
The wave front set of a distribution

The Fourier transform of a smooth compactly supported function u(x) decays faster than
any negative power of the dual variable ξ; that is for every numberN there exists a constant
CN such that

|û(ξ)| ≤ CN (1 + |ξ|)−N . (1)

On the other hand, if the Fourier transform of a distribution with compact support satisfies
the estimate (1) then this distribution is actually induced by a smooth function. Therefore,
the estimate (1) can be viewed as a characteristic property for smoothness. The singular
support of a distribution tells us where the singularities of a distribution lie. The wave
front set gives more precise description of singularities; it tells us not only at what points
a singularity occur, but it also indicates the directions in the dual space from which the
singularities are coming; that is, in what directions the estimate (1) does not hold.

Let us start with some definitions. A set V ⊂ Rn \{0} is called a conic set if, together
with any point ξ, it contains all the points tξ where t > 0. A conic set is completely
determined by its intersection with the unit sphere Sn−1 in Rn. By a conic neighborhood
of a point ξ ∈ Rn \ {0} we mean an open conic set that contains ξ.

Let u ∈ E ′ be a distribution in Rn with compact support. Its Fourier transform is
a smooth function. We define the set Σ(u) ∈ Rn \ {0} by saying that ξ 6∈ Σ(u) if there
exists a conic neighborhood V of ξ such that the estimate (1) holds in V for all N . It
follows immediately from the definition that Σ(u) is a closed conic set. Notice that the
distribution u is induced by a smooth function if and only if Σ(u) = ∅.
Proposition 1. Let u ∈ E ′(Rn) and φ ∈ C∞(Rn). Then Σ(φu) ⊂ Σ(u).
Proof. First, let φ ∈ C∞

0 . Let ξ 6∈ Σ(u), and let V be a conic neighborhood of ξ where
the estimate (1) holds. We take a smaller conic neighborhood, V ′ of ξ the closure of which
lies in V , and we will prove the estimate (1) for the product φu in V ′.

First, there exists a constant c such that, for every η ∈ V ′, the closed ball of radius
c|η|, centered at η, lies in V . In fact, the distance between V ′ ∩Sn−1 and the complement
of V is positive. Choose c to be a positive number that is smaller that that distance. The
inequality |ζ − η| < c|η| implies |(ζ/|η|)− (η/|η|)| < c; so (ζ/|η|) ∈ V ′, and ζ ∈ V ′ because
V ′ is conic.

The Fourier transform of φu equals the convolution of Fourier transforms,

φ̂u(η) = (2π)−n

∫
φ̂(η − ζ)û(ζ)dζ. (2)

The Fourier transform of u has an upper bound

|û(ζ)| ≤ C(1 + |ζ|)M (3)

for some number M . The integral in (2) can be broken into

I1 + I2 =
∫
|ζ−η|≤c|η|

+
∫
|ζ−η|>c|η|

.
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In the first integral, ζ ∈ V , so

|û(ζ)| ≤ CN (1 + |ζ|)−N ≤ C ′
N (1 + |η)−N

because |ζ| ≥ (1− c)|η|. Therefore,

|I1| ≤ C ′
N (1 + |η|)−N

∫
|φ̂(η)|dη. (4)

To estimate the integral I2, we notice that |ζ − η| ≥ c|η| implies

|ζ − η| ≥ |ζ| − |η| ≥ |ζ| − 1
c
|ζ − η|,

and, therefore,
|ζ − η| ≥ c

c+ 1
|ζ|. (5)

The estimates (1) and (3) imply that, for any choice of N ,

|I2| ≤ C

∫
|ζ−η|≥c|η|

(1 + |ζ − η|)−N−M−n−1(1 + |ζ|)Mdζ.

The integrand in the last formula is bounded by

(1 + |ζ − η|)−N (1 + |ζ − η|)−M−n−1(1 + |ζ|)M ≤ C1(1 + |η|)−N (1 + |ζ|)−n−1

when |ζ − η| ≥ c|η| (see (5).) Therefore,

|I2| ≤ C2(1 + |η|)−N .

