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Abstract

This paper is a modern exposition of old ideas. The setting is a Euclid-
ian space E of dimension n with associated vector space V of dimension
n. A (non-zero) sliding vector is a vector in V that is free to move, but
only within a line L of E. The set of sliding vectors has dimension 2n−1.
This set is naturally embedded in a vector space of dimension

(
n+1
2

)
. An

element of this vector space will be called a line bivector. Other terms
used in applications are screw and wrench. There is a nice description of
line bivectors in terms of Grassmann algebra in a projective representa-
tion. It is shown that this abstract description has a concrete realization
in terms of moment functions from E to bivectors over V . The literature
in physics and engineering mainly deals with the special case n = 3. The
results of the paper apply in this case and to its most common application,
where the vectors in V represent force and the bivectors over V represent
torque. It concludes with a discussion of duality, such as that of force and
velocity or of torque and angular velocity.

1 Introduction

Sliding vectors are vectors with a line of application. The vector is pictured as
an arrow that is free to slide within its line. The space of sliding vectors is not
closed under addition, but sliding vectors are included in a larger vector space.
The purpose of this note is to give a brief description of the theory of these
objects.

Let E be n-dimensional Euclidean space, and let V be the associated n-
dimensional vector space. There are three kinds of vectors.

• A bound vector is a pair (P,u), where P is in E and u is in V .

• A non-zero sliding vector is a pair (L,u) consisting of a line L in E together
with a non-zero vector u in V that leaves L invariant. There is also a zero
sliding vector (E,0).

• A free vector is a vector u in V .
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Each bound vector P,u determines a sliding vector P ∧ u. If u 6= 0, then
the line L is determined by P and u. If Q is another point on the same line L,
then P ∧u = Q∧u. In the case when u = 0, every point P in E gives the zero
sliding vector P ∧ 0.

Each sliding vector P ∧u determines a free vector u. The maps are summa-
rized by

(P,u) 7→ P ∧ u 7→ u. (1)

In the following the space of sliding vectors will be denoted E ‖ V . It may
be thought of as the space of all pairs (P,u) with P in E and u in V , subject
to a certain equivalence relation. Thus (P,u) is equivalent to (Q,v) if u = v
and the vectors Q − P and u are linearly dependent. With this notation, the
maps given above send E × V → E ‖ V → V .

The dimension of the space of bound vectors is 2n, while the dimension of
the space of free vectors is n. The dimension of the set of sliding vectors is
2n − 1. This may be seen by noting that for each non-zero free vector u the
space of lines L that are aligned with u has dimension n− 1.

Consider two non-zero sliding vectors P ∧ u and Q ∧ v with lines L and
N . Suppose that L and N intersect in a point R. Then P ∧ u = R ∧ u and
Q ∧ v = R ∧ v. It is natural to define the sum

P ∧ u +Q ∧ v = R ∧ u +R ∧ v = R ∧ (u + v). (2)

Suppose that P ∧ u and Q∧ u are non-zero sliding vectors with lines L and
N that are parallel. Furthermore, suppose that u + v 6= 0. Then u = a(u + v)
and v = b(u + v) with a+ b = 1. It is natural to define the sum

P ∧ u +Q ∧ v = P ∧ a(u + v) +Q ∧ b(u + v) = (aP + bQ) ∧ (u + v). (3)

Here aP + bQ is the weighted combination of points P,Q. Since a+ b = 1 this
is another point.

When n ≥ 2 the sliding vectors do not form a vector space; the sum of sliding
vectors need not be a sliding vector. When n = 2 there is only one way this can
happen. This is with two lines L,N that are parallel and not equal and with
non-zero vectors u,v with sum u + v = 0. When n ≥ 3 there are many pairs
of lines that are not in the same plane, so it is very common for the sum of two
sliding vectors not to be another sliding vector.

Sliding vectors form part of a larger vector space. An element of this larger
space will be called a line bivector or a screw. We shall see that the term “line
bivector” is geometrically natural. Other terms like “screw” and “wrench” may
be appropriate in physical applications. The precise definition of line bivector
is given later on, but here is a brief preview. A line bivector may be represented
(not uniquely) in the form

M = P ∧ u + α, (4)

where α is a bivector built over the n dimensional vector space V . The space of
bivectors over V has dimension

(
n
2

)
. The dimension of the space of line bivectors

is
(
n+1
2

)
. The collection of all sliding vectors P ∧u where P and u both vary is
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not a vector space; it is a subset of the vector space of line bivectors of dimension
2n− 1.

