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1 Introduction

This talk presents the cluster expansion story. In the following X is a discrete
space. In a given situation we shall usually be considering only a finite subset
Λ ⊆ X . The idea is to get expansions for quantities related to

Zλ = 〈eSΛ(φ)〉 = eFΛ . (1)

The bracket denotes Gaussian expectation. Here the interaction S(φ) has the
local form

SΛ(φ) =
∑
x∈Λ

Sx(φ) =
∑
x∈Λ

m∑
n=0

sxnφ
n
x . (2)

The leading coefficients satisfy sxm < 0. This makes S(φ) bounded above, and
so eS(φ) is bounded. The coefficients sx0 are going to be used in the following
to cancel the contributions of one point sets. Let

fx(φx) = exp(Sx(φx)). (3)

Then the interaction factor is

fΛ(φ) =
∏
x

fx(φx) = exp(
∑
x

Sx(φx)) = exp(SΛ(φ)). (4)

The partition function is

ZΛ = 〈fΛ(φ)〉 = 〈
∏
x∈Λ

fx(φx)〉. (5)

This is a moment of the family of random variables fx(φx).
There are two stages in the analysis. The first is to use the combinatorial

exponential. The idea is to expand the moment as a sum of cumulants

ZΛ =
∑

Γ∈Part[Λ]

∏
A∈Γ

KA. (6)

Here Γ is a partition of Λ.
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The second stage is to write Zλ = eFΛ as an exponential. This is done as
follows. Normalize the fx(φx) so that each 〈fx(φx)〉 = 1. Then the one-point
subsets may be removed, and so we may write the partition function as

ZΛ =
∑
∆

disjoint(∆)
∏
A∈∆

KA. (7)

Here ∆ ranges over collections of subsets A of Λ, each subset having at least
two points. Here the A belong to the set P(Λ) of finite subsets of Λ each
having at least two elements. This is a power series (actually a polynomial) in
the variables KA of the first stage. Not only that, this series, regarded as a
function of these variables, is defined in a way that is entirely combinatorial.
It makes no mention of anything about the sets other than the condition that
they are disjoint. In this situation it has been shown that it is possible to find
a reasonably nice representation

FΛ =
∑
N 6=0

1

N !
c(N)KN . (8)

Because of the combinatorial origin of this expression, the coefficients c(N) are
integers.

Standard cluster expansion results have the following consequence. Suppose
that we have the rooted tree bound

Q = sup
x

∑
x∈A

KAe
|A| ≤ 1. (9)

Then the series for FΛ converges absolutely, in particular

|FΛ| ≤ Q|Λ|. (10)

The main work for the first stage is to establish this rooted tree bound.
There is some similarity between the two stages. In the first stage there is

a formal expression for ZΛ as a sum indexed by graphs inside Λ, and for KA

as a sum indexed by connected graphs inside A. The estimates on the KA are
made possible by replacing the sum over connected graphs by a sum over tree
graphs. These estimates depend on assumptions on the covariances Cxy and
on the interactions. However, unlike the situation with Feynman diagrams, the
graph structure does not depend on the detailed structure of the interactions.
In particular, the degree of a vertex can be arbitrarily high.

In the second stage there is a formal expression for ZΛ as a sum indexed
by graphs of arbitrary size, and for FΛ as a sum indexed by connected graphs
of arbitrary size. The estimates are made possible by replacing the sum over
connected graphs by a sum over tree graphs. These estimates are universal; all
they depend on is the sizes of the various KA.
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2 The combinatorial exponential

The key to the rooted tree bound is the forest formula for Gaussian expecta-
tions. There is an excellent treatment in [2]. A more general formulation of
forest formulas appears in [4]. We are interested in Gaussian expectations with
covariance Cxy. The idea is to interpolate the covariances with parameters sxy
ranging from 0 to 1. When x 6= y we take sxy = syx = s`, where ` = {x, y}.
We take sxx = 1. The corresponding covariance will be denoted 〈F (φ)〉s. As
before, we write

