be very close to zero
except in an interval very far from m. This is the phenomenon of localization.

In physical terms, the localization of the eigenfunctions is saying that in a
disordered one-dimensional system the electrons do not travel freely through the
crystal, but each one hangs around near one spot. Even a slight randomness
destroys their capability to propagate.

What is the situation in two and three dimensions? Do we have extended
states, or localized states? It is known that if the randomness is very strong,
then one has localized states. This famous result now has a relatively elementary
proof; see the Aizenman and Molchanov paper mentioned below. Aside from
this, almost all problems are open. It is not even known rigorously if it is possible
to have extended states for a random potential, though it is universally believed
that this is the case in three dimensions. For a discussion, see my article on
random waves and localization (Notices of the American Mathematical Society
42 (1995), 848–853).

4.6 Estimating fractional powers

The proof of the theorem given above is not elementary, but it may be useful
to sketch some of the ideas. These are ideas that are useful in various problems
involving wave propagation in random environments.

We can compute the environmental expectation of functions X of the vn
coefficients by the formula

Expect[X] =
1

(2ε)N

∫ ε

−ε
· · ·
∫ ε

−ε
X(v0, . . . , vN−1) dv0 · · · dvN−1. (4.24)

As an example, we can try to take the environmental expectation of the
index of extension for the potential energy. When λ is in the interval fro −ε to
ε this is

1

2ε

∫ ε

−ε

1

(vm − λ)2
dvm =∞. (4.25)
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The best we can do is to have some fractional power that has finite expectation.
Thus if s < 1/2, we have

1

2ε

∫ ε

−ε

1

(vm − λ)2s
dvm <∞. (4.26)

A recent idea in this field is that the same should apply for the total energy:
the expectation of a small fractional power of the index of extension should
be finite. The most spectacular application of this idea was given in a paper
of Aizenman and Molchanov (Communications in Mathematical Physics 157
(1993), 245–278). They dealt with the multidimensional case with large ran-
domness parameter ε. There is a similar result in the one dimensional case with
any value of ε > 0.

Theorem 4.2 Let H be the energy operator in the crystal with N points defined
by the sum of the kinetic energy H0 with the potential energy V given by a ran-
dom potential function with independent values v(n), each uniformly distributed
on [−ε, ε]. Then for every ε > 0 there are constants C <∞ and s > 0 such that
for all N and all λ

Expect[‖(H − λI)−1δm‖2s] ≤ C. (4.27)

The proof of this theorem is not elementary, but we can sketch some of the
ingredients. The vector g = (H − λI)−1δm is the periodic function that solves
the difference equation

−[g(n+ 1)− 2g(n) + g(n− 1)] + vng(n)− λg(n) = δmng(n). (4.28)

This is a random difference equation, since the coefficients vn are random. One
needs properties of the solutions of random difference equations.

One useful device is to reduce this to a result about products of random
matrices. Thus we could write the equation for n 6= m by introducing a second
coordinate h(n) = g(n− 1) so that(

g(n+ 1)
h(n+ 1)

)
=

(
(vn + 2− λ) −1

1 0

)(
g(n)
h(n)

)
. (4.29)

Thus the solution obtained by iterating this equation is given by a product of 2
by 2 matrices, each with determinant one.

The book by Bougerel and Lacroix (Products of Random Matrices with Ap-
plications to Schrödinger Operators, Birkhäuser, Boston, 1985) describes the
theory of such matrix products. There is a kind of instability: The solutions
of such random equations tend either to grow exponentially or to decay expo-
nentially. In the case of the solution above, the function g(n) should decay
exponentially from the source point m, at least up to the maximum distance
from m around the circle. The rate of exponential decay should depend on the
randomness parameter ε but not on the size of the system N . The theorem is a
way of making this idea quantitative.

24



The proof that the theorem about probabilities follows from the theorem on
expectations is elementary. In fact, it follows from the Chebyshev inequality.
The Chebyshev is a very general and simple probability result. It says that if φ
is a positive increasing function on the range of X, then

Prob[X ≥ a] ≤ Expect[φ(X)]

φ(a)
. (4.30)

The proof is simple. If X ≥ a, then since φ is increasing, it follows that φ(X) ≥
φ(a). Hence Prob[X ≥ a] ≤ Prob[φ(X) ≥ φ(a)]. Define Y = φ(a) if φ(X) ≥
φ(a) and Y = 0 otherwise. Then Y ≤ φ(X), so Expect[Y ] ≤ Expect[φ(X)].
This says φ(a) Prob[φ(X) ≥ φ(a)] ≤ Expect[φ(X)]. Hence φ(a) Prob[X ≥ a] ≤
Expect[φ(X)], which is Chebyshev’s inequality.

For the problem at hand we get the estimate by taking the increasing func-
tion to be φ(x) = xs for x ≥ 0. Then the Chebyshev inequality gives

Prob[‖(H − λI)−1δm‖2 ≥ K] ≤ Expect[‖(H − λI)−1δm‖2s]
Ks

≤ C

Ks
. (4.31)
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