The wave front set of a distribution

The Fourier transform of a smooth compactly supported function $u(x)$ decays faster than any negative power of the dual variable ξ; that is for every number N there exists a constant C_{N} such that

$$
\begin{equation*}
|\hat{u}(\xi)| \leq C_{N}(1+|\xi|)^{-N} . \tag{1}
\end{equation*}
$$

On the other hand, if the Fourier transform of a distribution with compact support satisfies the estimate (1) then this distribution is actually induced by a smooth function. Therefore, the estimate (1) can be viewed as a characteristic property for smoothness. The singular support of a distribution tells us where the singularities of a distribution lie. The wave front set gives more precise description of singularities; it tells us not only at what points a singularity occur, but it also indicates the directions in the dual space from which the singularities are coming; that is, in what directions the estimate (1) does not hold.

Let us start with some definitions. A set $V \subset \mathbf{R}^{n} \backslash\{0\}$ is called a conic set if, together with any point ξ, it contains all the points $t \xi$ where $t>0$. A conic set is completely determined by its intersection with the unit sphere S^{n-1} in \mathbf{R}^{n}. By a conic neighborhood of a point $\xi \in \mathbf{R}^{n} \backslash\{0\}$ we mean an open conic set that contains ξ.

Let $u \in \mathcal{E}^{\prime}$ be a distribution in \mathbf{R}^{n} with compact support. Its Fourier transform is a smooth function. We define the set $\Sigma(u) \in \mathbf{R}^{n} \backslash\{0\}$ by saying that $\xi \notin \Sigma(u)$ if there exists a conic neighborhood V of ξ such that the estimate (1) holds in V for all N. It follows immediately from the definition that $\Sigma(u)$ is a closed conic set. Notice that the distribution u is induced by a smooth function if and only if $\Sigma(u)=\emptyset$.
Proposition 1. Let $u \in \mathcal{E}^{\prime}\left(\mathbf{R}^{n}\right)$ and $\phi \in C^{\infty}\left(\mathbf{R}^{n}\right)$. Then $\Sigma(\phi u) \subset \Sigma(u)$.
Proof. First, let $\phi \in C_{0}^{\infty}$. Let $\xi \notin \Sigma(u)$, and let V be a conic neighborhood of ξ where the estimate (1) holds. We take a smaller conic neighborhood, V^{\prime} of ξ the closure of which lies in V, and we will prove the estimate (1) for the product ϕu in V^{\prime}.

First, there exists a constant c such that, for every $\eta \in V^{\prime}$, the closed ball of radius $c|\eta|$, centered at η, lies in V. In fact, the distance between $V^{\prime} \cap S^{n-1}$ and the complement of V is positive. Choose c to be a positive number that is smaller that that distance. The inequality $|\zeta-\eta|<c|\eta|$ implies $|(\zeta /|\eta|)-(\eta /|\eta|)|<c$; so $(\zeta /|\eta|) \in V^{\prime}$, and $\zeta \in V^{\prime}$ because V^{\prime} is conic.

The Fourier transform of ϕu equals the convolution of Fourier transforms,

$$
\begin{equation*}
\widehat{\phi u}(\eta)=(2 \pi)^{-n} \int \hat{\phi}(\eta-\zeta) \hat{u}(\zeta) d \zeta . \tag{2}
\end{equation*}
$$

The Fourier transform of u has an upper bound

$$
\begin{equation*}
|\hat{u}(\zeta)| \leq C(1+|\zeta|)^{M} \tag{3}
\end{equation*}
$$

for some number M. The integral in (2) can be broken into

$$
I_{1}+I_{2}=\int_{|\zeta-\eta| \leq c|\eta|}+\int_{|\zeta-\eta|>c|\eta|} .
$$

In the first integral, $\zeta \in V$, so

$$
|\hat{u}(\zeta)| \leq C_{N}(1+|\zeta|)^{-N} \leq C_{N}^{\prime}(1+\mid \eta)^{-N}
$$

because $|\zeta| \geq(1-c)|\eta|$. Therefore,

$$
\begin{equation*}
\left|I_{1}\right| \leq C_{N}^{\prime}(1+|\eta|)^{-N} \int|\hat{\phi}(\eta)| d \eta . \tag{4}
\end{equation*}
$$