This is part of an old subject; the treatise that is often cited is Robert S. Ball,
The Theory of Screws: A study in the dynamics of a rigid body, published in
1876. However the topic is still of current interest, in particular as a tool for
robotics. Much of the work is in dimension n = 3, where it is natural to call
a line bivector a line pseudovector. Books on statics (for instance [6]) often
realize line pseudovectors as vector-pseudovector pairs that depend on a choice
of reference point. A recent paper by Minguzzi [5] on screw theory treats line
pseudovectors (screws) as moment functions. The moment function approach
avoids the necessity of making an arbitrary choice of reference point. It also
justifies the terminology used in the present paper; a point vector is a moment
function on E whose values are vectors in V , while a line bivector is a moment
function on E whose values are bivectors over V . Furthermore, a point vector
typically defines a point in E, while a line bivector typically defines a line in
E (the principal axis). The Minguzzi article gives other useful background
information and is an excellent reference overall.

The present treatment is for n dimensions. This was inspired by the book
by Browne [2] on Grassmann algebra. This book presents a projective space
point of view. Our treatment of line bivectors begins with this projective space
picture. Then it is shown how the moment function description is a concrete
realization of the projective space picture.

The next part of the paper deals with situations where one makes use of the
scalar product on the vector space V . In that case one can interpret bivectors
as elements of a Lie algebra, more specifically, as infinitesimal rotations. The
scalar product also gives a canonical form for line bivectors, the Poinsot central
axis theorem. It also gives a way to describe the situation in dimension n = 3,
where a bivector is often represented by a pseudovector. This part concludes
with a brief sketch of the application to rigid body mechanics. The vector u is a
force vector, and the line bivector P∧u+α represents a moment or torque about
some unspecified point. The calculations begin and end with sliding vectors, but
the intermediate steps use the more general line bivectors. The paper concludes
with a discussion of a relation between line bivectors and certain dual objects.

For the convenience of the reader, here is a summary list of notations. These
are explained in the body of the paper. The list also includes some terms used
in physical applications.

• point P in vector space E of dimension n

• vector u in vector space V of dimension n (force)

• sliding vector P ∧ u in space E ‖ V of dimension 2n− 1

• bivector α in vector space Λ2(V ) of dimension
(
n
2

)
(couple, moment,

torque)

• point vector tP + u in vector space V • of dimension n+ 1
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• line bivector P ∧u+α in vector space Λ2(V •) of dimension
(
n+1
2

)
(screw,

moment function, wrench)

There are various relations between these spaces:

• V → V • is an injection.

• E → V • is an injection.

• (P,u) 7→ P ∧ u is a mapping E × V → E ‖ V .

• E ‖ V → Λ2(V •) is an injection.

• Λ2(V )→ Λ2(V •) is an injection.

• P ∧ u + α 7→ u is a mapping Λ2(V •)→ V .

Furthermore, for every point O∗ in E there is a corresponding isomorphism
Λ2(V •)→ V ⊕ Λ2(V ). given by P ∧ u + α 7→ (u, (P −O∗) ∧ u + α).

2 Sliding vectors in the plane

The case n = 2 of sliding vectors in the plane is particularly simple. In rigid
body mechanics each vector u represents a force. Each non-zero sliding vector
P ∧ u represents a force applied to the point P .

The first condition for static equilibrium is that the sum of the force vectors
is zero. This implies that the body, initially at rest, will not begin translational
notion. However there is a stronger condition: the sum of the sliding vectors is
zero. This will ensure that the body will not begin rotational motion. Here are
three examples.

• Triangle of forces. Three forces u,v,w act on a rigid body at points
P,Q,R. The sliding vectors are P ∧ u, Q ∧ v, R ∧w. The first condition
for equilibrium is that u + v + w = 0. The additional condition is that
the three lines all pass through the same point S. In this case

P ∧u+Q∧v+R∧w = S∧u+S∧v+S∧w = S∧(u+v+w) = S∧0, (5)

which is the zero sliding vector.