∆` = Cxy
∂

∂φx

∂

∂φy
. (11)

The forest formula deals with Gaussian random variables φx for x ∈ Λ. It
states that

〈fΛ(φ)〉 =
∑

F∈Forest[Λ]

∫
[0,1]F

〈

(∏
`∈F

∆`

)
fΛ(φ)〉σF (u)

∏
`∈F

du`. (12)

The forest graph breaks into tree graph components. The quantity σF (u)` = 0 if
` links vertices in different components. This means that the Gaussian random
variables corresponding to such vertices are independents. On the other hand,
if ` = {x, y} links two vertices in the same component, then σF (u)` is the
minimum of the u`′ , where `′ ranges over the edges in the unique minimal path
in the forest joining x with y.

The proof of the forest formula consists of a systematic iteration of the fun-
damental theory of calculus. One begins with the empty forest, then considers
forests consisting of one edge, then of two edges, and so on. Once one gets to
three edges it is necessary to take care to avoid cycles. It turns out it is possible
to build the forests in this way, avoiding cycles, until finally one arrives at tree
graphs. These are the forest graphs that connect the vertex set, in other words,
the maximal forest graphs.

Thus an arbitrary Gaussian expectation is written as a sum over forest
graphs. Each graph contribution is a uniform average over a cube indexed
by the edges of the forest graph of certain interpolated Gaussian expectations.

Since every forest breaks into tree components, there is a corresponding tree
formula. Take fA(φ) =

∏
x∈A fx(φx). The tree formula states that

KA =
∑

T∈Tree[A]

∫
[0,1]T

〈

(∏
`∈T

∆`

)
FA(φ)〉σT (u)

∏
`∈T

du`. (13)

If ` = {x, y} links two vertices, then σF (u)` is the minimum of the u`′ , where `′

ranges over the edges in the unique minimal path in the tree joining x with y.
The hypotheses are formulated as a rather general condition on the covari-

ance together with a rather restrictive condition on the interaction. Both con-
ditions are relatively natural, and they interact well in the course of the proof.
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The covariance condition is that∑
y

|Cxy| ≤ C. (14)

The uniform analyticity condition is that for k ≥ 1 we have

| ∂
k

∂φk
Fx(φ)| ≤ λkk!. (15)

Our task is to use these condition to estimate Q = supx
∑
x∈AKAe

|A|. The
result is that if λ is sufficiently small, then we have the rooted tree bound
Q ≤ 1.

From the tree formula we conclude that

|KA| ≤
∑

T∈Tree[A]

∏
`∈T

|C`|
∏
x∈A

λd
T
x dTx !. (16)

Fix x in Λ. We need to estimate∑
x∈A, |A|=n

|KA| ≤
∑

T∈Tree[A]

∑
x∈A, |A|=n

∏
`∈T

|C`|
∏
x∈A

λd
T
x dTx !. (17)

We can write∑
x∈A, |A|=n

|KA| ≤
∑

T∈Tree[Un]

1

(n− 1)!

∑
a:Un→Λ, a(1)=x

∏
{i,j}∈T

|Ca(i) a(j)|
n∏
i=1

λd
T
i dTi !.

(18)
This gives ∑

x∈A, |A|=n

|KA| ≤
1

(n− 1)!
Cn−1

∑
T∈Tree[Un]

n∏
i=1

λd
T
i dTi !. (19)

In more detail,∑
x∈A, |A|=n

|KA| ≤
1

(n− 1)!
Cn−1

∑
d1,...,dn

∑
T∈Tree[Un;d1,...,dn]

n∏
i=1

λdidi!. (20)

This looks bad, because of the factorials. For instance, if we replace the sum
over trees with given degrees with the sum over trees, then we have to deal with∑

d1,...,dn

n∏
i=1

λdidi! ≤

( ∞∑
k=1

λkk!