To estimate the integral I_{2}, we notice that $|\zeta-\eta| \geq c|\eta|$ implies

$$
|\zeta-\eta| \geq|\zeta|-|\eta| \geq|\zeta|-\frac{1}{c}|\zeta-\eta|
$$

and, therefore,

$$
\begin{equation*}
|\zeta-\eta| \geq \frac{c}{c+1}|\zeta| \tag{5}
\end{equation*}
$$

The estimates (1) and (3) imply that, for any choice of N,

$$
\left|I_{2}\right| \leq C \int_{|\zeta-\eta| \geq c|\eta|}(1+|\zeta-\eta|)^{-N-M-n-1}(1+|\zeta|)^{M} d \zeta .
$$

The integrand in the last formula is bounded by

$$
(1+|\zeta-\eta|)^{-N}(1+|\zeta-\eta|)^{-M-n-1}(1+|\zeta|)^{M} \leq C_{1}(1+|\eta|)^{-N}(1+|\zeta|)^{-n-1}
$$

when $|\zeta-\eta| \geq c|\eta|$ (see (5).) Therefore,

$$
\left|I_{2}\right| \leq C_{2}(1+|\eta|)^{-N} .
$$

The last estimate, together with (4), implies

$$
|\widehat{\phi u}(\eta)| \leq C_{3}(1+|\eta|)^{-N} .
$$

This proves the Proposition in the case $\phi \in C_{0}^{\infty}$. If a function ϕ is not compactly supported then one can find a function $\phi^{\prime} \in C_{0}^{\infty}$ that coincides with ϕ in a neighborhood of suppu. Clearly, $\phi u=\phi^{\prime} u$. Q.E.D.
Corrolary 2. Let $u \in \mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right)$, and let $\phi_{1}, \phi_{2} \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$. Suppose that $\phi_{2}(x) \neq 0$ when $x \in \operatorname{supp}\left(\phi_{1}\right)$. Then $\Sigma\left(\phi_{1} u\right) \subset \Sigma\left(\phi_{2} u\right)$.
Proof. Let U be a neighborhood of $\operatorname{supp}\left(\phi_{1}\right)$ such that $\phi_{2}(x) \neq 0$ when $x \in U$, and let V be a smaller neighborhood of $\operatorname{supp}\left(\phi_{1}\right)$:

$$
\operatorname{supp}\left(\phi_{1}\right) \subset V ; \quad \bar{V} \subset U
$$

Let $\chi(x)$ be a smooth function such that $\chi(x)=1$ when $x \in V$ and $\chi(x)=0$ when $x \notin U$. We define a function

$$
\psi(x)= \begin{cases}\chi(x) / \phi_{2}(x), & \text { if } x \in U \\ 0, & \text { if } x \notin U\end{cases}
$$

Clearly, $\psi(x)$ is a smooth, compactly supported function, and $\phi_{1}=\psi\left(\phi_{2} u\right)$.
Q.E.D.

Let Ω be an open set in \mathbf{R}^{n}, and let $u \in \mathcal{D}(\Omega)$. For a point $x \in \Omega$, we define

$$
\Sigma_{x}(u)=\cap \Sigma(\phi u) ; \quad \phi \in C_{0}^{\infty}(\Omega), \quad \phi(x) \neq 0
$$

As an intersection of closed conic sets, $\Sigma_{x}(u)$ is a closed conic set.
Proposition 3. Let Γ be a conic neighborhood of $\Sigma_{x}(u), u \in \mathcal{D}^{\prime}(\Omega)$. Then there exists a neighborhood U of x such that $\Sigma(\phi u) \in \Gamma$ for every function $\phi(x) \in C_{0}^{\infty}(U)$.
Proof. The set $K=S^{n-1} \backslash \Gamma$ is a closed subset of the unit sphere. For every point $\omega \in K$ there exists a function $\phi_{\omega} \in C_{0}^{\infty}(\Omega)$ such that $\phi_{\omega}(x) \neq 0$ and a neighborhood of ω does not intersect with $\Sigma\left(\phi_{\omega} u\right)$. These neighborhoods cover K. One can find a finite number of them that still cover K. Therefore, there exists a finite number of functions $\phi_{j} C_{0}^{\infty}(\Omega)$ such that $\phi_{j}(x) \neq 0$ and $K \cap\left(\cap_{j} \Sigma\left(\phi_{j} u\right)\right)=\emptyset$. Because Γ is a conic set, we conclude