• Parallel forces. The second example is relevant to the theory of the lever.
Three forces u,v,w are parallel to each other. They act on a rigid body
at points P,Q,R. Suppose that u + v 6= 0, and write u = a(u + v) and
v = b(u+ v), with a+ b = 1. Then P ∧u+Q∧ v = (aP + bQ)∧ (u+ v).
The condition for equilibrium is that u+v+w = 0 and that the fulcrum
R = aP + bQ is on the line determined by P,Q (the lever). Then

P∧u+Q∧v+R∧w = (aP+bQ)∧(u+v)+R∧w = R∧(u+v+w) = R∧0,
(6)

giving the zero sliding vector.
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• Equal and opposite forces. The third example begins with two forces u,v
with u + v = 0 acting at points P 6= Q. These cannot be compensated
by a third force. The sum P ∧ u + Q ∧ v is not a sliding vector: it
is a pseudoscalar quantity that is independent of position. This is seen
by writing it as P ∧ (−v) + Q ∧ v = (Q − P ) ∧ v, where Q − P is the
displacement vector from P to Q. In the case n = 2 such a product of
vectors is a pseudoscalar.

When E and V are two-dimensional, there is an encompassing structure
that is a three-dimensional vector space. It has a one-dimensional subspace of
pseudoscalars (including zero). The sliding vectors form the rest of the vector
space; they overlap with the pseudoscalars only in the zero element.

3 The space Λ2(V ) of bivectors

This section reviews the notion of bivector, which is an algebraic construction
that may be pictured in terms of equivalent parallelograms. This is a standard
notion; see for instance the chapter on multilinear algebra in [4].

Consider a vector space V of dimension n. There is a corresponding vector
space Λ2(V ) of dimension

(
n
2

)
. An element of this space is called a bivector.

Given two elements v and w of V , there is an exterior product v∧w that gives
a bivector. Such a bivector is called a decomposable bivector. A general bivector
is a sum of decomposable bivectors. The bivectors have an algebra that includes
an anticommutative law

v ∧w = −w ∧ v. (7)

In particular, v ∧ v = 0. Furthermore, the exterior product is bilinear:

u ∧ (sv + tw) = su ∧ v + tu ∧w

(su + tv) ∧w = su ∧w + tv ∧w. (8)

If the vectors v and w are linearly dependent, then v ∧w = 0. Otherwise, the
exterior product is non-zero.

It is difficult to picture bivectors in general, but decomposable bivectors have
a simple structure. The vectors v and w determine a two-dimensional subspace
with an orientation. They also determine a parallelogram in this subspace.
Consider another pair of vectors in this subspace. Then their product (av +
bw) ∧ (cv + dw) = (ad − bc)v ∧w is a scalar multiple of the original bivector.
The plane is the same, and the orientation is the same if ad − bc > 0 and is
reversed if ad − bc < 0. So all bivectors that determine this plane are related
by a scalar multiple. This multiple can be thought of as a parallelogram area
multiplication factor. In short, a decomposable bivector may be thought of in
terms of equivalent oriented parallelograms. In general, a bivector is a sum
of decomposable bivectors. In two and three dimensions every bivector is a
decomposable bivector. The following simple lemma will be of use later on.
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Lemma 1 (bivector lemma) Suppose u 6= 0. If the bivector u∧w = 0, then
w = au for some scalar a.

The lemma is true because if w is not a multiple of u, then u and w are
linearly independent, and so u ∧w 6= 0.

Consider a linear function ` from V to scalars. The linear function ` may be
pictured by its level sets, which are hyperplanes. Each hyperplane is defined by
a scalar value c; it is the level set consisting of all u with `(u) = c. The linear
function ` defines an operation called interior product that takes bivectors to
vectors. If v ∧w is a decomposable bivector, then

`c(v ∧w) = `(v)w − `(w)v. (9)

This has same structure as the product rule for differentiation, except that
moving ` past v introduces a minus sign. The condition that the interior product
`c(v ∧w) = 0 is that either `(v) = `(w) = 0, or v ∧w = 0.

There is also a notion of trivector. In particular, a decomposable trivector is a
product u∧v∧w. If the three vectors are linearly independent, then they define
a three-dimensional subspace. All the decomposable trivectors determining this
subspace are the same up to a scalar multiple. In general, a trivector is a sum
of decomposable trivectors.

Lemma 2 (trivector lemma) Suppose u 6= 0. If the trivector u ∧ α = 0,
then α = u ∧w for some vector w.

