Chapter 13
Topic 1
Q1:
$$W = \frac{1}{3} = \frac{1}{1-i} = \frac{1+i}{1+i} = \frac{1+i}{2}$$

 $\Rightarrow |W| = \frac{1}{2}$. Arg $W = \frac{1}{4}$
 $\Rightarrow W = \frac{1}{2}(\cos \frac{1}{4} + i \sin \frac{1}{4})$

Q 2
Arg
$$\delta_1 = Arg(-2+2i) = \frac{3}{4}\Pi$$

Arg $\delta_2 = Arg(-6-6i) = -\frac{3}{4}\Pi$
 $arg \frac{3}{52} = Arg \delta_1 - Arg \delta_2 = \frac{3}{4}\Pi - (-\frac{3}{4}\Pi) = \frac{3}{2}\Pi$
 $\Rightarrow Arg \frac{3}{52} = arg \frac{3}{52} - 2\Pi = \frac{3}{2}\Pi - 2\Pi = -\frac{\Pi}{2}$

Topic 2

$$(a) \cdot (a) \cdot \frac{-5}{8}i$$

(b)
$$192$$

(c) $\frac{192}{12}$
(d) 12

Topic 3
Q4:
$$\delta^{4} = 1 = \cos 0 + i \sin 0$$

 $\Rightarrow 3 = \sqrt[4]{\cos 0} + i \sin 0$
 $= \cos \frac{0 + 2k\pi}{4} + i \sin \frac{0 + 2k\pi}{4}$ (k=0, 1, 2.3)
 $= \cos \frac{k\pi}{2} + i \sin \frac{k\pi}{2}$
 $\Rightarrow 3_{0} = 1$, $3_{1} = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = i$

 $\delta_2 = \cos \pi + i \sin \pi = -i$, $\delta_3 = \cos \frac{3}{2}\pi + i \sin \frac{3}{2}\pi = -i$

$$\begin{split} z^{3} &= 2 - 2i = 2\sqrt{2} \left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right) \\ &\Rightarrow \delta = \left[2\sqrt{2} \left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right) \right]^{\frac{1}{3}} \\ &= \left(2\sqrt{2} \right)^{\frac{1}{3}} \left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right) \right] \\ &\Rightarrow \delta_{0} &= \left(2\sqrt{2} \right)^{\frac{1}{3}} \left(\cos\left(-\frac{\pi}{42}\right) + i\sin\left(-\frac{\pi}{42}\right) \right) \\ &\delta_{1} &= \left(2\sqrt{2} \right)^{\frac{1}{3}} \left(\cos\left(-\frac{\pi}{42}\right) + i\sin\left(-\frac{\pi}{42}\right) \right) \\ &\delta_{2} &= \left(2\sqrt{2} \right)^{\frac{1}{3}} \left(\cos\left(-\frac{\pi}{42}\right) + i\sin\left(-\frac{\pi}{42}\right) \right) \\ &\delta_{2} &= \left(2\sqrt{2} \right)^{\frac{1}{3}} \left(\cos\left(-\frac{\pi}{42}\right) + i\sin\left(-\frac{\pi}{42}\right) \right) \\ &= \left(2\sqrt{2} \right)^{\frac{1}{3}} \left(\cos\left(-\frac{\pi}{42}\right) + i\sin\left(-\frac{\pi}{42}\right) \right) \\ &= \left(2\sqrt{2} \right)^{\frac{1}{3}} \left(-\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2} \right) \end{split}$$