$$
\cap_{j} \Sigma\left(\phi_{j} u\right) \subset \Gamma .
$$

Let U be a neighborhood of x that all ϕ_{j} 's do not vanish in U. By Corrolary $2, \Sigma(\phi u) \subset$ $\Sigma\left(\phi_{j} u\right)$ for every function $\phi \in C_{0}^{\infty}(U)$. Therefore, $\Sigma(\phi u) \subset \Gamma$.
Q.E.D.

One can interpret Proposition 3 in the following way: $\Sigma_{x}(u)$ is the limit of $\Sigma(\phi u)$ when $\operatorname{supp}(\phi) \rightarrow\{x\}$ and $\phi(x) \neq 0$. Now, we are ready to define the wave front set of a distribution.
Definition. The wave front set of a distribution $u \in \mathcal{D}(\Omega)$ is defined as

$$
W F(u)=\left\{(x, \xi) \in \Omega \times\left(\mathbf{R}^{n} \backslash\{0\}\right): \xi \in \Sigma_{x}(u)\right\}
$$

It is a simple exercise to derive from the definition of the wave front set and from Proposition 3 that the projection of $W F(u)$ on Ω is exactly the singular support of u.
Example 4. Let $P_{k} \in \mathbf{R}^{n}$ be the k-dimensional co-ordinate plane $x_{k+1}=\cdots=x_{n}=0$. By x^{\prime} I will denote the collection $\left(x_{1}, \ldots, x_{k}\right)$, and $x^{\prime \prime}$ is the collection of remaining coordinates, so $x=\left(x^{\prime}, x^{\prime \prime}\right)$. For a function $u\left(x^{\prime}\right) \in C^{\infty}\left(P_{k}\right)$, we will compute the wave front set of the distribution $u\left(x^{\prime}\right) \delta\left(x^{\prime \prime}\right)$. This distribution acts on a test function in the following way

$$
\left\langle u\left(x^{\prime}\right) \delta\left(x^{\prime \prime}\right), \psi\right\rangle=\int u\left(x^{\prime}\right) \psi\left(x^{\prime}, 0\right) d x^{\prime}
$$

The support of this distribution is $\left\{x=\left(x^{\prime}, 0\right): x^{\prime} \in \operatorname{supp}(u)\right\}$. Choose a point $x_{0}=\left(x_{0}^{\prime}, 0\right)$ from this set. Let ϕ be a compactly supported smooth function such that $\phi\left(x_{0}\right) \neq 0$. The Fourier transform of the distribution $\phi u\left(x^{\prime}\right) \delta\left(x^{\prime \prime}\right)$ equals

$$
F\left(\xi^{\prime}, \xi^{\prime \prime}\right)=\int u\left(x^{\prime}\right) \phi\left(x^{\prime}, 0\right) e^{-x^{\prime} \xi^{\prime}} d x^{\prime}
$$

Let $\Gamma_{k}=\left\{\left(\xi^{\prime}, \xi^{\prime \prime}\right) \neq 0: \xi^{\prime}=0\right\}$. On the whole cone Γ_{k}, the function $F(\xi)$ is constant (the integral of $u\left(x^{\prime}\right) \phi\left(x^{\prime}, 0\right)$.) For every neighborhood of x_{0}, one can find a function ϕ
supported in that neighborhood such that the integral of $u\left(x^{\prime}\right) \phi\left(x^{\prime}, 0\right)$ does not vanish. So, by Proposition 3, $\Gamma_{k} \subset \Sigma_{x_{0}}\left(u \delta\left(x^{\prime \prime}\right)\right)$. On the other hand, if $\xi_{0} \notin \Gamma_{k}$ then $\left|\xi^{\prime \prime}\right| \leq C\left|\xi^{\prime}\right|$ for every point $\xi=\left(\xi^{\prime}, \xi^{\prime \prime}\right)$ from a certain conic neighborhood Γ of ξ_{0}. Therefore, for every N,