The last estimate, together with (4), implies

|φ̂u(η)| ≤ C3(1 + |η|)−N .

This proves the Proposition in the case φ ∈ C∞
0 . If a function φ is not compactly supported

then one can find a function φ′ ∈ C∞
0 that coincides with φ in a neighborhood of suppu.

Clearly, φu = φ′u. Q.E.D.
Corrolary 2. Let u ∈ D′(Rn), and let φ1, φ2 ∈ C∞

0 (Rn). Suppose that φ2(x) 6= 0 when
x ∈ supp(φ1). Then Σ(φ1u) ⊂ Σ(φ2u).
Proof. Let U be a neighborhood of supp(φ1) such that φ2(x) 6= 0 when x ∈ U , and let V
be a smaller neighborhood of supp(φ1):

supp(φ1) ⊂ V ; V̄ ⊂ U.

Let χ(x) be a smooth function such that χ(x) = 1 when x ∈ V and χ(x) = 0 when x 6∈ U .
We define a function

ψ(x) =
{
χ(x)/φ2(x), if x ∈ U ;
0, if x 6∈ U .
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Clearly, ψ(x) is a smooth, compactly supported function, and φ1 = ψ(φ2u).
Q.E.D.

Let Ω be an open set in Rn, and let u ∈ D(Ω). For a point x ∈ Ω, we define

Σx(u) = ∩Σ(φu); φ ∈ C∞
0 (Ω), φ(x) 6= 0.

As an intersection of closed conic sets, Σx(u) is a closed conic set.
Proposition 3. Let Γ be a conic neighborhood of Σx(u), u ∈ D′(Ω). Then there exists a
neighborhood U of x such that Σ(φu) ∈ Γ for every function φ(x) ∈ C∞

0 (U).
Proof. The set K = Sn−1 \Γ is a closed subset of the unit sphere. For every point ω ∈ K
there exists a function φω ∈ C∞

0 (Ω) such that φω(x) 6= 0 and a neighborhood of ω does
not intersect with Σ(φωu). These neighborhoods cover K. One can find a finite number
of them that still cover K. Therefore, there exists a finite number of functions φj C

∞
0 (Ω)

such that φj(x) 6= 0 and K ∩ (∩jΣ(φju)) = ∅. Because Γ is a conic set, we conclude

∩jΣ(φju) ⊂ Γ.

Let U be a neighborhood of x that all φj ’s do not vanish in U . By Corrolary 2, Σ(φu) ⊂
Σ(φju) for every function φ ∈ C∞

0 (U). Therefore, Σ(φu) ⊂ Γ.
Q.E.D.

One can interpret Proposition 3 in the following way: Σx(u) is the limit of Σ(φu)
when supp(φ) → {x} and φ(x) 6= 0. Now, we are ready to define the wave front set of a
distribution.
Definition. The wave front set of a distribution u ∈ D(Ω) is defined as

WF (u) = {(x, ξ) ∈ Ω× (Rn \ {0}) : ξ ∈ Σx(u)}.

It is a simple exercise to derive from the definition of the wave front set and from
Proposition 3 that the projection of WF (u) on Ω is exactly the singular support of u.
Example 4. Let Pk ∈ Rn be the k-dimensional co-ordinate plane xk+1 = · · · = xn = 0.
By x′ I will denote the collection (x1, . . . , xk), and x′′ is the collection of remaining co-
ordinates, so x = (x′, x′′). For a function u(x′) ∈ C∞(Pk), we will compute the wave front
set of the distribution u(x′)δ(x′′). This distribution acts on a test function in the following
way

〈u(x′)δ(x′′), ψ〉 =
∫
u(x′)ψ(x′, 0)dx′.

The support of this distribution is {x = (x′, 0) : x′ ∈ supp(u)}. Choose a point x0 = (x′0, 0)
from this set. Let φ be a compactly supported smooth function such that φ(x0) 6= 0. The
Fourier transform of the distribution φu(x′)δ(x′′) equals

F (ξ′, ξ′′) =
∫
u(x′)φ(x′, 0)e−x′ξ′

dx′.

