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1 Introduction

These talks are about expectations of non-linear functions of Gaussian random
variables. The first talk presents the famous Feynman diagram expansion, which
is straightforward but for which it is difficult to obtain convergence results. The
second talk is about another approach that leads to convergent expressions, at
least in a small parameter regime.

The story begins with an integral of the form

Z = 〈eS(φ)〉. (1)

Here φ refers to a family of mean-zero Gaussian random variables φx for x in a
set X . The brackets denote expectation with respect to the Gaussian measure.
The Gaussian variables have covariance 〈φxφy〉 = Cxy. The function S(φ) is
expressed as a power series in these random variables; for the moment we take
S(0) = 0. Often it is just a polynomial, for instance one useful test case is

S(φ) =
∑
x

sxφx +
∑
x

m∑
n=2

snφ
n
x (2)

with leading coefficient sm < 0. This is the sum of a general first order term
with higher order terms whose coefficients do not depend on x.

The eventual goal is to get an expression for a quantity F such that

Z = 〈eS(φ)〉 = eF . (3)

One motivation for this problem that this gives an approach to defining a new
non-Gaussian probability model. The idea is simple and is explained in the final
part of this talk. For the moment accept that computation of F is an important
goal.

There is an analogous problem in quantum field theory. This problem is
much more singular, for many reasons. In the present context the important
quantities are positive, so we are in the familiar context of probability theory. In
quantum field theory the corresponding quantities are complex numbers. Worse,
the role of X is played by space-time, which is a continuum. This leads to the
notorious divergences due to short-distance behavior.
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It is possible to do the probability problem in a context where X is Euclidean
space. There are analytic continuation results that show that this is relevant
to the study of quantum field theory. But even in the probability context there
are serious issues with short distance behavior.

2 Power series in several variables

In the following we will often have the following setup. There is a given set X .
There may also be a mapping a : Un → X . Here Un is a set with n elements. For
instance, one possibility for U3 is {4, 5, 7}. Then there would be corresponding
elements a(4), a(5), a(7) of X , which might or might not be distinct. For each
such mapping there is a corresponding function N on X that counts the number
of i such that a(i) = x.

The terminology for Un and X varies from situation to situation.

• In tensor terminology Un is an index set, and X the coordinate set. A
mapping a is a listing of some of the coordinates. The corresponding N
is a multi-index.

• In combinatorics terminology Un is the label set, and X the color set.
A mapping a is a coloring of the set Un using color palette X . The
corresponding N is the inventory of colors.

• In physics Un is a set of n particles, and X is the set of locations. A
mapping a is a particle configuration in the discrete space X . The corre-
sponding N is the occupation number function.

Fix a set X . This set will index coordinates. Let zx for x ∈ X be cor-
responding variables. An exponential generating function is a (formal) power
series

F (z) =
∑
N

1

N !
f(N)zN . (4)

Here N is a multi-index defined on X , that is, N : X → {0, 1, 2, 3, . . .}. The

factorial N ! is defined by N ! =
∏
xN(x)!. The power zN =

∏
x z

N(x)
x . There

is nothing special here: this is just a general power series expansion in many
variables. The coefficient f(N) is the derivative DNF evaluated at zero. The
expression above is called the multi-index form of the series.

The same series may be written in another notation. In this notation there is
an index set Un for each n. This is a set with n elements. If we have a : Un → X ,
then we have a corresponding multi-index [#a] given by

[#a](x) = #{i | a(i) = x}. (5)

The number of colored sets with given multi-index is given by the multinomial
coefficient

#{a | [#a] = N} =
n!

N !
. (6)
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We write

F (z) =

∞∑
n=0

1

n!

∑
a:Un→X

f(a)
∏
i∈Un

za(i). (7)

Here f(a) = f([#a]). This is called the symmetric tensor form. It is identical
to the multi-index form. One can make it look more familiar by writing it as

F (z) =

∞∑
n=0

1

n!

