Chapter 13
Topic 1

$$
\begin{aligned}
Q 1 & : \omega=\frac{1}{z}=\frac{1}{1-i}=\frac{1}{1-i} \frac{1+i}{1+i}=\frac{1+i}{2} \\
& \Rightarrow|\omega|=\frac{\sqrt{2}}{2} . \operatorname{Arg} \omega=\frac{\pi}{4} \\
& \Rightarrow \omega=\frac{\sqrt{2}}{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)
\end{aligned}
$$

Q 2 :

$$
\begin{aligned}
& \operatorname{Arg} z_{1}=\operatorname{Arg}(-2+2 i)=\frac{3}{4} \pi \\
& \operatorname{Arg} z_{2}=\operatorname{Arg}(-6-6 i)=-\frac{3}{4} \pi \\
& \arg \frac{z_{1}}{\gamma_{2}}=\operatorname{Arg} z_{1}-\operatorname{Arg} z_{2}=\frac{3}{4} \pi-\left(-\frac{3}{4} \pi\right)=\frac{3}{2} \pi \\
& \Rightarrow \operatorname{Arg} \frac{z_{1}}{\delta_{2}}=\arg \frac{\delta_{1}}{\gamma_{2}}-2 \pi=\frac{3}{2} \pi-2 \pi=-\frac{\pi}{2}
\end{aligned}
$$

Topic 2
Q3.
(a). $\frac{-5}{8} i$
(b) 192
(c) $\frac{\sqrt{17}}{2 \sqrt{2}}$
(d) 12

Topic 3
Q4:

$$
\begin{aligned}
z^{4} & =1=\cos 0+i \sin 0 \\
\Rightarrow z & =\sqrt[4]{\cos 0+i \sin 0} \\
& =\cos \frac{0+2 k \pi}{4}+i \sin \frac{0+2 k \pi}{4} \quad(k=0,1,2,3) \\
& =\cos \frac{k \pi}{2}+i \sin \frac{k \pi}{2} \\
\Rightarrow z_{0} & =1, \quad z_{1}=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}=i \\
z_{2} & =\cos \pi+i \sin \pi=-1 \quad, \quad z_{3}=\cos \frac{3}{2} \pi+i \sin \frac{3}{2} \pi=-i
\end{aligned}
$$

Q5:

$$
\begin{aligned}
z^{3} & =2-2 i=2 \sqrt{2}\left(\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right) \\
\Rightarrow z & =\left[2 \sqrt{2}\left(\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right)\right]^{\frac{1}{3}} \\
& =(2 \sqrt{2})^{\frac{1}{3}}\left(\cos \frac{-\frac{\pi}{4}+2 k \pi}{3}+i \sin \frac{-\frac{\pi}{4}+2 k \pi}{3}\right) \quad(k=0,1,2) \\
\Rightarrow z_{0} & =(2 \sqrt{2})^{\frac{1}{3}}\left(\cos \left(-\frac{\pi}{12}\right)+i \sin \left(-\frac{\pi}{12}\right)\right) \\
z_{1} & =(2 \sqrt{2})^{\frac{1}{3}}\left(\cos \frac{7}{12} \pi+i \sin \frac{7}{12} \pi\right) \\
z_{2} & =(2 \sqrt{2})^{\frac{1}{3}}\left(\cos \frac{5}{4} \pi+i \sin \frac{5}{4} \pi\right) \\
& =(2 \sqrt{2})^{\frac{1}{3}}\left(-\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}\right)
\end{aligned}
$$

Topic 4
Qb.

$$
\begin{aligned}
\operatorname{Im}\left(z^{2}\right) & =\operatorname{Im}\left((x+y i)^{2}\right)=\operatorname{Im}\left(\left(x^{2}-y^{2}\right)+2 x y i\right)=2 x y \\
|z|^{2} & =x^{2}+y^{2} \\
\Rightarrow f(z) & =\left\{\begin{array}{cc}
\frac{2 x y}{x^{2}+y^{2}} & z=0 \\
0 & z \neq 0
\end{array}\right.
\end{aligned}
$$

weill take the $\lim _{y \rightarrow 0}$ via two different paths.