Take a basis e1, . . . , en of V . Then the bivectors ei ∧ ej with i < j form
a basis of Λ2(V ). Choose the basis with u = e1. The general bivector is
α =

∑
i<j cijei∧ej . Then u∧α =

∑
1<i<j cije1∧ei∧ej . The condition implies

that the cij = 0 except for i = 1. So α = e1 ∧
∑

1<j c1jej = u ∧w.
Remark: When the space V has a given scalar product (inner product, dot

product) there are other ways to represent a bivector. For dimension n = 2
a bivector may be represented as a pseudoscalar (a scalar with sign depending
on orientation). For dimension n = 3 a bivector may be represented as a pseu-
dovector (a vector with sign depending on orientation). Similarly, for dimension
n = 3 a trivector may be represented by a pseudoscalar. For n = 3 the role
of the bivector and trivector products are played by the pseudovector product
(cross product) and the pseudoscalar triple product (cross product combined
with dot product).

4 The space V • of point vectors

The geometric approach in the following discussion uses a projective represen-
tation. The basic object is a vector space V • of dimension n+ 1, together with
a non-trivial linear function ` from V • to scalars. This is the projective model.
The function ` is called the level function. Every hyperplane of fixed level is
an affine subspace. (See the appendix of [4] for the notion of affine space.) An
element A in V • will be called a point vector.
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Let V be the vector subspace where ` = 0. Let E be the affine subspace
where ` = 1. In this treatment an element u of V will be called a vector, while
an element of P of E will be called a point. Thus there is an injection V 7→ V •

that is linear and an injection E 7→ V • that is affine. Every linear combination
of points in V is in V . Every linear combination of points in E with coefficient
sum one is in E. Every linear combination of points in E with coefficient sum
zero is in V .

The space V • may be viewed in the weighted point interpretation. Say that A
is a point vector. There are two possibilities. If A is not in V , then `(A) = t 6= 0,
and A = tQ for some point Q in E. So the point vector A may be thought of
as a point Q of E with a weight t 6= 0. The other possibility is that A = u is a
vector in V . The sum sP + tQ of two weighted points with s+ t 6= 0 is another
weighted point (s+ t)R, where R = s

s+tP + t
s+tQ. If s+ t = 0, then the sum is

sP + tQ = t(Q− P ), a vector in V .
The weighted point interpretation underlies “mass point geometry,” which

is an attractive way of making constructions in elementary geometry [3]. A
mass point is a weighted point tQ with t > 0, so the sum of two mass points is
another mass point.

Remark: The space V • may also be viewed in the Galilean space-time in-
terpretation. A point vector A is a displacement in space-time. If A takes one
event to another event, then `(A) is the time difference between the two events.
If A is in V with `(A) = 0, then the length of A is the distance between the
two simultaneous events. There is no natural notion of distance between events
that are not simultaneous.

Proposition 1 Fix P in E. Then every element A of V • has a unique repre-
sentation

A = tP + u (10)

with u in V .

Remark: In the lecture notes by Smith [7] the construction giving the affine
space (flat) E as part of the vector space V • is called inflation. In the termi-
nology used there, an element of V is a direction vector, and every other vector
is a point vector.

5 The space Λ2(V •) of line bivectors

The next topic is line bivectors. The framework used here arose in the work of
Hermann Grassmann (1809–1877). His definition of the exterior product of two
vectors as a decomposable bivector is now standard. It is less well known that
the exterior product of a point and a vector is a sliding vector.

A line bivector is an element of the space Λ2(V •) of bivectors over V •. Since
V • has dimension n + 1, the dimension of the space of line bivectors must be(
n+1
2

)
. (In the classical literature a line bivector is often called a screw. This is

to emphasize that it has both a linear and a rotational aspect.)
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Proposition 2 Let M be in Λ2(V •). Fix P in E. Then M has the represen-
tation

M = P ∧ u + α, (11)

where u is in V and α is in Λ2(V ).

The proof of this is easy. Every element of V • is of the form tP + z. Every
decomposable element of Λ2(V •) is of the form

(tP + z) ∧ (sP + w) = P ∧ (tw − sz) + z ∧w = P ∧ u + α. (12)

The sum of elements of the form P ∧ u + α with fixed P is also an element of
this form.

This representation depends on the choice of P . If we take Q = P + z, then
the same line bivector has the representation

P ∧ u + α = Q ∧ u + α+ z ∧ u. (13)

The change in point P is compensated by the change in the bivector α.
A sliding vector is a decomposable bivector that can be put in the form

Q ∧ u, that is, the exterior product of a point (with weight one) in E with a
vector in V . If u 6= 0, then the plane in V • spanned by the point vectors Q in E
and u in V intersects E in a line L. This shows that sliding vectors as defined
here coincide with the sliding vectors in the introduction. There is an obvious
injection E ‖ V → Λ2(V •) from the space of sliding vectors to the space of line
bivectors.