Topic 4

Topic 4

$$128 \cdot (a) \quad f(z) = z + \overline{z}$$

 $= (x + i\gamma) + (x - i\gamma) = zx$
 $\Rightarrow u = zx \cdot v = 0$
 $u_x = 2 \quad v_y = 0 \quad \Rightarrow u_x \neq v_y \cdot so. f(z) \quad \text{MT Andysec}$
(b) $g(z) = 3z - 2\overline{z}$
 $= 3(x + i\gamma) - 2(x - i\gamma) = x + 5\gamma i$
 $u_x = 1 \quad v_y = 5 \quad u_x \neq v_y \cdot so. g(z) \quad \text{is not}$
 $u_x = 1 \quad v_y = 5 \quad u_x \neq v_y \cdot so. g(z) \quad \text{is not}$
 $u_x = 1 \quad v_y = 5 \quad u_x \neq v_y \cdot so. g(z) \quad \text{is not}$
 $u_x = 1 \quad v_y = 5 \quad u_x \neq v_y \cdot so. g(z) \quad \text{is not}$
 $u_x = 1 \quad v_y = 5 \quad u_x \neq v_y \cdot so. g(z) \quad \text{is not}$
 $u_x = \frac{1}{|z|^2} = \frac{x - iy}{|x^2 + y^2|} = \frac{-x}{-x^2 + y_1} - \frac{i}{|x^2 + y^2|}$
 $\Rightarrow u = \frac{x}{|x^2 + y|^3}, \quad v = \frac{-y}{-x^2 + y_1}$
 $u_x = \frac{1 \cdot (x^2 + y^2) - (x - y)(xy)}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$
 $v_y = \frac{-1 \cdot (x^3 + y^2) - (-y)(xy)}{(x^2 + y^2)^2} = \frac{-2xy}{(x^2 + y^2)^2}$
 $u_y = \frac{-(-y) \cdot zx}{(x^2 + y^2)^2} = \frac{-2xy}{(x^2 + y^2)^2}$
 $v_x = \frac{-(-y) \cdot zx}{(x^2 + y^2)^2} = \frac{2xy}{(x^2 + y^2)^2}$
 $\Rightarrow u_x = v_y \quad u_y = -v_x$
So, $h(z)$ is analytte.

$$Q \ 9 :$$
Let $\delta = re^{i\theta}$, then
$$f(\delta) = \frac{i}{r^2 e^{2i\theta}} = \frac{i}{r^2} e^{-2i\theta} = \frac{i}{r^2} (\cos 2\theta - i\sin 2\theta)$$

$$= \frac{\sin^2 2\theta}{r^2} + i \frac{\cos^2 \theta}{r^2}$$

$$\Rightarrow \mathcal{U}(r,\theta) = \frac{\sin^2 \theta}{r^2} , \quad \mathcal{V}(r,\theta) = \frac{\cos^2 \theta}{r^2}$$

$$\Rightarrow \mathcal{U}_r = -2\sin(2\theta) \cdot r^{-3} , \quad \mathcal{V}_{\theta} = -2\sin(2\theta) \cdot r^{-2}$$

$$\mathcal{U}_{\theta} = 2\cos(2\theta) r^{-2} , \quad \mathcal{V}_r = -2\cos(2\theta) \cdot r^{-3}$$

$$\Rightarrow \int_{V_r}^{U_r} U_r = \frac{1}{r} V_{\theta}$$

$$V_r = -\frac{1}{r} U_{\theta}$$

 \Rightarrow f(3) is analytic when 370

Q 10.

$$f(x)$$
 is analytic $\Rightarrow \{ U_x = V_y \}$
 $\| U_y = -V_x \|$
 $\Rightarrow \{ U_x y = V_y y \}$
 $\| -U_{yx} = V_{xx} \|$

Q 11

 $\begin{aligned} u_{x} &= 2X \implies u_{xx} = 2 \\ u_{y} &= -2y - 1 \implies u_{yy} = -2 \\ A \text{ harmonic conjugate } V(x,y) \text{ must catisfy} \\ \begin{cases} u_{x} &= Vy \\ u_{y} &= -V_{x} \\ \end{cases} \implies \begin{cases} Vy &= 2x \\ Vx &= 2y + 1 \\ z \\ \end{cases} \\ (1) \implies V(x,y) &= 2xy + h(x) \\ \implies V_{x}(x,y) &= 2y + h'(x) \\ \implies V_{x}(x,y) &= 2y + h'(x) \\ \implies V_{x}(x,y) &= 2y + h'(x) \\ \implies V(x,y) &= 2xy + x + C \end{aligned}$

$$Q | Z$$

$$U_{x} = 3 e^{3x} \cos ay \Rightarrow U_{xx} = 9 e^{3x} \cos ay$$

$$U_{y} = -a e^{3x} \sin ay \Rightarrow U_{yy} = -a^{2} e^{3x} \cos ay$$

$$U_{xx} + U_{yy} = 0 \Rightarrow (9 - a^{2}) e^{3x} \cos ay = 0 \quad (u \text{ is harmonic})$$