$$
\begin{aligned}
& \lim _{\substack{y \rightarrow x \\
x \rightarrow 0}} \frac{2 x y^{y \rightarrow 0}}{x^{2}+y^{2}}=\lim _{x \rightarrow 0} \frac{2 x^{2}}{x^{2}+x^{2}}=2 \\
& \lim _{\substack{y=-x \\
x \rightarrow 0}} \frac{2 x y}{x^{2}+y^{2}}=\lim _{x \rightarrow 0} \frac{-2 x^{2}}{x^{2}+(-x)^{2}}=-2
\end{aligned}
$$

since $2 \neq-2$.
the $\lim _{z \rightarrow 0} \frac{2 x y}{x^{2}+y^{2}}$ does't exist.
QT. $\quad f(x, y)=u+i v$

$$
\begin{array}{ll}
u=e^{-x} \cos y & v=-e^{-x} \sin y \\
u_{x}=-e^{-x} \cos y & v_{y}=-e^{-x} \cos y \\
u_{y}=-e^{-x} \sin y & v_{x}=e^{-x} \sin y
\end{array}
$$

$$
\Rightarrow\left\{\begin{array}{l}
u_{x}=v_{y} \\
u_{y}=-v_{x}
\end{array}\right.
$$

so, the function is analytic

Topic 4
28. (a)

$$
\begin{aligned}
f(z) & =z+\bar{z} \\
& =(x+i y)+(x-i y)=2 x \\
\Rightarrow u & =2 x . \quad v=0
\end{aligned}
$$

$u_{x}=2 \quad v_{y}=0 \Rightarrow u_{x} \neq v_{y}$. so. $f(z)$ not Anchite
(b).

$$
\begin{aligned}
g(z) & =3 z-2 \bar{z} \\
& =3(x+i y)-2(x-i y)=x+5 y_{i} \\
u_{x} & =1 \quad v_{y}=5 \quad u_{x} \neq v_{y} . \text { so, } g(z) \text { and not }
\end{aligned}
$$

(c)

$$
\begin{aligned}
& h(z)=\frac{\bar{z}}{|z|^{2}}=\frac{x-i y}{x^{2}+y^{2}}=\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}} \\
& \Rightarrow u=\frac{x}{x^{2}+y^{2}} \quad v=\frac{-y}{x^{2}+y^{2}} \\
& u_{x}=\frac{1 \cdot\left(x^{2}+y^{2}\right)-x \cdot 2 x}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& v_{y}=\frac{-1 \cdot\left(x^{2}+y^{2}\right)-(-y)(2 y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& u_{y}=\frac{-x(2 y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}} \\
& v_{x}=\frac{-(-y) \cdot 2 x}{\left(x^{2}+y^{2}\right)^{2}}=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}} \\
& \Rightarrow u_{x}=v_{y}, u_{y}=-v_{x}
\end{aligned}
$$

So, $h(z)$ is analytic.

Qq:
Let $z=r e^{i \theta}$, then

$$
\begin{aligned}
& f(z)=\frac{i}{r^{2} e^{2 i \theta}}=\frac{i}{r^{2}} e^{-2 i \theta}=\frac{i}{r^{2}}(\cos 2 \theta-i \sin 2 \theta) \\
&=\frac{\sin 2 \theta}{r^{2}}+i \frac{\cos 2 \theta}{r^{2}} \\
& \Rightarrow u(r, \theta)=\frac{\sin 2 \theta}{r^{2}}, \quad V(r, \theta)=\frac{\cos 2 \theta}{r^{2}} \\
& \Rightarrow u_{r}=-2 \sin (2 \theta) \cdot r^{-3}, \quad V_{\theta}=-2 \sin (2 \theta) \cdot r^{-2} \\
& \Rightarrow u_{\theta}=2 \cos (2 \theta) r^{-2}, \quad V_{r}=-2 \cos (2 \theta) \cdot r^{-3} \\
& \Rightarrow\left\{\begin{array}{l}
u_{r} \\
=\frac{1}{r} V_{\theta} \\
V_{r}
\end{array}=-\frac{1}{r} u_{\theta}\right.
\end{aligned}
$$

$\Rightarrow f(z)$ is analytic when $z \neq 0$

Q 10
$f(z)$ is analytic $\Rightarrow\left\{\begin{array}{l}u_{x}=V_{y} \\ u_{y}=-V_{x}\end{array}\right.$

$$
\Rightarrow\left\{\begin{array}{l}
u_{x y}=V_{y y} \\
-u_{y x}=V_{x x}
\end{array}\right.
$$