)n
. (21)

This is not a convergent series.
The factorials are handled by the following device, which is nicely explained

in [1]. A result of Cayley shows that the number of trees with given degree
function is given by the multinomial coefficient.

#Tree[Un; d1, . . . , dn] =
(n− 2)!∏n
i=1(di − 1)!

. (22)
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The result is that ∑
x∈A, |A|=n

|KA| ≤
1

n− 1
Cn−1

∑
d1,...,dn

n∏
i=1

λdidi. (23)

It follows that

∑
x∈A, |A|=n

|KA| ≤
1

n− 1
Cn−1

( ∞∑
k=1

kλk

)n
. (24)

The conclusion is that

∑
x∈A,
|KA| ≤

∞∑
n=2

1

n− 1
Cn−1

( ∞∑
k=1

kλk

)n
. (25)

If λ is sufficiently small, then this is bounded by 1. This is the desired rooted
tree bound.

3 The exponential

The method of cluster expansions has a long history; there is a review in [3].
We have the expansion

ZΛ =
∑
∆

∏
A∈∆

KA. (26)

We can write this in tensor form as

ZΛ =

∞∑
n=0

1

n!

∑
A1,...,An

disjoint(A1, . . . , An)KA1
· · ·KAn

. (27)

where

disjoint(A1, . . . , An) =
∏
{i,j}

1Ai∩Aj=∅ =
∑
G

∏
{i,j}∈G

(−1Ai∩Aj 6=∅) (28)

Here the Ai belong to the set P(Λ) of finite subsets of Λ each having at least
two elements. The coefficient is non-zero only when the sets do not overlap.
In particular, the A1, . . . , An map from Un to P(Λ) is bijective. In the graph
sum the graph G has vertex set Un, and the only terms in the graph sum that
contribute are from graphs where every edge has corresponding sets that do
overlap. The graph sum involves only ±1 terms, and there is a huge amount of
cancellation. Thus ZΛ = eFΛ , where

FΛ =

∞∑
n=1

1

n!

∑
A1,...,An

c(A1, . . . , An)KA1
· · ·KAn

, (29)
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and
c(A1, . . . , An) =

∑
Gc

∏
{i,j}∈Gc

(−1Ai∩Aj 6=∅) (30)

Here the connected graph Gc has vertex set Un, and the only terms in the graph
sum that contribute are from graphs where every edge has a corresponding
overlap. The graph sum involves only ±1 terms, and there is a still lot of
cancellation, though this is now less obvious.

The sum over connected graphs is huge and difficult to estimate directly.
We need a resummation that does a lot of the cancellation. The forest and tree
formulas formula work to do this. The first idea is to apply the forest formula
to the sum of graphs. This involves the application of the forest formula to the
function

gs(A1, . . . , An) =
∏
{i,j}

(1− s{i,j}1Ai∩Aj 6=∅). (31)

The result is that

g1(A1, . . . , An) =
∑
F

∫
[0,1]F

∏
{i,j}∈F

(−1Ai∩Aj 6=∅)
∏
{i,j}/∈F

(1−σF (u){i,j}1Ai∩Aj 6=∅)
∏
{i,j}∈F

du{i,j}.

(32)
The sum over graphs on the left hand side has been written as a much smaller
sum over forests on the right hand side. The main idea is to use the correspond-
ing formula for the sum of connected graphs. The result is that

c(A1, . . . , An) =
∑
T

∫
[0,1]T

∏
{i,j}∈T

(−1Ai∩Aj 6=∅)
∏
{i,j}/∈T

(1−σT (u){i,j}1Ai∩Aj 6=∅)
∏
{i,j}∈T

du{i,j}.

(33)
The sum over connected graphs on the left hand side has been written as a
much smaller sum over trees on the right hand side.