$$\Rightarrow a^{2} - 9 = 0$$

$$\Rightarrow a = \pm 3$$

Q 13

 $\begin{aligned} \mathcal{U}_{x} &= \cos \times \cosh cy \Rightarrow \mathcal{U}_{xx} = -\sin x \cosh cy \\ \mathcal{U}_{y} &= c \sin x \sinh cy \Rightarrow \mathcal{U}_{yy} = c^{2} \sinh x \cosh cy \\ \mathcal{U}_{xx} + \mathcal{U}_{yy} &= 0 \Rightarrow (c^{2}-1) \sin x \cdot \cosh cy = 0 \quad (\mathcal{U} is harmonic) \\ \Rightarrow c^{2}-1 &= 0 \\ \Rightarrow c &= \pm 1 \end{aligned}$

Topic 5. $e^{\frac{1}{2}} = e^{\frac{1}{x+iy}} = e^{\frac{x-iy}{x^2+y^2}} = e^{\frac{x}{x^2+y^2}} = e^{\frac{1}{x^2+y^2}}$ Q14. $= e^{\frac{\chi}{\chi^2 + \eta^2}} \left[cos\left(\frac{\gamma}{\chi^2 + \eta^2}\right) - i sin\left(\frac{\gamma}{\chi^2 + \eta^2}\right) \right]$ $Re = C \xrightarrow{X} \frac{X}{X^2 + y^2} \quad UOS \frac{Y}{X^2 + y^2} \quad Im = -C \xrightarrow{X} \frac{X}{X^2 + y^2} \quad Sin \frac{Y}{X^2 + y^2}$ $e^{-3+\frac{47}{7}i} = e^{-3}\left[\cos\frac{47}{7} + i\sin\frac{47}{7}\right]$ Q15 $Re = e^{-3} \cos \frac{4\pi}{7}$ Im = $e^{-3} \sin \frac{4\pi}{7}$, $e^{-3+\frac{4\pi}{7}i} = e^{-3}$ $\sin(5-2i) = \sin(5)\cosh(2) - i\cos(5)\sinh(2)$ RIP $\cosh\left((n \pm \frac{1}{2})\pi \right) = \cos\left((n \pm \frac{1}{2})\pi\right) = 0$ RIT $e^{i3\theta} = (e^{i\theta})^3$ Q18 $\Rightarrow (\cos 3\theta + i \sin 3\theta) = (\cos \theta + i \sin \theta)^{c}$ coso + is corosind - 3 coosino - 2 sunho \Rightarrow cos 30 = cos 0 - 3 cos 0 sin 0 (Real parts of both sides) Q19 $Ln(-2) = Ln(2) + i \Pi$ $(1+i)^{i-i} = (e^{\ln(i+i)})^{i-i} = e^{(1-i)[\ln 2 + \frac{\pi}{4}i]} = e^{(\ln \sqrt{2} + \frac{\pi}{4}i]} = e^{(\ln \sqrt{2} + \frac{\pi}{4}i)}$ Q20

Chapter 17
Topic 1.

$$(A_1 \cdot (a) TRUE \qquad (Associative Law))$$

 (b) (b) (c) $(c$

Topic 2

Q3

Let A be a mxn matrix and suppose m > nwe know that rank A = row rank = column rank since column rank $\leq n$, then row rank $\leq n < m$. However, there are m row vectors, thus the row vectors are linearly dependent The n>m situation is similar.

Q4.

⇒ the vectors are dependent

Q 5 $A = \begin{pmatrix} 3 & 4 & 7 \\ 2 & 0 & 3 \\ 8 & 2 & 3 \\ 5 & 5 & 6 \end{pmatrix} \text{ is a } 4 \times 3 \text{ matrix}$ $\Rightarrow rank A \leq 3$ $\Rightarrow rank A \leq 3$ $\Rightarrow ranv rank \leq 3$

 \Rightarrow row vectors are linearly dependent \Rightarrow the given vectors are linearly dependent

Topic 3: Null Space. Q6:

$$A = \left(\begin{array}{rrr} 10 & 1 & 2 \\ 0 & 1 & 6 \end{array}\right)$$

we want $Ax = 0, x = (x_1, x_2, x_3)^T$, which is just

$$\left(\begin{array}{rrrr} 10 & 1 & 2\\ 0 & 1 & 6 \end{array}\right) \left(\begin{array}{r} x_1\\ x_2\\ x_3 \end{array}\right) = 0$$