Since $u_{x y}=u_{y x}, \quad v_{x x}+v_{y y}=u_{x y}-u_{y x}=0$
$\Rightarrow V(x, y)$ is harmonic

Q 11

$$
\left.\begin{array}{l}
u_{x}=2 x \Rightarrow u_{x x}=2 \\
u_{y}=-2 y-1 \Rightarrow u_{y y}=-2
\end{array}\right\} \Rightarrow u_{x x}+u_{y y}=0 \Rightarrow u_{(x, y)} \text { is harmonic }
$$

A harmonic conjugate $V(x, y)$ must satisfy

$$
\begin{align*}
& \left\{\begin{array} { l }
{ u _ { x } = V _ { y } } \\
{ u _ { y } = - V _ { x } }
\end{array} \Rightarrow \left\{\begin{array}{l}
V_{y}=2 x \\
V_{x}=2 y+1
\end{array}\right.\right. \tag{}\\
& \text { (1) } \Rightarrow V(x, y)=2 x y+h(x) \tag{z}\\
& \Rightarrow V_{x}(x, y)=2 y+h^{\prime}(x)=2 y+1 \quad(\text { by }(2))
\end{align*}
$$

Thus. $h^{\prime}(x)=1 \Rightarrow h(x)=x+c$

$$
\Rightarrow V(x, y)=2 x y+x+C
$$

Q 12

$$
\begin{aligned}
& u_{x}=3 e^{3 x} \cos a y \Rightarrow u_{x x}=9 e^{3 x} \cos a y \\
& u_{y}=-a e^{3 x} \sin a y \Rightarrow u_{y y}=-a^{2} e^{3 x} \cos a y \\
& u_{x x}+u_{y y}=0 \Rightarrow\left(9-a^{2}\right) e^{3 x} \cdot \cos a y=0 \text { (u is harmonic) } \\
& \Rightarrow a^{2}-9=0 \\
& \Rightarrow a= \pm 3
\end{aligned}
$$

Q 13

$$
\begin{aligned}
& u_{x}=\cos x \cosh c y \Rightarrow u_{x x}=-\sin x \cosh c y \\
& u_{y}=c \cdot \sin x \sinh c y \Rightarrow u_{y y}=c^{2} \sin x \cosh c y \\
& u_{x x}+u_{y y}=0 \Rightarrow\left(c^{2}-1\right) \sin x \cdot \cosh c y=0 \quad \text { (u is harmomic) } \\
& \Rightarrow c^{2}-1=0 \\
& \Rightarrow c= \pm 1
\end{aligned}
$$

Topic 5.
Q14.

$$
\begin{aligned}
& e^{y_{z}}=e^{\frac{1}{x+i y}}=e^{\frac{x-i y}{x^{2}+y^{2}}}=e^{\frac{x}{x^{2}+y^{2}}-\frac{i y}{x^{2}+y^{2}}} \\
& =e^{\frac{x}{x^{2}+y^{2}}}\left[\cos \left(\frac{y}{x^{2}+y^{2}}\right)-i \sin \left(\frac{y}{x^{2}+y^{2}}\right)\right] \\
& \operatorname{Re}=e^{\frac{x}{x^{2}+y^{2}}} \cos \frac{y}{x^{2}+y^{2}} \quad \operatorname{Im}=-e^{\frac{x}{x^{2}+y^{2}}} \sin \frac{y}{x^{2}+y^{2}} \\
& e^{-3+\frac{4 \pi}{7} i}=e^{-3}\left[\cos \frac{4 \pi}{7}+i \sin \frac{4 \pi}{7}\right] \\
& \operatorname{Re}=e^{-3} \cos \frac{4 \pi}{7} \quad \quad I m=e^{-3} \sin \frac{4 \pi}{7} \\
& \left|e^{-3+\frac{4 \pi}{7} i}\right|=e^{-3}
\end{aligned}
$$

Q15
$Q, 6$

$$
\sin (5-2 i)=\sin (5) \cosh (2)-i \cos (5) \sinh (2)
$$

$$
\cosh \left(\left(n+\frac{1}{2}\right) \pi i\right)=\cos \left(\left(n+\frac{1}{2}\right) \pi\right)=0
$$

