Problems for "Introduction to micro-local Analysis"

1. In the space of compactly supported smooth functions in \mathbb{R}^n , the base of open neighborhoods of a function $\psi(x)$ is defined as a collection of sets

$$U_{\gamma(x),\alpha}(\psi) = \{\phi(x) \in C_0^{\infty}(\mathbf{R}^n) : |D^{\alpha}(\phi(x) - \psi(x))| < \gamma(x)\}$$

for all continuous functions $\gamma(x) > 0$ and all multi-indices α . Show that the resulting topology induces the following notion of convergence: $\phi_n \to \phi$ if all functions ϕ_n are supported in the same bounded region and $D^{\alpha}\phi_n$ converges to $D^{\alpha}\phi$ uniformly for every multi-index α .

2. Let $\phi(x) \in C_0^{\infty}(\mathbb{R}^n)$, and let s be a non-negative real number. Investigate the asymptotic behavior of the integral

$$I_{\phi}(\epsilon) = \int_{|x| \ge \epsilon} \frac{\phi(x)}{|x|^{n+s}} dx$$

as $\epsilon \to 0$. Use the asymptotics of $I_{\phi}(\epsilon)$ for regularizing the function $|x|^{-n-s}$. The answer depends on whether the number s is integer or not.

3. Prove that the Fourier transform is a continuous map from the Schwarz space $\mathcal{S}(\mathbf{R}^n)$ onto itself.

4. Let $u \in \mathcal{S}'(\mathbf{R}^n)$ and $\phi(x) \in \mathcal{S}(\mathbf{R}^n)$. Prove that the Fourier transform of $\phi * u$ equals the product of Fourier transforms of ϕ and u.

5. Find Fourier transforms of the following distributions:

a) P.V(1/x);

b) $(x \pm i0)^{-1};$

c) x_{+}^{λ} .

6. Let Ω be a domain in \mathbb{R}^n with smooth boundary. Find the wave front set of the characteristic function χ_{Ω} of the domain Ω . Do the same problem for

$$\Omega = \{ x = (x_1, \dots, x_n) \in \mathbf{R}^n : x_j \ge 0, j = 1, \dots, n \}.$$