The tree formula leads immediately to the tree bound

|c(A1, . . . , An)| ≤
∑
T

∏
{i,j}∈T

1Ai∩Aj 6=∅. (34)

The main consequence is a bound on the exponential generating function for
trees rooted at some point i of color B. The quantity of interest is

T •B =

∞∑
n=1

1

n!

∑
A1,...,An

#{i | Ai = B}[
∑
T

∏
{i,j}∈T

1Ai∩Aj 6=∅]
∏
i∈Un

|KAi
|. (35)

This is the exponential generating function for rooted colored trees, where the
color palette consists of sets with two or more elements. The root has color B.
The weight of an edge {i, j} in the tree is 1 or zero depending on whether the
corresponding sets overlap or not. The recursive structure of rooted trees gives
the fixed point relation

T •B = |KB | exp(
∑

A∩B 6=∅

T •A). (36)
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The rooted tree bound
∑
x∈A |KA|e|A| ≤ Q ≤ 1 may be stated in the equiv-

alent form ∑
A∩B 6=∅

|KA|e|A| ≤ Q|B|. (37)

with Q ≤ 1. In particular, we have

KB exp(
∑

A∩B 6=∅

|KA|e|A|) ≤ KBe
|B|. (38)

This gives an upper bound on the fixed point

T •A ≤ KAe
|A|. (39)

Let us write FΛ in multi-index form as

FΛ =
∑
N 6=0

1

N !
c(N)KN . (40)

Here each N is a multi-index on the set P(Λ) of subsets of Λ, each with at least
two elements. Each such N is supported on subsets of Λ. The machinery of
cluster expansions above shows that if this condition is satisfied, then for each
fixed set A ⊆ Λ in P(Λ) we have an estimate on the series pinned at set A of
the form ∑

N 6=0

1

N !
N(A)|c(N)||K|N ≤ T •A ≤ |KA|e|A|. (41)

It follows that for every B ⊆ Λ in P(Λ) we have an estimate on the series pinned
near B of the form∑

N 6=0

1

N !
[
∑

A∩B 6=∅

N(A)]|c(N)||K|N ≤ Q|B|. (42)

Define the overlap set OB as the set of multi-indices N on Λ for which there
exists A ⊆ Λ with A ∩ B 6= ∅ and N(A) ≥ 1. Then N in OB implies 1 ≤∑
A∩B 6=∅N(A). It follows that with this notion of pinning near B we have

∑
N∈OB

1

N !
|c(N)||K|N ≤ Q|B|. (43)

In particular, if we take B = Λ, then for N 6= 0 we have N ∈ OΛ, so

|FΛ| ≤
∑
N 6=0

1

N !
|c(N)||K|N ≤ Q|Λ|. (44)
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4 Appendix on uniform analyticity

Consider the polynomial

S(x) =

m∑
n=0

snx
n (45)

with sm < 0. In this section we show that if we scale the coefficients of the
polynomial to make them small, then we get the uniform analyticity condition
for f(x) = eS(x) with a small parameter.

Let a be a parameter with 0 < a ≤ 1. Write amS(x) = Sa(u), where u = ax.
We have

Sa(u) =

m∑
n=0

sna
m−nun. (46)

We shall show there is a constant M such that the kth derivative of eSa(u) is
uniformly bounded by M . Consider S(z) as a function of a complex variable z
in the strip |=z| ≤ 1. Then because of the sign of the leading coefficient, there
is a c such that for |<z| > c we have <Sa(z) < 0, uniformly in a. On the other
hand, by compactness there is a C such that for |=z| ≤ 1 and |<z| ≤ c and
0 ≤ a ≤ 1 we have <Sa(x) ≤ C. It follows that |eSa(z))| ≤M = eC in the strip,
uniformly in a.

Now we can write

dk

duk
eSa(u) =

k!

2πi

∫
eSa(z)

(z − u)k+1
dz (47)

where the integral is on the unit circle centered at u. This representation gives
the bound Mk!. It then follows from u = ax that the kth derivative of ea

mS(x) =
eSa(u) is uniformly bounded by Mak.