$$
|F(\xi)| \leq C_{N}\left(1+\left|\xi^{\prime}\right|\right)^{-N} \leq C_{N}^{\prime}(1+|\xi|)^{-N}
$$

when $\xi \in \Gamma$, and $\xi_{0} \notin \Sigma_{x_{0}}\left(u \delta\left(x^{\prime \prime}\right)\right)$. We conclude that

$$
\begin{equation*}
W F\left(u\left(x^{\prime}\right) \delta\left(x^{\prime \prime}\right)\right)=\left\{\left(x^{\prime}, x^{\prime \prime} ; \xi^{\prime}, \xi^{\prime \prime}\right): x^{\prime} \in \operatorname{supp}(u), \xi^{\prime}=0\right\} . \tag{6}
\end{equation*}
$$

Transformation of the wave front set under a diffeomorphism.

Let $\Phi: \Omega \rightarrow \Omega^{\prime}$ be a diffeomorphism, and let $u \in \mathcal{D}^{\prime}\left(\Omega^{\prime}\right)$. The distribution $v=\Phi^{*} u$ acts according to the formula

$$
\langle v, \phi\rangle=\langle u,| \Psi^{\prime}(y)|\phi(\Psi(y))\rangle
$$

where $\Psi=\Phi^{-1}$ and $\left|\Psi^{\prime}\right|$ is the absolute value of the Jacobian of Ψ. In particular, if u is a distribution with compact support then

$$
\hat{v}(\xi)=\langle u,| \Psi^{\prime}(y)\left|e^{-i \Psi(y) \cdot \xi}\right\rangle=\langle u, a(y)| \Psi^{\prime}(y)\left|e^{-i \Psi(y) \cdot \xi}\right\rangle
$$

where $a(y)$ is a smooth compactly supported function that equals 1 identically on $\operatorname{supp}(u)$. The support of $a(y)$ can be made as close to $\operatorname{supp}(u)$ as one wishes. To simplify notations, we set

$$
b(y)=a(y)\left|\Psi^{\prime}(y)\right| .
$$

By the definition of the Fourier transform of a distribution,

$$
\begin{align*}
\hat{v}(\xi) & =\left\langle\hat{u}, \mathcal{F}^{-1}\left(b(y) e^{-i \Psi(y) \cdot \xi}\right)\right\rangle \\
& =(2 \pi)^{-n} \iint \hat{u}(\eta) b(y) e^{i(y \eta-\Psi(y) \cdot \xi)} d y d \eta \tag{7}
\end{align*}
$$

Fix a point $x_{0} \in \Omega$. We will assume that the support of u lies in a ball of sufficiently small radius centered at the point $y_{0}=\Phi\left(x_{0}\right)$. We also assume that the support of $b(y)$ also lies in that ball. To make notations simpler, set $x_{0}=y_{0}=0$.

Lemma 5. Let $A(y)=\Psi^{\prime}(y)$ be the Jacobi matrix of Ψ. Then

$$
\begin{equation*}
\Sigma\left(\Phi^{*} u\right) \subset \bigcup_{y \in \operatorname{supp}(u)}\left(A^{t}(y)\right)^{-1} \Sigma(u) \tag{8}
\end{equation*}
$$

Proof. Let ξ_{0} be a point that does not belong to $\cup_{y \in \operatorname{supp} u}\left(A^{t}(y)\right)^{-1} \Sigma(u)$. Then there exists a conic neighborhood Γ of ξ_{0} and a conic neighborhood V of $\Sigma(u)$ such that
$A^{t}(y) \Gamma \cap V=\emptyset$ when $y \in \operatorname{supp} u$. Let Γ^{\prime} be a smaller conic neighborhood of $\xi_{0}, \bar{\Gamma}^{\prime} \subset \Gamma$. We break the integral (7) into the sum

$$
v_{1}(\xi)+v_{2}(\xi)=(2 \pi)^{-n} \int_{\eta \in V}+(2 \pi)^{-n} \int_{\eta \notin V} .
$$

It is easy to estimate $v_{2}(\xi)$. The function $\hat{u}(\eta)$ decays rapidly outside of V, so

$$
(2 \pi)^{-n} b(y) \int_{V^{c}} \hat{u}(\eta) e^{i y \eta} d \eta
$$

is a smooth, compactly supported function. Therefore, after having made a substitution $x=\Psi(y)$, one would recognize $v_{2}(\xi)$ as the Fourier transform of a smooth, compactly supported function. Thus, $v_{2}(\xi)$ decays rapidly.