Q18

$$
\begin{aligned}
& e^{i 3 \theta}=\left(e^{i \theta}\right)^{3} \\
\Rightarrow & (\cos 3 \theta+i \sin 3 \theta)= \\
& (\cos \theta+i \sin \theta)^{2} \\
& \cos ^{3} \theta+i 3 \cos ^{2} \theta \sin \theta-3 \cos \theta \sin ^{2} \theta-i \sin { }^{3} \theta \\
\Rightarrow & \cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta
\end{aligned}
$$

(Real parts of both sides)
Q 9

$$
\operatorname{Ln}(5-4 i)=\operatorname{Ln}(5)+i \arctan \left(\frac{-4}{5}\right)
$$

$$
\ln (-2)=\ln (2)+i \pi
$$

Q20

$$
\begin{aligned}
\ln (-2) & =\ln (2)+1 \pi \\
(1+i)^{1-i} & =\left[e^{\ln (1+i)}\right]^{1-i}=e^{(1-i)\left[\ln \sqrt{2}+\frac{\pi}{4} i\right]}=e^{\left(\ln \sqrt{2}+\frac{\pi}{4}\right)+\left(\frac{\pi}{4}-\ln \sqrt{2} i\right.}
\end{aligned}
$$

Chapter 17
Topic 1.
Q. (a)True (Associative Law)
(b) TRUE (Bistributive Law)
(c) FALSE.

$$
\begin{aligned}
&(A+B)^{2}=(A+B)(A+B)=A A+B A+A B+B B \\
&=A^{2}+B A+A B+B B \\
& \text { becaure there's } \\
& \text { no commetitive } \neq A^{2}+2 A B+B^{2} \\
& \text { low for matrices }
\end{aligned}
$$

(d) True
Q_{2}. (a) $A B=\left[\begin{array}{ccc}2 & 6 & -1 \\ 3 & 2 & 1 \\ 20 & -10 & 15\end{array}\right]$
(b) $B A=\left[\begin{array}{cc}8 & 2 \\ 6 & 11\end{array}\right]$
(c) $A+B$ is not defined
(d) $A-B^{\top}=\left[\begin{array}{cc}-1 & -5 \\ -1 & 2 \\ -1 & 2\end{array}\right]$

Topic 2
Qu
Let A be a $m \times n$ matrix and suppose $m>n$ we know that $\operatorname{rank} A=$ row $\operatorname{rank}=$ column rank Since column rank $\leqslant n$, then row rank $\leqslant n<m$ However, there are m row vectors, thus the row vectors are linearly dependent
The $n>m$ situation is similar.
Q 4

$$
\begin{aligned}
& \left|\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{array}\right| \frac{(2)-(1) \times 2}{(3)-1) \times 3}\left(\begin{array}{cccc}
1(4)-(1) \times 4
\end{array}\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{array}\right|\right. \\
& \frac{(3)-(2) \times 2}{(4)-(2) \times 3}\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right|=0
\end{aligned}
$$

\Rightarrow the vectors are dependent

Q 5

$$
\begin{aligned}
A= & \left(\begin{array}{lll}
3 & 4 & 7 \\
2 & 0 & 3 \\
8 & 2 & 3 \\
5 & 5 & 6
\end{array}\right) \text { is a } 4 \times 3 \text { matrix } \\
& \Rightarrow \operatorname{rank} A \leqslant 3 \\
& \Rightarrow \text { row } A \text { rank } \leqslant 3
\end{aligned}
$$

\Rightarrow row vectors are linearly dependent
\Rightarrow the given vectors are linearly dependent

Topic 3: Null Space.