The sum of two sliding vectors need not be a sliding vector. The simplest
example is a sum

Q ∧ u + P ∧ (−u) = (Q− P ) ∧ u. (14)

This is an exterior product of two vectors from V , that is, a decomposable
bivector. In this context a decomposable bivector is called a couple. It is non-
zero when Q− P and u are linearly independent.

On the other hand, the sum of two sliding vectors is always a sliding vector
plus a couple. In fact,

Q ∧ u + P ∧ v = P ∧ (u + v) + (Q− P ) ∧ u. (15)

Proposition 3 Fix P in E. Every point Q in E has the form Q = P + z,
where z is in E. Every sliding vector Q ∧ u has the form

Q ∧ u = P ∧ u + z ∧ u. (16)

A sliding vector with line through Q is the sum of a sliding vector with line
through the given P with a decomposable bivector having the vector part as a
factor.

A line bivector M = P ∧ u + α has two important invariants.

• The vector invariant is u.
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• The trivector invariant is u ∧ α.

The vector invariant u depends only on the line bivector M. This is because
u = `cM. This may be seen by computing u = `cM = `c(P ∧u)+ `cα. Since P
is at level 1 and u is at level 0, the first term is `(P )u− `(u)P = 1u− 0P = u.
The second term is zero, since it is created from vectors in V which are all at
level 0.

The trivector invariant also depends only on the line bivector M. This is
because u ∧ α = u ∧M.

Proposition 4 If M = P∧u+α is a line bivector, and if the trivector invariant
u ∧ α = 0, then either M = P ∧ α is a sliding vector, or M = α is a bivector.

The proof is not difficult. If u = 0, then M = α. Otherwise the trivector
lemma says that u ∧ α = 0 implies α = z ∧ u for some vector z. In this case
P ∧ u + α = P ∧ u + z ∧ u = (P + z) ∧ u is a sliding vector.

A line bivector need not be a sliding vector. However every line bivector
is a sum of at most n sliding vectors. The following theorem shows that these
vectors may be taken at predetermined points.

Theorem 1 Let P0, P1, . . . , Pn be n+1 points that determine the n-dimensional
affine space E. Then every line bivector may be expressed as a sum of n sliding
vectors in the form P0 ∧ u0 + P1 ∧ u1 + · · ·+ Pn−1 ∧ un−1.

Here is a proof. Consider the basis P0, P1, . . . , Pn−1, Pn of the point vector
space. Then the Pi ∧ Pj with i < j form a basis of the line bivector space. An
arbitrary line bivector may be expressed in the form

∑
i<j

cijPi ∧ Pj =

n−1∑
i=0

Pi ∧
n∑

j=i+1

cijPj

 =

n−1∑
i=0

Pi ∧ ui (17)

with ui =
∑n

j=i+1 cij(Pj − Pi).

In three dimensions every bivector in Λ2(V ) is decomposable. The following
result shows that in this case only two sliding vectors are required.

Theorem 2 Every line bivector of the form P ∧ u + v ∧w is the sum of two
sliding vectors. In fact,

P ∧ u + v ∧w = P ∧ (u−w) + (P + v) ∧w. (18)

The last topic of this section is the bilinear trivector invariant, defined for a
pair M1,M2 of line bivectors. This is given by

u1M2 + u2M1 = u1 ∧ α2 + u1 ∧ (P2 − P1) ∧ u2 + u2 ∧ α1. (19)

This should be contrasted with the bilinear scalar invariant discussed in the
final section. They are closely related only when n = 3.
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6 Representation of point vectors as affine func-
tions from E to V

Again E is n-dimensional Euclidean space, and V is the n-dimensional space
of free vectors. The space V • of point vectors may be modeled as the space of
affine functions from E to V of the form

O 7→ t(P −O) + u. (20)

This vector affine function interpretation is the point-slope form of the equation
for an affine function. The point is P,u and the constant slope is −t. This is not
a general affine function; it is a dilation from point P followed by a translation
by u. It could perhaps be called a displacement function.

Suppose t 6= 0. If we take u = t(Q − P ), then we can write the same
displacement function in the root-slope form

0 7→ t(Q−O). (21)

The one exceptional case is when t = 0. Then there is no root (unless u = 0),
and the function may be identified with the vector u.