To estimate $v_{1}(\xi)$ we will use multiple partial integrations. Notice that

$$
\begin{aligned}
D_{j} e^{i(y \eta-\Psi(y) \cdot \xi)} & =\left(\eta_{j}-\sum_{k} \frac{\partial \Psi_{k}(y)}{\partial y_{j}} \xi_{k}\right) e^{i(y \eta-\Psi(y) \cdot \xi)} \\
& =\left(\eta-A^{t}(y) \xi\right)_{j} e^{i(y \eta-\Psi(y) \cdot \xi)}
\end{aligned}
$$

We introduce a first order differential operator

$$
\begin{equation*}
L=\sum_{j} \frac{\left(\eta-A^{t}(y) \xi\right)_{j}}{\left|\eta-A^{t}(y) \xi\right|^{2}} D_{j} . \tag{9}
\end{equation*}
$$

The denominator in (9) does not vanish when $\xi \in \Gamma$ and $\eta \in V$. One has

$$
\begin{equation*}
L e^{i(y \eta-\Psi(y) \cdot \xi)}=e^{i(y \eta-\Psi(y) \cdot \xi)} . \tag{10}
\end{equation*}
$$

Let $\xi \in \Gamma^{\prime}$ and $|\xi| \geq 1$. Then

$$
\begin{align*}
v_{1}(\xi) & =(2 \pi)^{-n} \int_{V} \int \hat{u}(\eta) b(y) L^{k} e^{i(y \eta-\Psi(y) \cdot \xi)} d y d \eta \\
& =(2 \pi)^{-n} \int_{V} \int \hat{u}(\eta)\left(\left(L^{t}\right)^{k} b(y)\right) e^{i(y \eta-\Psi(y) \cdot \xi)} d y d \eta \tag{11}
\end{align*}
$$

where

$$
L^{t}=-\sum_{j} D_{j} \frac{\left(\eta-A^{t}(y) \xi\right)_{j}}{\left|\eta-A^{t}(y) \xi\right|^{2}}
$$

The operator $\left(L^{t}\right)^{k}$ is a differential operator of order k in y.
Exercise. By induction, show that the coefficients of $\left(L^{t}\right)^{k}$ are of the form

$$
\sum_{m=0}^{k} \frac{P_{k+m}(y, \xi, \eta)}{\left|\eta-A^{t}(y) \xi\right|^{2(k+m)}}
$$

where P_{k+m} is a polynomial in (ξ, η) of degree $k+m$ with smooth in y coefficients.
The cones Γ and $\cup\left(A^{t}(y)^{-1} V\right.$ do not intersect, and the closure of Γ^{\prime} lies in Γ, so

$$
\left|\eta-A^{t}(y) \xi\right| \geq C|\eta|, \quad\left|\eta-A^{t}(y) \xi\right| \geq C|\xi|
$$

when $\xi \in \Gamma^{\prime}$ and $\eta \in V$. If one assumes in addition that $|\xi| \geq 1$ then

$$
\left|\eta-A^{t}(y) \xi\right| \geq C(1+|\xi|+|\eta|) .
$$

The last estimate, the result of the exercise, and (11) imply

$$
\left|v_{1}(\xi)\right| \leq C_{k} \int_{V}|\hat{u}(\eta)|(1+|\xi|+|\eta|)^{-k} d \eta
$$

for any k. On the other hand,

$$
|\hat{u}(\eta)| \leq C(1+|\eta|)^{M}
$$

for some M because u is a distribution with compact support. By choosing $k=N+M+$ $n+1$, one gets the desired estimate

$$
\left|v_{1}(\xi)\right| \leq C(1+|\xi|)^{-N}
$$

Q.E.D.