Let Γk = {(ξ′, ξ′′) 6= 0 : ξ′ = 0}. On the whole cone Γk, the function F (ξ) is constant
(the integral of u(x′)φ(x′, 0).) For every neighborhood of x0, one can find a function φ
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supported in that neighborhood such that the integral of u(x′)φ(x′, 0) does not vanish. So,
by Proposition 3, Γk ⊂ Σx0(uδ(x

′′)). On the other hand, if ξ0 6∈ Γk then |ξ′′| ≤ C|ξ′| for
every point ξ = (ξ′, ξ′′) from a certain conic neighborhood Γ of ξ0. Therefore, for every N ,

|F (ξ)| ≤ CN (1 + |ξ′|)−N ≤ C ′
N (1 + |ξ|)−N

when ξ ∈ Γ, and ξ0 6∈ Σx0(uδ(x
′′)). We conclude that

WF (u(x′)δ(x′′)) = {(x′, x′′; ξ′, ξ′′) : x′ ∈ supp(u), ξ′ = 0}. (6)

Transformation of the wave front set under a diffeomorphism.

Let Φ : Ω → Ω′ be a diffeomorphism, and let u ∈ D′(Ω′). The distribution v = Φ∗u
acts according to the formula

〈v, φ〉 = 〈u, |Ψ′(y)|φ(Ψ(y))〉

where Ψ = Φ−1 and |Ψ′| is the absolute value of the Jacobian of Ψ. In particular, if u is a
distribution with compact support then

v̂(ξ) = 〈u, |Ψ′(y)|e−iΨ(y)·ξ〉 = 〈u, a(y)|Ψ′(y)|e−iΨ(y)·ξ〉

where a(y) is a smooth compactly supported function that equals 1 identically on supp(u).
The support of a(y) can be made as close to supp(u) as one wishes.To simplify notations,
we set

b(y) = a(y)|Ψ′(y)|.

By the definition of the Fourier transform of a distribution,

v̂(ξ) = 〈û,F−1
(
b(y)e−iΨ(y)·ξ)〉

= (2π)−n

∫ ∫
û(η)b(y)ei(yη−Ψ(y)·ξ)dydη. (7)

Fix a point x0 ∈ Ω. We will assume that the support of u lies in a ball of sufficiently small
radius centered at the point y0 = Φ(x0). We also assume that the support of b(y) also lies
in that ball. To make notations simpler, set x0 = y0 = 0.

Lemma 5. Let A(y) = Ψ′(y) be the Jacobi matrix of Ψ. Then

Σ(Φ∗u) ⊂
⋃

y∈supp(u)

(At(y))−1Σ(u). (8)

Proof. Let ξ0 be a point that does not belong to ∪y∈suppu(At(y))−1Σ(u). Then there
exists a conic neighborhood Γ of ξ0 and a conic neighborhood V of Σ(u) such that
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At(y)Γ ∩ V = ∅ when y ∈ suppu. Let Γ′ be a smaller conic neighborhood of ξ0, Γ̄′ ⊂ Γ.
We break the integral (7) into the sum

v1(ξ) + v2(ξ) = (2π)−n

∫
η∈V

+(2π)−n

∫
η 6∈V

.

It is easy to estimate v2(ξ). The function û(η) decays rapidly outside of V , so

(2π)−nb(y)
∫

V c

û(η)eiyηdη

is a smooth, compactly supported function. Therefore, after having made a substitution
x = Ψ(y), one would recognize v2(ξ) as the Fourier transform of a smooth, compactly
supported function. Thus, v2(ξ) decays rapidly.

To estimate v1(ξ) we will use multiple partial integrations. Notice that

Dje
i(yη−Ψ(y)·ξ) =

(
ηj −

∑
k

∂Ψk(y)
∂yj

ξk

)
ei(yη−Ψ(y)·ξ)

= (η −At(y)ξ)je
i(yη−Ψ(y)·ξ).