While the above representation is appropriate for calculation, there is a
related vector field representation that gives nice pictures. Consider a function
from E to E of the form

O 7→ O + t(P −O) + u = (1− t)O + tP + u. (22)

The graph of this function is a set of ordered pairs of points in E, and each
ordered pair may be thought of as a representation of a bound vector. In
particular, a weighted point tQ is represented by the function

O 7→ (1− t)O + tQ. (23)

If 0 < t < 1, then the bound vector at O goes part way from O to Q. If t = 1,
then it goes all the way from O to Q. Before t was a weight attached to Q.
Here it is a measure of how much other points are attracted to Q.

7 Representation of line bivectors as affine func-
tions from E to Λ2(V )

The space Λ2(V •) of line bivectors also has an affine function model. It is
realized as certain affine functions from E to Λ2(V ). Such a function is a
moment function of the form

O 7→M(O) = (P −O) ∧ u + α, (24)

where u is in V and α is in Λ2(V ). This is a point-slope representation of an
affine function.
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This is particularly easy to visualize in the case n = 2. Then the function is
an affine function from the plane E to a one-dimensional space, and every affine
function is of this form. In the cases n ≥ 3 these functions are not so simple;
they are affine functions on E with values in a space of dimension

(
n
2

)
, and they

are of a rather special form.
Here is an important remark about notation. Even if we think of a line

bivector as a moment function O 7→ (P − O) ∧ u + α, it is possible to use the
same notation as in the projective space representation. All one has to do is
to regard the point P as defining the function O 7→ P − O. Then the moment
function is P ∧ u + α.

Proposition 5 A moment function M is determined by its values on any three
non-collinear points in E.

Consider three non-collinear points O1, O2, O3. It is sufficient to show that if
M(O1),M(O2),M(O3) are all zero, then M = 0. Write M(O) = (P−O)∧u+α.
Subtraction gives (O2 − O1) ∧ u = 0 and (O3 − O1) ∧ u = 0. Since O2 − O1

and O3 − O1 are linearly independent, the bivector lemma implies that u = 0.
It follows that M = 0.

Proposition 6 A moment function M is determined by its vector invariant u
together with its value M(O∗) on a single point.

This proposition says that given a point O∗ in E, there is a corresponding
isomorphism

Λ2(V •)→ V ⊕ Λ2(V ) (25)

given by
P ∧ u + α 7→ (u, (P −O∗) ∧ u + α). (26)

It is easy to see that given a pair (u, µ) one can recover a moment function
O 7→ (O∗−O)∧u+µ. This representation gives a rather concrete representation
of line bivectors as vector, bivector pairs. Its drawback is that it is awkward to
reason with an arbitrary choice of reference point.

The values M(O) of the moment function satisfy u ∧M(O) = u ∧ α = κ,
where κ is the trivector invariant. This says that these values lie in a hyper-
plane in the space of bivectors. This hyperplane intersects the origin only when
the trivector invariant is zero. When the vector invariant is non-zero and the
trivector invariant is zero, then the affine function represents a sliding vector
and may be written

O 7→M(O) = (Q−O) ∧ u. (27)

This is the root-slope representation of the affine function.

8 Scalar products of bivectors

The following sections exploit the fact that the space V and and the space Λ2(V )
of bivectors over V each have a scalar product (inner product, dot product).

11



With this extra structure line bivectors can be given a more explicit form. This
section presents the basic definitions.

For decomposable bivectors the scalar product is given by the determinant

(v ∧w) · (x ∧ y) = (v · x)(w · y)− (v · y)(w · x). (28)

This is zero if the two corresponding planes are orthogonal. The magnitude or
area of a decomposable bivector is

|u ∧w| = area(v,w) =
√

(v ∧w) · (v ∧w). (29)

If ei for i = 1, . . . , n is an orthonormal basis for the n dimensional space
V , then the ei ∧ ej for 1 ≤ i < j ≤ n is an orthonormal basis for the

(
n
2

)
dimensional space of bivectors. The general bivector is

∑
i<j cijei ∧ ej . For

n = 2 the most general bivector is α = c12e1 ∧ e2. For n = 3 the most general
bivector is α = c23e2 ∧ e3 + c13e1 ∧ e3 + c12e1 ∧ e2.

There is an operation of interior product. Let u be a vector and let α
be a bivector. Then the interior product ucα is a vector. If α = v ∧ w is
decomposable, then the interior product is uc(v ∧ w) = (u · v)w − (u · w)v.
This can easily be remembered as having the formal structure of the product
rule for differentiation, with the proviso that moving u past v introduces a
minus sign. The condition that uc(v ∧w) = 0 is equivalent to either u being
orthogonal to both u and w, or v ∧w = 0.