∑
a1,...,an

fa1,...,anza1 · · · zan . (8)

In many situations the symmetric tensor form is the more natural setting for
combinatorics.

3 The exponential of a power series

Here is a fundamental relation in combinatorics. Say that G(0) = 1 and C(0) =
0 and

G(z) = exp(C(z)). (9)

This is the exponential of a function. The combinatorial issue concerns the
relation between the corresponding coefficients in the series expansion.

Write Part[U ] for the set of set partitions of U (into non-empty non-overlapping
subsets). Then

g(a) =
∑

Γ∈Part[Un]

∏
V ∈Γ

c(aV ), (10)

where aV is the restriction of a to V . In this representation C(z) is called the
connected function, and the coefficients c(a) are the cluster coefficients. This
relation is called the combinatorial exponential. It is a relation between the
coefficients. It is vital to distinguish the exponential from the combinatorial
exponential.

The combinatorial exponential has a multi-index form, that gives more de-
tailed information, but at the price of complication. The statement is that

g(N) =

∞∑
p=0

1

p!

∑
M1+···+Mp=N

N !

M1! · · ·Mp!
c(M1) · · · c(Mp). (11)

The sum is over sequences of multi-indices. Each such sequence produces a
higher multi-index k that counts how many terms in the sequence equal a given
multi-index M . The number of sequences with given k satisfying

∑
M k(M) = p

is the multinomial coefficient p!/
∏
M k(M)!. So we can write this as a sum over

such k in the form

g(N) =
∑∑

M
k(M)M=N

N !∏
M k(M)!

∏
M (M !)k(M)

∏
M

c(M)k(M). (12)

3



As an example of the exponential construction, consider the exponential of
a quadratic

C(z) =
1

2

∑
a1

∑
a2

c(a)za1za2 =
∑
|N |=2

1

N !
c(N)zN . (13)

Then
g(a) =

∑
σ∈Match[Un]

∏
W∈σ

c(W ). (14)

This is a sum over partitions into two-point blocks, that is, a sum over perfect
matchings.

The multi-index form gives a sum over graphs with vertex set X having
multiple edges and loops. Such a graph may be thought of as a multiplicity
function G defined on simple edges ` = {x, y}, where x = y is allowed for a
loop. The multiplicity of an edge ` is G(`). Each edge has two end-points. A
graph G has degree function N if the number of end points of edges at each
vertex x is N(x). Thus

g(N) =
∑

degree(G)=N

N !∏
`G(`)!2cycle(G)

∏
`

c(`)G(`). (15)

Also

G(z) =
∑
G

1∏
`G(`)!2cycle(G)

∏
`

c(`)G(`)zdegree(G). (16)

This is a sum over all graphs.
It is possible to write G(z) as a sum involving simple graphs with loops

(without multiplicities). However this requires a different expansion parameter.
The result is

G(z) =
∑
G

∏
{x,y}∈G

(ec̄(x,y)zxzy − 1), (17)

where c̄(x, y) = c(x, y) for x 6= y and c̄(x, x) = 1
2c(x, x). If we expand the

exponential we get the contributions of the multiple edges.

4 Moments and cumulants

In one famous interpretation of this formula the g(a) are the moments of a
probability distribution, and the c(a) are the corresponding cumulants. In other
words, we have random variables φx with

G(z) = 〈exp(
∑
x

zxφx)〉 = exp(C(z)). (18)

Then the moments are
g(a) = 〈

∏
i

φai〉 (19)
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and the cumulants are the corresponding c(a).
The mean-zero Gaussian case is when all cumulants are zero except for the

case n = 2. In that case for a : {1, 2} → X the cumulant c(a) = Ca1 a2 , where
C is the covariance matrix. So we have the Gaussian relation

〈exp(
∑
p

zpφp)〉 = exp(
1

2

∑
a1 a2

Ca1 a2za1za2). (20)

In particular, for the moments corresponding to a : Un → X we have

〈φa1 · · ·φan〉 =
∑

σ∈Match[Un]

∏
W∈σ

c(aW ). (21)

Here Match[Un] consists of all perfect matchings of Un, that is, of set partitions
of Un into blocks of size 2. For each block W = {i, j} there is a correspond-
ing covariance c(aW ) = Cai aj and the contribution of a particular matching
partition is the product of these covariances.