Thus, we have

$$\begin{cases} 10x_1 + x_2 + 2x_3 = 0, & (1) \\ x_2 + 6x_3 = 0, & (2) \end{cases}$$

Look at the second equation, we get

$$x_2 = -6x_3$$

Plug it into the first equation, we get

$$10x_1 - 4x_3 = 0$$

Therefore, x_1 and x_3 are dependent, I could now pick $x_1 = 1$, then $x_3 = 5/2$, again use

$$x_2 = -6x_3$$

we get $x_3 = -15$, thus the null space of A could be spanned by $x = (1, -15, 5/2)^T$, in other words, $x = (1, -15, 5/2)^T$ is a basis of the null space. Notice rank(A) = 2, the x has 3 variables, so the dimension of your null space is 3 - 2 = 1, which coincides with the answer.

Q7:

$$A = \left(\begin{array}{rrrr} 10 & 1 & 2 & 3 \\ 0 & 1 & 6 & 8 \end{array}\right)$$

we want $Ax = 0, x = (x_1, x_2, x_3, x_4)^T$, which is just

$$\left(\begin{array}{rrrr} 10 & 1 & 2 & 3\\ 0 & 1 & 6 & -8 \end{array}\right) \left(\begin{array}{r} x_1\\ x_2\\ x_3\\ x_4 \end{array}\right) = 0$$

Thus, we have

$$\begin{cases} 10x_1 + x_2 + 2x_3 + 3x_4 = 0, & (1) \\ x_2 + 6x_3 - 8x_4 = 0, & (2) \end{cases}$$

Look at the second equation, we get

$$x_2 = -6x_3 + 8x_4$$

Plug it into the first equation, we get

$$10x_1 - 4x_3 + 11x_4 = 0$$

Now x_1 , x_3 and x_4 are dependent, we can choose any values for two of them to determine the third one.

Here, I will choose $x_1 = 1, x_3 = 0$ first, then $x_4 = -10/11$, again use

$$x_2 = -6x_3 + 8x_4$$

we get $x_2 = -80/11$, so $x_{(1)} = (1, -80/11, 0, -10/11)^T$. We are not done yet, remember rank(A) = 2, and the x has 4 variables, so the dimension of the null space should be 4 - 2 = 2, so you still need one more vector. OK, now I choose $x_1 = 0, x_3 = 1$, then $x_4 = 4/11$, again use

$$x_2 = -6x_3 + 8x_4$$

we get $x_2 = -34/11$, so $x_{(2)} = (0, -34/11, 1, 4/11)^T$. Now we are done. The null space of A could be spanned by $x_{(1)}$ and $x_{(2)}$, in other words, $x_{(1)}$ and $x_{(2)}$ is the basis of the A's null space.

Topic 4

$$Q = \begin{pmatrix} 8 & 25 \\ 16 & 629 \\ 4 & 0-7 \end{pmatrix} \xrightarrow{(2)-d)x_2} \begin{pmatrix} 8 & 2 & 5 \\ 0 & 2 & 19 \\ 0 & -1 & -\frac{19}{2} \end{pmatrix}$$

 $\xrightarrow{(3)+(2)x_2^{1}} \begin{pmatrix} 8 & 2 & 5 \\ 0 & 2 & 19 \\ 0 & -1 & -\frac{19}{2} \end{pmatrix}$

 $\Rightarrow rank A = 2$ row basis: $(8 \ 25)$, $(0 \ 219)$ column basis: $(8 \ 00)^{T}$, $(2 \ 20)^{T}$ $Q = \begin{pmatrix} -2 \ 2 \ 6 \ 1 \\ 1 \ -1 \ 2 \ 3 \\ -1 \ 1 \ 3 \ 2 \end{pmatrix} \xrightarrow{(2) + (1) \times \frac{1}{2}} \begin{pmatrix} -2 \ 2 \ 6 \ 1 \\ 0 \ 0 \ 5 \ \frac{7}{2} \\ 0 \ 0 \ 0 \ \frac{3}{2} \end{pmatrix}$ $\Rightarrow rank (A|B) = rank (A)$