Lemma 3 Fix a vector u. There are two maps α 7→ ucα and v 7→ u ∧ v; the
nullspace of the first and the range of the second are orthogonal complements.
Thus every bivector α may be written as an orthogonal sum α = β + γ, where
ucβ = 0, and γ = u ∧ z for some vector z.

This can be proved as follows. Suppose u 6= 0. Consider an orthonormal
basis such that u = te1 with t 6= 0. Write α =

∑
i<j cijei ∧ ej . Suppose that

u ∧ α = t
∑

1<i<j cije1 ∧ ei ∧ ej = 0. If β =
∑

1<i<j cijei ∧ ej , then u ∧ β = 0.
Furthermore, γ =

∑
1<j c1je1 ∧ ej = u ∧ z, where z = (1/t)

∑
1<j c1jej .

Proposition 7 Consider a vector space V with an inner product. Then the
space Λ2(V ) may be identified with the space of anti-symmetric linear transfor-
mations on V . In other words, the elements of Λ2(V ) belong to the Lie algebra
of infinitesimal rotations.

This identification works as follows. The general non-zero decomposable
bivector is a multiple of α = x ∧ y, where x and y are orthogonal unit vectors.
Then ucα = (u · x)y − (u · y)x. This should be compared with the projection
of u on the plane, which is Pu = (u · x)x + (u · y)y. Let J be the quarter turn
transformation of the plane with Jx = y and Jy = −x. Then ucα = JPu =
PJPu. Bivectors α of this form may be chosen to form a basis for Λ2(V ). The
corresponding infinitesimal rotations X = PJP form a basis for the Lie algebra.
There is more on the Lie algebra point of view in the final section.
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9 The central axis and the bivector invariant

The following result is a version of the Poinsot central axis theorem, after Louis
Poinsot (1777–1859).

Theorem 3 Every line bivector M = P ∧ u + α has a unique decomposition

M = Q ∧ u + β, (30)

with ucβ = 0.

Proof: Write α = β+γ as an orthogonal decomposition, where ucβ = 0 and
γ = w ∧ u. So we can write the general line bivector as

P ∧ u + α = P ∧ u + w ∧ u + β = (P + w) ∧ u + β = Q ∧ u + β, (31)

with Q = P + w and where ucβ = 0.
The line L determined by Q and u is called the central axis of the line bivec-

tor. (When u = 0 the role of the central axis is taken by the entire space E.)
The line bivector then has two parts, the sliding vector Q∧ u along the central
axis, and the bivector invariant β orthogonal to u. The vector u expresses a ten-
dency to move along the central axis. The bivector β expresses an infinitesimal
rotation about the central axis. The uniqueness of the decomposition demon-
strates the structure of a line bivector as the sum of two rather different objects.
However, in computations it may be inconvenient to make this decomposition
explicit at each stage.

Consider the moment function representation of a line bivector. The general
non-constant line bivector function is of the form

O 7→M(O) = (Q−O) ∧ u + β, (32)

where ucβ = 0. This could be called the minimizer-slope representation of the
affine function. The point Q is on the central axis. At such points the magnitude
of M(O) assumes its minimum value

10 Force and torque

A common application of the theory is to force and torque. (This is usually in
the case of dimension n = 3.) Force is represented by a vector u. Torque is given
by a bivector α (often represented by pseudovector). A line bivector is called a
wrench. It is given by a moment function O 7→M(O) = (P −O) ∧ u + α. This
is a function defined on E with values that are bivectors. It may be denoted in
abbreviated form by M = P × u + α.

In three dimensions a bivector α is always decomposable. Such a bivector
often arises as a force couple given by a pair of opposite forces at different points
in this plane. According to the Poinsot theorem, the wrench has a standard form
M = Q ∧ u + β. It has a torque part given by a force u acting at a point Q in

13



E on the central axis. There is also a pure torque part β, a force couple in the
plane orthogonal to u. This force couple is not associated with a location in E.

In a typical rigid body static problem there are forces u1, . . . ,uk applied at
points P1, . . . , Pk. The sum of the corresponding sliding vectors is P1 ∧ u1 +
· · · + Pk ∧ uk. Such a sum does not have to be a sliding vector. However the
sum is always a line bivector, defined by a moment function. Furthermore, the
total force associated with this line bivector is u = u1 + · · ·+ uk. So it can be
written

P1 ∧ u1 + · · ·+ Pk ∧ uk = P ∧ u + β, (33)

where P is on the central axis, and where the force couple β is a torque in the
plane orthogonal to the force u.

