Analytic continuation of the distribution $|x|^{\lambda}$

The distribution $|x|^{\lambda} \in \mathcal{D}^{\prime}\left(\mathbf{R}^{b}\right)$ is defined for all complex numbers λ from the halfplane $\Re \lambda>-n$ by the formula

$$
\begin{equation*}
\left.\left.\langle | x\right|^{\lambda}, \phi\right\rangle=\int|x|^{\lambda} \phi(x) d x \tag{1}
\end{equation*}
$$

If a test function $\phi(x) \in \mathcal{D}\left(\mathbf{R}^{n}\right)$ is fixed then $\left.\left.\langle | x\right|^{\lambda}, \phi\right\rangle$ is a holomorphic function in λ in the half-plane $\Re \lambda>-n$. Our goal is to find its analytic continuation to as large domain as possible.

Choose a positive number N; the Taylor expansion of $\phi(x)$ reads

$$
\phi(x)=\sum_{|\alpha| \leq N} \frac{1}{\alpha!} \partial^{\alpha} \phi(0) x^{\alpha}+r_{N}(x)
$$

where

$$
\begin{equation*}
\left|r_{N}(x)\right| \leq C| | \phi(x) \|_{C^{N+1}}|x|^{N+1} \tag{2}
\end{equation*}
$$

We break the integral (1) into the sum

$$
\begin{equation*}
\int_{|x| \geq 1}|x|^{\lambda} \phi(x)+\int_{|x| \leq 1}|x|^{\lambda} r_{N}(x)+\sum_{|\alpha| \leq N} \frac{1}{\alpha!} \partial^{\alpha} \phi(0) \int_{|x| \leq 1} x^{\alpha}|x|^{\lambda} d x \tag{3}
\end{equation*}
$$

The first term in (3) is defined for all values of λ; it is an entire in λ family of distributions. The second term in (3) is defined for $\Re \lambda>-n-N-1$, and it is holomorhic in λ in that half-plane; the estimate (2) implies that, for a fixed value of λ, it is a distribution. Let us take a look at the third term in (3). To compute the integral

$$
\int_{|x| \leq 1} x^{\alpha}|x|^{\lambda} d x
$$

we use spherical co-ordinates $x=r \omega$ where ω belongs to the unit sphere S^{n-1} :

$$
\int_{|x| \leq 1} x^{\alpha}|x|^{\lambda} d x=\int_{S^{n-1}} \omega^{\alpha} d \omega \int_{0}^{\infty} r^{|\alpha|+\lambda+n-1} d r=\frac{c_{\alpha}}{\lambda+|\alpha|+n}
$$

So, the third term in (3) is defined for all values of λ except of $\lambda=-n-k$ where $k \in \mathbf{Z}_{+}$is a non-negative integer number, as a functional of ϕ it is a combination of derivatives of the delta function, it is a meromorphic function of λ, and its residue at the pole $\lambda=-n-k$ equals

$$
\sum_{\alpha \mid=k} \frac{c_{\alpha}}{\alpha!} \partial^{\alpha} \phi(0)
$$

where

$$
\begin{equation*}
c_{\alpha}=\int_{S^{n-1}} \omega^{\alpha} d \omega \tag{4}
\end{equation*}
$$

Notice that if one of the α_{j} 's is an odd number then the integrand in (4) is an odd function in ω_{j}, and $c_{\alpha}=0$. Therefore $c_{\alpha} \neq 0$ only if $\alpha=2 \beta$ where $\beta \in \mathbf{Z}_{+}^{n}$. In particular, $|\alpha|=2|\beta|$ is an even number, and the analytic continuation of $\left.\left.\langle | x\right|^{\lambda}, \phi\right\rangle$ is actually regular at points $\lambda=-n-k$ when k is an odd integer.

Because the number N that we chose in the beginning is arbitrary, we arrive to the following theorem.

Theorem. The distribution $|x|^{\lambda}$, which is initially defined in the half plane $\Re \lambda>-n$, admits an analytic continuation to a meromorphic distribution-valued function in the whole complex plane. The only singularities of this continuation are simple poles at the points $\lambda_{k}=-n-2 k, k=0,1,2, \ldots$, and

$$
\begin{equation*}
\operatorname{Res}_{\lambda=-n-2 k}|x|^{\lambda}=\sum_{|\alpha|=2 k} \frac{c_{\alpha}}{\alpha!} \partial^{\alpha} \delta(x) \tag{5}
\end{equation*}
$$

where the constants c_{α} are given by (4).
We conclude these notes with computing explicitly the constants c_{α}. Consider the integral

$$
\begin{equation*}
I_{\alpha}=\int x^{\alpha} e^{-|x|^{2}} d x \tag{6}
\end{equation*}
$$

In spherical co-ordinates, it takes the form

$$
\begin{equation*}
I_{\alpha}=c_{\alpha} \int_{0}^{\infty} r^{n+|\alpha|-1} e^{-r^{2}} d r \tag{7}
\end{equation*}
$$

A substitution $r=\rho^{2}$ transforms the integral on the right in (7) into

$$
\frac{1}{2} \int_{0}^{\infty} \rho^{\frac{|\alpha|+n}{2}-1} e^{-\rho} d \rho=\frac{1}{2} \Gamma\left(\frac{|\alpha|+n}{2}\right)
$$

and therefore

$$
\begin{equation*}
c_{\alpha}=\frac{2 I_{\alpha}}{\Gamma\left(\frac{|\alpha|+n}{2}\right)} . \tag{8}
\end{equation*}
$$

To compute the integral I_{α}, consider a function

$$
F\left(t_{1}, \ldots, t_{n}\right)=\int e^{-\left(t_{1} x_{1}^{2}+\cdots+t_{n} x_{n}^{2}\right)} d x=\pi^{n / 2} t_{1}^{-1 / 2} \cdots t_{n}^{-1 / 2}
$$

We set $\alpha=2 \beta$ where $\beta \in \mathbf{Z}_{+}^{n}$ (otherwise, $I_{\alpha}=0$.) Then

$$
\begin{equation*}
I_{\alpha}=(-1)^{|\beta|} \partial_{t}^{\beta} F(1, \ldots, 1) . \tag{9}
\end{equation*}
$$

Notice that

$$
\frac{d^{l}}{d t^{l}}\left(t^{-1 / 2}\right)=(-1)^{l} 2^{-l}(2 l-1)!!t^{-1 / 2-l}
$$

where $(2 l-1)$! ! is the product of all odd numbers from 1 to $2 l-1$, and, in the case $l=0$, we set $(-1)!!=1$. Thus, (9) implies

$$
I_{\alpha}=\pi^{n / 2} 2^{-|\alpha| / 2}(\alpha-1)!!.
$$

Finally,

$$
\begin{equation*}
c_{\alpha}=\frac{2^{-|\alpha| / 2+1} \pi^{n / 2}(\alpha-1)!!}{\Gamma\left(\frac{|\alpha|+n}{2}\right)} \tag{10}
\end{equation*}
$$

when $\alpha=2 \beta$. One can substitute (10) into (5). Notice that

$$
\frac{(2 \beta)!}{(2 \beta-1)!!}=2^{|\beta|} \beta!;
$$

so

$$
\operatorname{Res}_{\lambda=-n-2 k}|x|^{\lambda}=\sum_{|\beta|=k} \frac{\pi^{n / 2} 2^{-2|\beta|+1}}{\beta!\Gamma\left(|\beta|+\frac{n}{2}\right)} \partial^{2 \beta} \delta(x)
$$