Q6:

$$
A=\left(\begin{array}{ccc}
10 & 1 & 2 \\
0 & 1 & 6
\end{array}\right)
$$

we want $A x=0, x=\left(x_{1}, x_{2}, x_{3}\right)^{T}$, which is just

$$
\left(\begin{array}{ccc}
10 & 1 & 2 \\
0 & 1 & 6
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=0
$$

Thus, we have

$$
\left\{\begin{aligned}
10 x_{1}+x_{2}+2 x_{3} & =0, \\
x_{2}+6 x_{3} & =0,
\end{aligned}\right.
$$

Look at the second equation, we get

$$
x_{2}=-6 x_{3}
$$

Plug it into the first equation, we get

$$
10 x_{1}-4 x_{3}=0
$$

Therefore, x_{1} and x_{3} are dependent, I could now pick $x_{1}=1$, then $x_{3}=5 / 2$, again use

$$
x_{2}=-6 x_{3}
$$

we get $x_{3}=-15$, thus the null space of A could be spanned by $x=(1,-15,5 / 2)^{T}$, in other words, $x=(1,-15,5 / 2)^{T}$ is a basis of the null space. Notice $\operatorname{rank}(A)=2$, the x has 3 variables, so the dimension of your null space is $3-2=1$, which coincides with the answer.

Q7:

$$
A=\left(\begin{array}{cccc}
10 & 1 & 2 & 3 \\
0 & 1 & 6 & 8
\end{array}\right)
$$

we want $A x=0, x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{T}$, which is just

$$
\left(\begin{array}{cccc}
10 & 1 & 2 & 3 \\
0 & 1 & 6 & -8
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=0
$$

Thus, we have

$$
\left\{\begin{aligned}
10 x_{1}+x_{2}+2 x_{3}+3 x_{4}=0 \\
x_{2}+6 x_{3}-8 x_{4}=0,
\end{aligned}\right.
$$

Look at the second equation, we get

$$
x_{2}=-6 x_{3}+8 x_{4}
$$

Plug it into the first equation, we get

$$
10 x_{1}-4 x_{3}+11 x_{4}=0
$$

Now x_{1}, x_{3} and x_{4} are dependent, we can choose any values for two of them to determine the third one.
Here, I will choose $x_{1}=1, x_{3}=0$ first, then $x_{4}=-10 / 11$, again use

$$
x_{2}=-6 x_{3}+8 x_{4}
$$

we get $x_{2}=-80 / 11$, so $x_{(1)}=(1,-80 / 11,0,-10 / 11)^{T}$. We are not done yet, remember $\operatorname{rank}(A)=2$, and the x has 4 variables, so the dimension of the null space should be $4-2=2$, so you still need one more vector. OK, now I choose $x_{1}=0, x_{3}=1$, then $x_{4}=4 / 11$, again use

$$
x_{2}=-6 x_{3}+8 x_{4}
$$

we get $x_{2}=-34 / 11$, so $x_{(2)}=(0,-34 / 11,1,4 / 11)^{T}$. Now we are done. The null space of A could be spanned by $x_{(1)}$ and $x_{(2)}$, in other words, $x_{(1)}$ and $x_{(2)}$ is the basis of the A 's null space.

Topic 4

$$
\begin{aligned}
& \text { Q } 8 \\
& A=\left(\begin{array}{ccc}
8 & 2 & 5 \\
16 & 6 & 29 \\
4 & 0 & -7
\end{array}\right) \xrightarrow{(22--1) \times 2 \times 2}\left(\begin{array}{ccc}
8 & 2 & 5 \\
(3)-(1) \times \frac{1}{2}
\end{array}\left(\begin{array}{ccc}
19 \\
0 & 2 & 19 \\
0 & -1 & -\frac{19}{2}
\end{array}\right)\right. \\
& \xrightarrow{(3)+2) \times \frac{1}{2}}\left(\begin{array}{ccc}
8 & 2 & 5 \\
0 & 2 & 19 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$\Rightarrow \operatorname{rank} A=2$
row basis: $\left(\begin{array}{ll}8 & 2\end{array}\right),\left(\begin{array}{ll}0 & 2\end{array}\right)$
column basis: $\left(\begin{array}{lll}8 & 0 & 0\end{array}\right)^{\top},\left(\begin{array}{lll}2 & 2 & 0\end{array}\right)^{\top}$
Q 9

$$
\begin{aligned}
& \text { Q } 9 \\
& (A \mid B)=\left(\begin{array}{ccc:c}
-2 & 2 & 6 & 1 \\
1 & -1 & 2 & 3 \\
-1 & 1 & 3 & 2
\end{array}\right) \frac{(2))+(1) \times \frac{1}{2}}{(3)-(1) \times \frac{1}{2}}\left(\begin{array}{ccc:c}
-2 & 2 & 6 & 1 \\
0 & 0 & 5 & \frac{7}{2} \\
0 & 0 & 0 & \frac{3}{2}
\end{array}\right) \\
& \Rightarrow \operatorname{rank}(A \mid B)>\operatorname{rank}(A)
\end{aligned}
$$