In the special case when all the points are in the same plane and all the
forces act in this plane, it is impossible to have the force couple β orthogonal
to the force u, unless either β = 0 or u = 0. For a planar problem the line
bivector is either a sliding vector or it is a force couple.

In general the sum of sliding vectors is a line bivector, and the corresponding
moment function can depend on the reference point. However the condition for
equilibrium is that the sum of all the sliding vectors is the zero line bivector;
for this special case the moment function is independent of the reference point.
Thus an equilibrium calculation has no need of a particular reference point.
The natural framework for such a calculation is Grassmann algebra, in which
the exterior product of a point and a vector is a sliding vector.

11 Duality

This last section presents a somewhat different point of view on line bivectors.
This framework is particularly appropriate for mechanics, since it takes into
account the fact that displacements, forces, and torques have different units. It
is helpful to distinguish a vector space from its dual vector space, even though
they have the same dimension. We shall see that line bivectors then have natural
dual objects.

Again E is n-dimensional Euclidean space, an affine space. The space V is
the n-dimensional real vector space of free vectors, and V ∗ is its n-dimensional
dual vector space. This dual space consists of real linear functions on V . Let
L be the Lie algebra of the rotation group of V . This is a vector space of
dimension

(
n
2

)
consisting of anti-symmetric linear transformations from V to V .

Let L∗ be the dual vector space of L. Each of these vector spaces has a physical
interpretation. An element of V , V ∗, L, or L∗ is a displacement, force, angular
velocity, or torque.

Suppose that z is in V and u is in V ∗. The corresponding moment (or
torque) z u u is an element of L∗. For ω in L, this is given by

(z u u)ω = uωz. (34)

Here ωz is in V , so the right hand side is a scalar. The map from phase space
(z,u) to z u u in L∗ is often called the moment map. (The notation z u u is
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adopted here to make explicit the analogy with exterior product.) See [1] for
much more on this group theoretic approach to mechanics.

Consider a point P in E and an element u in V ∗ and a corresponding M(P )
in L∗. The corresponding moment function M is a function from E to L∗ given
by

M(O) = (P −O) u u + M(P ). (35)

This definition is a repackaging of the previous moment function definition of
line bivector. In the application where u is force, it is natural to call this a
wrench.

The dual to a wrench is a quite different object. Let V ′ be another copy
of V , but interpret an element of V ′ as a velocity instead of a displacement.
Consider a point Q in E and an element ω in L and a vector v(Q) in V ′. Define
a function v from E to V ′ by

v(O) = ω(O −Q) + v(Q). (36)

Such a function may be called a twist. (When n = 3 it is easy to confuse a twist
with a wrench, but for general n not even the dimensions match up.)

There is a duality relation between a wrench and a twist. The bilinear scalar
invariant is uv(O) + M(O)ω. Using the definition of moment, this works out
to be

uv(O) + M(O)ω = uv(Q) + uω(P −Q) + M(P )ω. (37)

This is independent of the reference point O. In particular, the bilinear scalar
invariant may be written uv(P ) + M(P )ω = uv(Q) + M(Q)ω.

One important physical application is to forces acting on a rigid body in
motion. The wrench M(O) =

∑k
i=1(Pi − O) u ui is a sum of sliding vectors.

Each term represents a force ui acting at point Pi. The velocity at point Pi is
v(Pi) = ω(Pi−O)+v(O). The power is

∑k
i=1 uiv(Pi). There is a corresponding

power theorem.

Theorem 4 Power is the bilinear scalar invariant associated with wrench and
twist.

The computation of the power begins

k∑
i=1

uiv(Pi) =

k∑
i=1

uiω(Pi −O) +

k∑
i=1

uiv(O). (38)

Using the definition of moment this is

k∑
i=1

((Pi − 0) u ui)ω +
k∑

i=1

uiv(O) = M(O)ω + uv(O). (39)

The scalar product on V allows an element of the Lie algebra to be repre-
sented by a bivector. In dimension n = 3 the bilinear scalar invariant of this
section is closely related to the bilinear trivector invariant considered before.
However, this is special to three dimensions, and it helps to look at at general
n to fully appreciate the relation between wrench, twist, and power.
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