We could also write this in the multi-index form as

〈φN 〉 =
∑

degree(G)=N

N !∏
`G(`)!2cycle(G)

∏
`

c(`)G(`). (22)

There is a much more general formula that gives (at least in principle) the
expectation of an arbitrary random variable with respect to the Gaussian prob-
ability measure. Let

∆ =
∑
x

∑
y

∆xy =
∑
x

∑
y

Cxy
∂

∂φx

∂

∂φy
. (23)

The formula is
〈f(φ)〉 = (e

1
2 ∆f)(0). (24)

The crudest way to use this formula is to expand the exponential. The partial
derivatives all commute, and so they may be treated like variables. Then one-
half the Laplace operator is of the same form as the exponential generating
function for two point subsets with weights Cxy given by the corresponding
colors. It follows that exp( 1

2∆) is given by the usual exponential formula that
corresponds to partitions of an m element set into two-point subsets:

〈f(φ)〉 =

∞∑
m=0

1

m!

∑
a:Um→Λ

∑
σ∈Match[Um]

∏
{i,j}∈σ

Cai aj (
∏
j∈Um

∂

∂φaj
f)(0). (25)

Alternatively, we can write

〈f(φ)〉 =
∑
G

1∏
`G(`)!2cycle(G)

∏
`

c(`)G(`)(Ddegree(G)f)(0). (26)

This is a sum over graphs where edges have weights given by covariances, and
the vertices have weights given by partial derivatives of the function. The partial
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derivatives associated with a vertex are determined by the corresponding end
points of edges at that vertex.

As a trivial illustration of this expansion, take the case when f(φ) = φM is
a monomial. Then DNφM evaluated at 0 is zero unless N = M , and in that
case DMφM = M !. So we conclude that 〈φM 〉 = g(M) as before.

5 Gaussian process Feynman diagrams

In Euclidean field theory there is a central problem. Start with Gaussian random
variables φp. Consider the action

S(φ) =

∞∑
n=1

1

n!

∑
a:Un→X

s(a)
∏
i∈Un

φai . (27)

Sometimes this is just a polynomial of reasonably low degree, but greater than
2. The problem is to calculate the expectation

Z = 〈exp(S(φ))〉 (28)

and various related quantities. A standard calculation gives

Z =

∞∑
n=0

1

n!

∑
a:Un→X

∑
∆∈Part[Un]

∏
V ∈∆

s(aV )〈
∏
i∈Un

φai〉 (29)

However since these are Gaussian random variables this is

Z =

∞∑
n=0

1

n!

∑
a:Un→X

∑
∆∈Part[Un]

∑
σ∈Match[Un]

∏
V ∈∆

s(aV )
∏
W∈σ

c(aW ). (30)

A Feynman diagram considers of a set Un, a set partition ∆ of Un, and a
perfect matching σ of Un. A block V in ∆ is called a vertex, while a two-element
set W in σ is called a line. The corresponding covariance Cai,aj propagates
the influence from ai to aj . A vertex factor s(aV ) describes the non-linear
interaction taking place at all the ak for k ∈ V .

Each Feynman diagram defines a graph (possibly with multiple edges and
loops). The vertices of the graph are the blocks in ∆. The edges of the graph
are the two-element sets W = {i, j} in the perfect matching. An edge {i, j}
connects the blocks of ∆ to which i and j belong. The topology of these graphs
depends on the details of the interaction. For instance, if S(φ) is a polynomial
of degree m, then every vertex will have degree at most m.

6 Connected diagrams

A Feynman diagram D = (∆, σ) always has a decomposition into connected
components. This consists of a maximal partition Γ of Un such each vertex in
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∆ and each line in σ is a subset of some block V in Γ. Thus we get connected
diagrams on each block V of Γ.