$\Rightarrow A x=B$ does not have solution

Q 10 False

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad, \quad B=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

$\operatorname{rank} A=\operatorname{rank} B=2$

$$
\begin{aligned}
& A^{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=A . \quad B^{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \operatorname{rank} A^{2}=2>1=\operatorname{rank} B^{2}
\end{aligned}
$$

Q 11

$$
\begin{aligned}
& \text { (a) } A=\left(\begin{array}{ccc}
0 & -b & 4 \\
1 & -2 & -2 \\
1 & -8 & 2 \\
3 & -12 & -2
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow\left(\begin{array}{ccc}
1 & -2 & -2 \\
0 & -6 & 4 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

So, the rank of A is 2
(b) Since the rank of A is 2 , we know there should be exactly two vectors that form a basis of the column space. This two rectors need. to be Linearly independent.
We can check that the first two columns are Linearly independent, so $\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 3\end{array}\right)$ and $\left(\begin{array}{c}-6 \\ -2 \\ -8 \\ -12\end{array}\right)$ can be a basis of the column space.
NOTE the answer is not unique.
Remark: You can also find the basis of the column spare by doing Gaunian Column Elimination..
(c). $(1,-2,-2)$ and $(0,-6,4)$ form a basis of the row space.
NOTE. Again the answer is not unique?
(d) To solve $A X=0$, we can use the result by Gaussian Elimination.

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & -2 & -2 \\
0 & -6 & 4 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right) \\
& \Rightarrow \quad x_{1}-2 x_{2}-2 x_{3}=0 \\
& -6 x_{2}+4 x_{3}=0
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad x_{2}=\frac{2}{3} x_{3}, \quad x_{1}=2 x_{2}+2 x_{3} & =\frac{4}{3} x_{3}+2 x_{3} \\
& =\frac{10}{3} x_{3}
\end{aligned}
$$

\Rightarrow general form of solution is

$$
\left(\begin{array}{c}
\frac{10}{3} x_{3} \\
\frac{2}{3} x_{3} \\
x_{3}
\end{array}\right)^{\mathrm{J}} \text { for any } x_{3}
$$

OR. You can say. the general form of Solution is $c\left(\begin{array}{c}\frac{10}{3} \\ \frac{2}{3} \\ 1\end{array}\right)$ for any constant c
(e) The dimension of the null space is 1, and bars of the null space is $\left(\begin{array}{c}\frac{10}{3} \\ \frac{2}{3} \\ 1\end{array}\right)$
(f).

$$
\begin{aligned}
& \text { The augmented matrix is } \\
& \left(\begin{array}{ccc:c}
0 & -6 & 4 & 1 \\
1 & -2 & -2 & 2 \\
1 & -8 & 2 & 3 \\
3 & -12 & -2 & 7
\end{array}\right) \longrightarrow\left(\begin{array}{ccc:c}
1 & -2 & -2 & 2 \\
0 & -6 & 4 & 1 \\
1 & -8 & 2 & 3 \\
3 & -12 & -2 & 7
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccc:c}
1 & -2 & -2 & 2 \\
0 & -6 & 4 & 1 \\
0 & -6 & 4 & 1 \\
0 & -6 & 4 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc:c}
1 & -2 & -2 & 2 \\
0 & -6 & 4 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \rightarrow\left\{\begin{array}{l}
x_{1}-2 x_{2}-2 x_{3}=2 \\
-6 x_{2}+4 x_{3}=1
\end{array}\right.
\end{aligned}
$$

One particular solution is (by picking $x_{3}=0$

$$
x_{3}=0, \quad x_{2}=-\frac{1}{6} \quad x_{1}=\frac{5}{3}
$$

So the general form of solution is

$$
C\left(\begin{array}{c}
\frac{10}{3} \\
\frac{2}{3} \\
1
\end{array}\right)+\left(\begin{array}{c}
\frac{5}{3} \\
-\frac{1}{6} \\
0
\end{array}\right) \quad \text { for any } C
$$