=> A x=B does not have solution

$$\begin{array}{l} Q \ 10\\ False\\ A = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{pmatrix}\\ rank \ A = rank \ B = 2\\ A^2 = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} = A, \quad B^2 = \begin{pmatrix} 0 & 0 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} \end{array}$$

 $rank A^2 = 2 > | = rank B^2$

$$\begin{array}{c} (a) \\ A = \begin{pmatrix} 0 & -b & 4 \\ 1 & -2 & -2 \\ 1 & -8 & 2 \\ 3 & -12 & -2 \end{pmatrix} \\ \hline Gaunstan \\ \hline & 0 & -b & 4 \\ 1 & -8 & 2 \\ 3 & -12 & -2 \\ \hline & -3 & Routh \\ 0 & -b & 4 \\ 0 & -6 & 4 \\ 0 & -6 & 4 \\ 0 & -6 & 4 \\ \hline & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 \\ \hline \end{array}$$

So, the rank of A is 2 Since the rank of A is Z, we know there should be exactly two vectors that form a basis of the column space. This two rectors need to be Linearly independent. We can check that the first two columns are Linearly independent, so $\begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} -b \\ -2 \\ -8 \\ -8 \\ -1 \end{pmatrix}$ can be a basits of the column space. NOTE the answer is not unique. Remark: You can also find the basis of the column Space by doing Gaussian Column Elimination

(b)

QII

(b).
$$(1, ..., -2)$$
 and $(o, -6, 4)$ form a basis of
the row space .
NOTE: Again the auswer is not unique?
(d) To solve $AX = 0$, we can use the result for
by Gaussian Elimination .
 $\begin{pmatrix} 1 & -2 & -2 \\ 0 & -4 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$
 \Rightarrow $\#$ $\#$ $\#$
 \Rightarrow $X_1 - 2X_2 - 2X_3 = 0$
 $-6X_2 + 4Y_3 = 0$
 24 Considering controls the
 \Rightarrow $X_2 = \frac{2}{3}Y_3$, $X_1 = 2X_2 + 2X_3 = \frac{4}{3}X_3 + 2X_3$
 \Rightarrow general form of collation is
 $\begin{pmatrix} \frac{15}{3}X_3 \\ X_3 \end{pmatrix}$ for any X_3
 OR . You can say, the general form of
Solution is $C\begin{pmatrix} \frac{10}{3} \\ \frac{1}{3} \end{pmatrix}$ for any constant C
(e) The dimension of the null space is 1, and the bats
of the null space is $\begin{pmatrix} \frac{19}{3} \\ \frac{1}{3} \end{pmatrix}$

$$\begin{array}{c} (f). \\ \hline \text{The sugmented matrix is} \\ \begin{pmatrix} 0 & -b & 4 & \frac{1}{2} & 1 \\ 1 & -2 & -2 & \frac{1}{2} \\ 3 & -12 & -2 & 1 & 7 \\ \hline 1 & -8 & 2 & \frac{1}{2} & 1 \\ 3 & -12 & -2 & 1 & 7 \\ \hline 1 & -2 & -2 & \frac{1}{2} & 2 \\ \hline 0 & -6 & 4 & \frac{1}{2} & 1 \\ 0 & -6 & 4 & 1 & 1 \\ \hline 0 & -6 & 4 & 1 & 1 \\ \hline 0 & 0 & -6 & 4 & \frac{1}{2} & 1 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline \end{array} \right)$$

$$\Rightarrow \begin{cases} \chi_{1} - 2\chi_{L} - 2\chi_{S} = 2 \\ \cdot & -6\chi_{2} + 4\chi_{3} = 1 \\ \hline \\ \chi_{1} = 2\chi_{L} - 2\chi_{S} = 2 \\ \cdot & -6\chi_{2} + 4\chi_{3} = 1 \\ \hline \\ \chi_{1} = 0 \\ \chi_{2} = -\frac{1}{6} \\ \chi_{1} = \frac{1}{3} \\ \hline \\ & So \quad the \ general \ form \ of \ solution \quad \Sigma \\ - \frac{1}{6} \\ \frac{1}{3} \\ \frac{1}{3} \\ + \\ \begin{pmatrix} \frac{1}{3} \\ -\frac{1}{6} \\ 0 \\ \end{pmatrix} \\ for \ ang \ C \\ \end{array}$$