We introduce a first order differential operator

L =
∑

j

(η −At(y)ξ)j

|η −At(y)ξ|2
Dj . (9)

The denominator in (9) does not vanish when ξ ∈ Γ and η ∈ V . One has

Lei(yη−Ψ(y)·ξ) = ei(yη−Ψ(y)·ξ). (10)

Let ξ ∈ Γ′ and |ξ| ≥ 1. Then

v1(ξ) = (2π)−n

∫
V

∫
û(η)b(y)Lkei(yη−Ψ(y)·ξ)dydη

= (2π)−n

∫
V

∫
û(η)((Lt)kb(y))ei(yη−Ψ(y)·ξ)dydη (11)

where

Lt = −
∑

j

Dj
(η −At(y)ξ)j

|η −At(y)ξ|2
.

The operator (Lt)k is a differential operator of order k in y.
Exercise. By induction, show that the coefficients of (Lt)k are of the form

k∑
m=0

Pk+m(y, ξ, η)
|η −At(y)ξ|2(k+m)
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where Pk+m is a polynomial in (ξ, η) of degree k +m with smooth in y coefficients.

The cones Γ and ∪(At(y)−1V do not intersect, and the closure of Γ′ lies in Γ, so

|η −At(y)ξ| ≥ C|η|, |η −At(y)ξ| ≥ C|ξ|

when ξ ∈ Γ′ and η ∈ V . If one assumes in addition that |ξ| ≥ 1 then

|η −At(y)ξ| ≥ C(1 + |ξ|+ |η|).

The last estimate, the result of the exercise, and (11) imply

|v1(ξ)| ≤ Ck

∫
V

|û(η)|(1 + |ξ|+ |η|)−kdη

for any k. On the other hand,

|û(η)| ≤ C(1 + |η|)M

for some M because u is a distribution with compact support. By choosing k = N +M +
n+ 1, one gets the desired estimate

|v1(ξ)| ≤ C(1 + |ξ|)−N .

Q.E.D.
Now, we can formulate the theorem that says how the wave front set of a distribution

is transformed under a change of variables.
Theorem 6. Let Ω and Ω′ be open domains in Rn, and let Φ : Ω → Ω′ be a diffeomor-
phism. The wave front set of the pull-back Φ∗u of a distribution u ∈ D′(Ω′) is given by
the following formula

WF (Φ∗u) = {(x, ξ) ∈ Ω× (Rn \ {0}) : (Φ(x), (Φ′(x))tξ) ∈WF (u)}. (12)

Before we prove theorem 6, let us discuss how to interpret it. The pull-back of a
one-form η =

∑
ηjdyj on Ω′ is

Φ∗η =
n∑

k=1

ξkdxk =
n∑

k=1

n∑
j=1

∂Φj

∂xj
ηjdxk;

so

ξk =
n∑

j=1

∂Φj

xk
ηj .

The last equation can be re-written in the matrix form as

ξ = (Φ′(x))tη. (13)
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A diffeomorphism Φ : Ω → Ω gives rise to a mapping Φ̂ : T ∗(Ω′) → T ∗(Ω):

Φ̂(y, η) = (Φ−1(y), (Φ′(Φ−1(y))t)η. (14)

This mapping is a diffeomorphism, and it maps the zero section Ω′ × {0} onto the zero
section Ω× {0}. Theorem 6 says that WF (Φ∗u) = Φ̂(WF (u)). In other words, the wave
front set is a correctly defined set in the cotangent bundle over a domain. One should
think of Ω× (Rn \ {0}) as the space of non-zero covectors over Ω.

Proof of Theorem 6. We start from proving the inclusion

WF (Φ∗u) ⊂ Φ̂(WF (u)). (15)

Suppose that
(y, η) = Φ̂−1((x, ξ)) 6∈WF (u).