5 Appendix on trees with given degree assign-
ment

If G is a graph on a vertex set V , then the sum of the degrees of the vertices is
twice the number of edges. In particular, if T is a tree on vertex set V with n
elements, then it has n− 1 edges, and the sum of the degrees is 2(n− 1).

In the following it will be convenient to define the reduced degree of a vertex
as the one less than the degree of the vertex. If T is a tree on vertex set V ,
then the sum of the reduced degrees of the vertices is 2(n − 1) − n = n − 2.
The only contribution to this sum is from the vertices of the tree that are not
leaves. The reduced degree is an measure of how far the vertex is from being a
leaf. We may think of this reduced degree as a function R : V → N.

Theorem (Cayley): Let V be a vertex set with n elements. Then there is a
bijection from the set of trees on V to the set of functions from {1, . . . , n − 2}
to V . As a consequence, there are nn−2 trees on V .
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The function p : {1, . . . , n−2} → V determining the tree is called the Prüfer
sequence of the tree. This sequence determines a corresponding multi-index
R : V → N that counts the number of times each element of V is assumed
by this function. The p sequence actually contains more detailed information
about the tree, as is shown in the following result.

Theorem (Cayley): Let V be a vertex set with n elements. Then there is a
bijection from the set of trees on V to the set of functions from {1, . . . , n − 2}
to V . The bijection sends the set of trees with given reduced degree function
R on V to the set of functions p from {1, . . . , n − 2} to V that whose induced
multi-index is R. As a consequence, the number of trees with reduced degree
function R is the multinomial coefficient

(n− 2)!

R!
=

(n− 2)!∏
v r(v)!

. (48)

Proof: The task is to produce a bijection from the set of trees on V to the
set of lists v1, . . . , vn−2 of elements from V . Choose a linear order on the vertex
set V . The bijection will be defined relative to this linear order. The basic idea
is clear: repeatedly prune the tree by removing a leaf and the corresponding
edge.

Consider a tree T0 = T on V0 = V . If we are given Ti−1 a tree on Vi−1,
let αi be the least vertex in Vi−1 that is a leaf of Ti−1. Let vi be the non-leaf
neighbor of αi in Ti−1. Then removing αi from Vi−1 and removing the edge
joining αi to vi gives a new vertex set Vi and a new tree Ti.

This process terminates at i = n−2 with Vi having two points and Ti having
a single edge. The list α1, . . . , αn−2 is an injection from {1, . . . , n−2} to V that
omits the two points. The list v1, . . . , vn−2 enumerates the non-leaf element of
T according to their reduced degree.

It may be shown that vi, . . . , vn−2 enumerates the non-leaf elements of Ti and
hence the non-leaf elements of Ti−1. Thus we can use the sequence v1, . . . , vn−2

to reconstruct the tree via a reverse process. Given vertices αj for j < i, define
αi to be the least vertex that is not one of these preceding αj and that is not one
of the vj , . . . , vn−2. The sequence α1, . . . , αn−2 is an injection from {1, . . . , n−2}
to V . The edges of T include the n − 2 pairs αi, vi. To get the full T add the
remaining edge joining the two vertices that are not in the range of α.

Notice that at stage i the edge that has been removed in the forward process
is the edge that is has been added in the reverse process. So at each stage the
set of remaining edges in the forward process is the complement of the set of
edges that have been introduced in the reverse process.

Example: Consider the ordered vertex set {a, b, c, d, e, f}. Consider the tree
with two neighboring vertices of degree three, namely b with neighbors a, d, e
and d with neighbors b, c, f . Find the corresponding Prüfer sequence of vertices
v1, v2, v3, v4.

Example: Consider the ordered vertex set {a, b, c, d, e, f}. Consider the
Prüfer sequence v1, v2, v3, v4 with v1 = v3 = b, v2 = v4 = d. Find the cor-
responding tree.
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