Now, we can formulate the theorem that says how the wave front set of a distribution is transformed under a change of variables.
Theorem 6. Let Ω and Ω^{\prime} be open domains in \mathbf{R}^{n}, and let $\Phi: \Omega \rightarrow \Omega^{\prime}$ be a diffeomorphism. The wave front set of the pull-back $\Phi^{*} u$ of a distribution $u \in \mathcal{D}^{\prime}\left(\Omega^{\prime}\right)$ is given by the following formula

$$
\begin{equation*}
W F\left(\Phi^{*} u\right)=\left\{(x, \xi) \in \Omega \times\left(\mathbf{R}^{n} \backslash\{0\}\right):\left(\Phi(x),\left(\Phi^{\prime}(x)\right)^{t} \xi\right) \in W F(u)\right\} \tag{12}
\end{equation*}
$$

Before we prove theorem 6, let us discuss how to interpret it. The pull-back of a one-form $\eta=\sum \eta_{j} d y_{j}$ on Ω^{\prime} is

$$
\Phi^{*} \eta=\sum_{k=1}^{n} \xi_{k} d x_{k}=\sum_{k=1}^{n} \sum_{j=1}^{n} \frac{\partial \Phi_{j}}{\partial x_{j}} \eta_{j} d x_{k}
$$

so

$$
\xi_{k}=\sum_{j=1}^{n} \frac{\partial \Phi_{j}}{x_{k}} \eta_{j} .
$$

The last equation can be re-written in the matrix form as

$$
\begin{equation*}
\xi=\left(\Phi^{\prime}(x)\right)^{t} \eta \tag{13}
\end{equation*}
$$

A diffeomorphism $\Phi: \Omega \rightarrow \Omega$ gives rise to a mapping $\hat{\Phi}: T^{*}\left(\Omega^{\prime}\right) \rightarrow T^{*}(\Omega)$:

$$
\begin{equation*}
\hat{\Phi}(y, \eta)=\left(\Phi^{-1}(y),\left(\Phi^{\prime}\left(\Phi^{-1}(y)\right)^{t}\right) \eta .\right. \tag{14}
\end{equation*}
$$

This mapping is a diffeomorphism, and it maps the zero section $\Omega^{\prime} \times\{0\}$ onto the zero section $\Omega \times\{0\}$. Theorem 6 says that $W F\left(\Phi^{*} u\right)=\hat{\Phi}(W F(u))$. In other words, the wave front set is a correctly defined set in the cotangent bundle over a domain. One should think of $\Omega \times\left(\mathbf{R}^{n} \backslash\{0\}\right)$ as the space of non-zero covectors over Ω.

Proof of Theorem 6. We start from proving the inclusion

$$
\begin{equation*}
W F\left(\Phi^{*} u\right) \subset \hat{\Phi}(W F(u)) . \tag{15}
\end{equation*}
$$

Suppose that

$$
(y, \eta)=\hat{\Phi}^{-1}((x, \xi)) \notin W F(u) .
$$

By Proposition 3, there exists a conic neighborhood Γ^{\prime} of η and a neighborhood V of the point y such that

$$
\begin{equation*}
\Sigma(\psi u) \cap \Gamma^{\prime}=\emptyset \tag{16}
\end{equation*}
$$

for every smooth function ψ that is supported in V. Let $U=\Phi^{-1}(V)$; this is a neighborhood of the point x. The equation (16) implies

$$
\xi \notin\left(\Phi^{\prime}(x)^{t}\right)(\Sigma(\psi u)),
$$

and, therefore,

$$
\begin{equation*}
\xi \notin\left(\Phi^{\prime}\left(x^{\prime}\right)^{t}\right)(\Sigma(\psi u)) \tag{17}
\end{equation*}
$$

for every point x^{\prime} from a sufficiently small neighborhood U^{\prime} of the point x. Let $\tilde{U}=U \cap U^{\prime}$ and $\tilde{V}=\Phi(\tilde{U})$. Take any function $\phi \in C_{0}^{\infty}(\tilde{U})$ such that $\phi(x) \neq 0$. Let $\psi(z)=\phi\left(\Phi^{-1}(z)\right)$. Then $\phi \Phi^{*} u=\Phi^{*}(\psi u)$, and by Lemma $5, \xi \notin \Sigma\left(\phi \Phi^{*} u\right)$ (see (17).) By the definition of the wave front set, $(x, \xi) \notin W F\left(\Phi^{*} u\right)$, so the inclusion (15) has been established.