By Proposition 3, there exists a conic neighborhood Γ′ of η and a neighborhood V of the
point y such that

Σ(ψu) ∩ Γ′ = ∅ (16)

for every smooth function ψ that is supported in V . Let U = Φ−1(V ); this is a neighbor-
hood of the point x. The equation (16) implies

ξ 6∈ (Φ′(x)t)(Σ(ψu)),

and, therefore,
ξ 6∈ (Φ′(x′)t)(Σ(ψu)) (17)

for every point x′ from a sufficiently small neighborhood U ′ of the point x. Let Ũ = U ∩U ′

and Ṽ = Φ(Ũ). Take any function φ ∈ C∞
0 (Ũ) such that φ(x) 6= 0. Let ψ(z) = φ(Φ−1(z)).

Then φΦ∗u = Φ∗(ψu), and by Lemma 5, ξ 6∈ Σ(φΦ∗u) (see (17).) By the definition of the
wave front set, (x, ξ) 6∈WF (Φ∗u), so the inclusion (15) has been established.

To prove the opposite inclusion, we notice that the composition of Φ̂ and Φ̂−1 is the
identity mapping and (Φ−1)∗Φ∗u = u; so the inclusion (15) written for Φ−1 is equivalent
to

WF (Φ∗u) ⊃ Φ̂(WF (u)).

Q.E.D.

Example 7. Let M be a k-dimensional smooth submanifold in Rn. For a function
u ∈ C∞(M) we define the distribution uδM ∈ D′(Rn):

〈uδM , φ〉 =
∫

M

u(x)φ(x)dS

where dS is the area element in M that is induced by the Euclidean metric in Rn. Let
us compute WF (uδM ). First, a point (x, ξ) may lie in WF (uδM ) only if x ∈ M and
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x0 ∈ supp(u). Theorem 6 allows us to use any co-ordinate system for computing the
wave front set. Let x ∈ supp(u) ⊂ M . First, we take an orthogonal co-ordinate system
(y1, . . . , yn), with the origin at the point x0, with the first k co-ordinate axes lying in the
tangent plane Tx0(M) to M at the point x0, and the last n−k co-ordinate axes going along
its orthogonal complement. The transition from the old co-ordinate system (x1, . . . , xn)
to the new one is given by the composition of a shift and an orthogonal transformation.
A neighborhood of the point x0 in M is given by equation

yl = Fl(y1, . . . , yk), l = k + 1, . . . , n,

with smooth functions Fl. Notice that

∇Fl(0) = 0, l = k + 1, . . . , n. (18)

In a neighborhood of the point x0 in Rn, we introduce co-ordinates (z1, . . . , zn):

zj =
{
yj , when j ≤ k;
yj − Fj(y1, . . . , yk), when j > k. (19)

Equations (18) imply that the Jacobi matrix (∂z/∂y)(0) is the identity matrix, so (19)
define a diffeomorphism in a neighborhood of x0. In that neighborhood of x0, the manifold
M is given by the equations zk+1 = · · · = zn = 0, and the distribution uδM acts on a
function that is supported in a neighborhood of x0 by the formula

〈u, δMφ〉 =
∫
u(z′)φ(z′, 0)m(z′)dz′

where z′ = (z1, . . . , zk), z′′ = (zk+1, . . . , zn), and m(z′)dz′ is the area element dS written
in the local co-ordinates z′ on M . From Example 4, we know that (x0, ζ) ∈ WF (uδM )
when ζ ′ = 0. If interpreted as a point in the cotangent space T ∗x0

(M), it annihilates the
tangent space Tx0(M). A subspace in T ∗x0

(M) that annihilates Tx0(M) is called the normal
space to M at x0, and it is denoted by Nx0(M). In the original co-ordinates, it is given by

Nx0(M) = {ξ ∈ Rn : ξ ⊥ Tx0(M)}.

We conclude that

WF (uδM ) = {(x, ξ) : x ∈ supp(u) ⊂M, ξ ∈ Nx(M) \ {0}}.
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