We want to write Z = eF . Write a diagram as D = (∆, σ) with

wt(a,D) =
∏
V ∈∆

s(aV )
∏
W∈σ

c(aW ). (31)

Then

Z =

∞∑
n=0

1

n!

∑
a:Un→X

z(a), (32)

where
z(a) =

∑
D

wt(a,D). (33)

It follows that

F =

∞∑
n=0

1

n!

∑
a:Un→X

f(a), (34)

where
f(a) =

∑
Dc

wt(a,Dc). (35)

This is the sum over connected diagrams. This combinatorial device gives a
way of writing Z in the form of an exponential Z = eF . This is a standard
technique in both combinatorics and physics: write the coefficients of Z as a
sum of objects built over a set, discover the coefficients of F as the corresponding
sum of connected objects.

To see why this works, one can calculate the combinatorial exponential∑
Γ

∏
V ∈Γ

f(aV ) =
∑

Γ

∏
V ∈Γ

∑
Dc

wt(aV , Dc) =
∑

Γ

∑
χ

∏
V ∈Γ

wt(aV , χ(V )) (36)

where χ assigns to each block a corresponding connected diagram. But each
diagram D corresponds to a partition Γ and a connected diagram χ(V ) on each
block in the partition. Furthermore, the weight of the diagram is the product
of the weights of the connected diagrams. So this is just∑

D

wt(a,D) = z(a). (37)

Given the expansion for F , one can ask about whether it (or various related
series) have any reasonable convergence properties. Perhaps a good test case is
to take

S(φ) =
∑
x

sxφx +
∑
x

s4φ
4
x. (38)

The reason for the fourth power is that this is the first even power greater than
two. This example is the case where all vertices of the diagrams are of degree
one or four. The sign of the leading coefficient s4 is crucial. If it is negative,
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then S(φ) is bounded above, and exp(−S(φ)) is bounded. If it is positive, then
the whole enterprise looks questionable. This is at least one reason why one
might not expect analyticity. The actual series expansion has lots of terms, and
it appears that the terms must have both signs. An attempt to extract rigorous
information from the diagram expansion must exploit cancelation.

7 The probability model

Here is the explanation of the probability model mentioned in the introduction.
Write

S(φ) =
∑
x

sxφx + S≥2(φ). (39)

Then
Z(s) = 〈eS(φ)〉 = 〈e

∑
x
sxφxeS≥2(φ)〉 = eF (s). (40)

This looks like the moment generating function for a non-Gaussian measure
whose density with respect to the Gaussian measure is proportional to eS≥2(φ).
There is a serious problem: this is not properly normalized. However we can
write

Z(s)

Z(0)
= eF (s)−F (0). (41)

The left hand side is a moment generating function, but its definition involves
an unpleasant division. The F (s) − F (0) on the right hand side is a cumulant
generating function that only involves an innocuous subtraction.

We have seen that Z(s) is the sum of contributions from all Feynman di-
agrams. Then F (s) is the contribution from connected Feynman diagrams.
Similarly, Z(0) is the sum of all contributions from Feynman diagrams with-
out one point blocks, and F (0) is the sum of all contributions from connected
Feynman diagrams without one-point blocks. The cumulant generating function
F (s)− F (0) is the sum of connected Feynman diagrams each one of which has
at least one one-point block.

Usually the convergence results are presented not for F , but for the cumu-
lants. For N 6= 0 these are

(DNF )(0) = (DN logZ)(0). (42)

The advantage is that these quantities are pinned at particular points. For
example, the first logarithmic derivative gives the expectation

(
∂

∂sx
F )(0) =

1

Z(0)
〈φxeS≥2(φ)〉. (43)

The next derivative gives the covariance

(
∂2

∂sx∂sy
F )(0) =

1

Z(0)
〈φxφyeS≥2(φ)〉 − 1

Z(0)
〈φxeS≥2(φ)〉 1

Z(0)
〈φyeS≥2(φ)〉. (44)
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