To prove the opposite inclusion, we notice that the composition of $\hat{\Phi}$ and $\widehat{\Phi^{-1}}$ is the identity mapping and $\left(\Phi^{-1}\right)^{*} \Phi^{*} u=u$; so the inclusion (15) written for Φ^{-1} is equivalent to

$$
W F\left(\Phi^{*} u\right) \supset \hat{\Phi}(W F(u)) .
$$

Q.E.D.

Example 7. Let M be a k-dimensional smooth submanifold in \mathbf{R}^{n}. For a function $u \in C^{\infty}(M)$ we define the distribution $u \delta_{M} \in \mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right)$:

$$
\left\langle u \delta_{M}, \phi\right\rangle=\int_{M} u(x) \phi(x) d S
$$

where $d S$ is the area element in M that is induced by the Euclidean metric in \mathbf{R}^{n}. Let us compute $W F\left(u \delta_{M}\right)$. First, a point (x, ξ) may lie in $W F\left(u \delta_{M}\right)$ only if $x \in M$ and
$x_{0} \in \operatorname{supp}(u)$. Theorem 6 allows us to use any co-ordinate system for computing the wave front set. Let $x \in \operatorname{supp}(u) \subset M$. First, we take an orthogonal co-ordinate system $\left(y_{1}, \ldots, y_{n}\right)$, with the origin at the point x_{0}, with the first k co-ordinate axes lying in the tangent plane $T_{x_{0}}(M)$ to M at the point x_{0}, and the last $n-k$ co-ordinate axes going along its orthogonal complement. The transition from the old co-ordinate system (x_{1}, \ldots, x_{n}) to the new one is given by the composition of a shift and an orthogonal transformation. A neighborhood of the point x_{0} in M is given by equation

$$
y_{l}=F_{l}\left(y_{1}, \ldots, y_{k}\right), \quad l=k+1, \ldots, n,
$$

with smooth functions F_{l}. Notice that

$$
\begin{equation*}
\nabla F_{l}(0)=0, \quad l=k+1, \ldots, n \tag{18}
\end{equation*}
$$

In a neighborhood of the point x_{0} in \mathbf{R}^{n}, we introduce co-ordinates $\left(z_{1}, \ldots, z_{n}\right)$:

$$
z_{j}= \begin{cases}y_{j}, & \text { when } j \leq k \tag{19}\\ y_{j}-F_{j}\left(y_{1}, \ldots, y_{k}\right), & \text { when } j>k\end{cases}
$$

Equations (18) imply that the Jacobi matrix $(\partial z / \partial y)(0)$ is the identity matrix, so (19) define a diffeomorphism in a neighborhood of x_{0}. In that neighborhood of x_{0}, the manifold M is given by the equations $z_{k+1}=\cdots=z_{n}=0$, and the distribution $u \delta_{M}$ acts on a function that is supported in a neighborhood of x_{0} by the formula

$$
\left\langle u, \delta_{M} \phi\right\rangle=\int u\left(z^{\prime}\right) \phi\left(z^{\prime}, 0\right) m\left(z^{\prime}\right) d z^{\prime}
$$

where $z^{\prime}=\left(z_{1}, \ldots, z_{k}\right), z^{\prime \prime}=\left(z_{k+1}, \ldots, z_{n}\right)$, and $m\left(z^{\prime}\right) d z^{\prime}$ is the area element $d S$ written in the local co-ordinates z^{\prime} on M. From Example 4, we know that $\left(x_{0}, \zeta\right) \in W F\left(u \delta_{M}\right)$ when $\zeta^{\prime}=0$. If interpreted as a point in the cotangent space $T_{x_{0}}^{*}(M)$, it annihilates the tangent space $T_{x_{0}}(M)$. A subspace in $T_{x_{0}}^{*}(M)$ that annihilates $T_{x_{0}}(M)$ is called the normal space to M at x_{0}, and it is denoted by $N_{x_{0}}(M)$. In the original co-ordinates, it is given by

$$
N_{x_{0}}(M)=\left\{\xi \in \mathbf{R}^{n}: \xi \perp T_{x_{0}}(M)\right\} .
$$

We conclude that

$$
W F\left(u \delta_{M}\right)=\left\{(x, \xi): x \in \operatorname{supp}(u) \subset M, \xi \in N_{x}(M) \backslash\{0\}\right\} .
$$

