Math 322. Spring 2008. Review problems for midterm 2

Part one: linear algebra

Topic: Determinant.
Problem 1: Find the determinant of the following matrix.

$$
A=\left(\begin{array}{ccc}
0 & 2 & 1 \\
1 & 0 & 3 \\
-1 & 1 & 0
\end{array}\right)
$$

Problem 2: Let $A=\left(\begin{array}{cccc}a & b & 0 & 0 \\ b & a & 0 & 0 \\ 0 & 0 & c & d \\ 0 & 0 & d & c\end{array}\right)$. Find $\operatorname{det}(A)$.
Topic: Inverse.
Problem 3: Find the inverse of the following matrix, or argue why it doesn't exist.

$$
A=\left(\begin{array}{ccc}
1 & 0 & 3 \\
1 & 0 & 0 \\
-1 & 2 & 1
\end{array}\right)
$$

Problem 4: Let $A=\left(\begin{array}{ccc}-1 & 1 & 3 \\ 2 & 8 & 9 \\ 3 & 7 & 6\end{array}\right)$. Find A^{-1}, or argue why it doesn't exist.

Topic: Eigenvalues and eigenvectors .

Problem 5:

Find the eigenvalues and eigenvectors of

$$
A=\left(\begin{array}{ccc}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{array}\right)
$$

Problem 6:

Find the eigenvalues and eigenvectors of

$$
A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Part two: Ordinary differential equations

Topic: Linear independency of functions)
Problem 1:

Find an ODE for which the given functions $y_{1}=\cos \omega x$ and $y_{2}=\sin \omega x$ are solutions. Verify these two functions are independent.

Problem 2:

Find an ODE for which the given functions $y_{1}=e^{x}$ and $y_{2}=x e^{x}$ are solutions. Verify these two functions are independent.

Topic: Linear ODE (Existence and uniqueness of solutions, solving homogeneous and inhomogeneous linear ODE)
Problem 3: Find the general form of solution to the following equation.

$$
\frac{d^{3} y}{d x^{3}}-\frac{d y}{d x}=0
$$

Problem 4: Consider the following initial value problem.

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}}-4 y & =0 \\
y(0) & =1 \\
y^{\prime}(0) & =0
\end{aligned}
$$

(a). Does this initial value problem have a solution? Is the solution unique?
(b). Find the solution to this initial value problem if your answer for part (a) is yes.

Problem 5: Find the general form of solution to the following equation.

$$
\frac{d^{2} y}{d x^{2}}+5 y=\cos x
$$

Problem 6: Consider the following inhomogeneous initial value problem.

$$
\begin{array}{r}
\frac{d^{2} y}{d x^{2}}-4 y=x e^{2 x} \\
y(0)=0 \\
y^{\prime}(0)=0
\end{array}
$$

Find the general form of solution.
Problem 7: Solve the following inhomogeneous initial value problem.

$$
\begin{array}{r}
\frac{d^{2} y}{d x^{2}}+y=2 \sin (x) \\
y(0)=1 \\
y^{\prime}(0)=0
\end{array}
$$

Topic: Linear ODE system (Existence and uniqueness of solutions, solving homogeneous linear ODE system)

Problem 8: Consider the following initial value problem.

$$
\begin{array}{r}
\frac{d y_{1}}{d x}=y_{1}+2 y_{2} \\
\frac{d y_{2}}{d x}=5 y_{1}-2 y_{2} \\
y_{1}(0)=2 \\
y_{2}(0)=9
\end{array}
$$

(a). Does this initial value problem have a solution? Is the solution unique?
(b). Find the solution to this initial value problem if your answer for part (a) is yes.

Problem 9: Let $A=\left(\begin{array}{ccc}3 & 0 & 2 \\ 0 & -2 & 3 \\ 0 & 5 & -4\end{array}\right)$ and $\vec{Y}=\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right)$. Find the general form of solution to the following system of equations.

$$
\frac{d \vec{Y}}{d t}=A \vec{Y}
$$

Problem 10: Consider again the ODE given in problem 2.
(a). Convert this problem into an first-order ODE system.
(b). Solve this ODE system, and compare the solution to the solution you found for problem 2.

Topic: Power Series

Problem 11: Find the radius of convergence of the following series:

$$
\sum_{m=0}^{\infty} m!x^{m}
$$

Problem 12: Find the radius of convergence of the following series:

$$
\sum_{m=0}^{\infty} \frac{(-1)^{m}}{8^{m}} x^{3 m}
$$

Problem 13:

Solve the following ODE by power series.

$$
y^{\prime}=2 x y
$$

Problem 14:

Solve the following ODE by power series.

$$
y^{\prime \prime}+y=0
$$

Problem 15:

Solve the following ODE by power series.

$$
y^{\prime}=y+x
$$

Topic: Sturm-Liouville equations

Solve the following Sturm-Liouville problem:

$$
y^{\prime \prime}+\lambda y=0, y(0)=0, y(5)=0
$$

Problem 16:

Solve the following Sturm-Liouville problem:

$$
y^{\prime \prime}+\lambda y=0, y(0)=0, y^{\prime}(L)=0
$$

Problem 17:

Solve the following Sturm-Liouville problem:

$$
y^{\prime \prime}+\lambda y=0, y(0)=y(2 \pi), y^{\prime}(0)=y^{\prime}(2 \pi)
$$

