Math 322. Spring 2008
Review Problems For The Final Exam

Topics for midterm I \& II

Topic 1: Complex Numbers

- Specific topics: Polar form of complex number; Operations of complex numbers; Roots of complex number; Continuity, Differentiability and analyticity of complex functions; Cauchy-Riemann equations; harmonic function and harmonic conjugate; Exponential, trigonometric, hyperbolic and logarithmic functions, general power.

Problem 1.1: Let $z_{1}=2-2 i, z_{2}=2+3 i$, find
(a.) $\frac{z_{1}+z_{2}}{\bar{z}_{2}^{2}}$
(b.) $\operatorname{Im}\left(\left[(1-i)^{8} z_{1}^{2}\right]\right)$
(c.) $\left|\frac{z_{1}-z_{2}}{z_{2}}\right|$
(d.) $\operatorname{Re}\left(\left(z_{1}+1\right) z_{2}\right)$

Problem 1.2: Find all the solutions for $z^{3}=1$.
Problem 1.3: Find out whether the following function is continuous at $z=0$.

$$
f(z)=\left\{\begin{array}{cl}
\frac{\operatorname{Im}(z)}{1-|z|}, & z \neq 0 \\
0, & z=0
\end{array}\right.
$$

Problem 1.4: Use Cauchy-Riemann equations to check whether the following function is analytic.

$$
f(z)=2 z-2 \bar{z}
$$

Problem 1.5: Verify that $u(x, y)=x^{3}-3 x y^{2}-2 x$ is harmonic in the whole complex plane, find a harmonic conjugate function $v(x, y)$ of $u(x, y)$, and find $f(z)=$ $u(x, y)+i v(x, y)$.

Problem 1.6: Compute $\sin (2+3 i), e^{-3+2 i}, \cosh (3+n \pi i), \operatorname{Ln}(-3+i)$. Write your answer in the form $a+b i$.

Topic 2: Linear Algebra

- Specific topics: Matrix Operations; Linear Independence of vectors; Linear system of equations; Rank, row space, column space, basis; Determinant, Inverse; Eigenvalues and eigenvectors.
Problem 2.1: Let

$$
\mathrm{A}=\left[\begin{array}{rr}
-1 & 2 \\
0 & 1 \\
5 & 0
\end{array}\right], \mathrm{B}=\left[\begin{array}{rrr}
2 & 1 & 3 \\
5 & -1 & 2
\end{array}\right]
$$

Calculate the following products or sums or give reasons why they are not defined.
(a) $A B$
(b) $B A$
(c) $A+B$
(d) $A-B^{T}$

Problem 2.2: Are the following vectors linearly independent? [3 4 7], [2 0 3 3], [0 2 1]?
Problem 2.3: Consider the following matrix

$$
\mathrm{A}=\left[\begin{array}{rrr}
1 & -2 & 0 \\
1 & -1 & 1 \\
1 & 0 & 2 \\
1 & 3 & 0
\end{array}\right]
$$

(a.) Let $x=\left[x_{1}, x_{2}, x_{3}\right]^{T}$. Find the general form of solutions for the homogeneous linear system of equations $A X=0$, and find the dimension of the null space of A.
(b.) Let $x=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T}$. Find the general form of solutions for the homogeneous linear system of equations $A^{T} X=0$, and find the dimension of the null space of A^{T}. (c.) Let $b=[1,1,0,1]^{T}$. Does the nonhomogeneous system of equations $A x=b$ have solution(s)? If your answer is yes, find the general form of the solution(s).
(d.) Find a basis of the column space of A.
(e.) Find a basis of the row space of A.
(f.) Find the rank of A.

Problem 2.4: Consider the following matrix

$$
A=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
2 & 2 & 0 \\
1 & 2 & -1
\end{array}\right)
$$

(a). Find the determinant of matrix A.
(b). Find the inverse of matrix A, or argue why it doesn't exist.

Problem 2.5: Find the eigenvalues and eigenvectors of

$$
A=\left(\begin{array}{ccc}
1 & 1 & 2 \\
0 & 2 & 1 \\
0 & -4 & -3
\end{array}\right)
$$

Topic 3: ODEs

- Linear independency of functions, Linear ODE/ ODE system (Existence and uniqueness of solutions, homogeneous, inhomogeneous; Sturm-Liouville equations; Radius of convergence of power series, solving ODE with method of power series

Problem 3.1: Problem 1: Find an ODE for which the given functions $y_{1}=e^{-2 x}$ and $y_{2}=x e^{-2 x}$ are solutions. Verify these two functions are independent.

Problem 3.2: Solve the following inhomogeneous initial value problem.

$$
\begin{array}{r}
y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=30 e^{-x} \\
y(0)=3 \\
y^{\prime}(0)=-3 \\
y^{\prime \prime}(0)=-47
\end{array}
$$

Problem 3.3: Let $A=\left(\begin{array}{ccc}5 & -28 & -18 \\ -1 & 5 & 3 \\ 3 & -16 & -10\end{array}\right)$ and $\vec{Y}=\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right)$. Find the general form of solution to the following system of equations.

$$
\frac{d \vec{Y}}{d t}=A \vec{Y}
$$

Problem 3.4: Solve the following Sturm-Liouville problem, where $\lambda>0$

$$
y^{\prime \prime}+4 y^{\prime}+(\lambda+4) y=0, y(0)=0, y^{\prime}(1)=0
$$

Problem 3.5: Find the radius of convergence of the following series:

$$
\sum_{m=0}^{\infty} \frac{(-1)^{m}}{3^{m}} x^{m}
$$

Problem 3.6: Solve the following ODE by power series.

$$
y^{\prime \prime}=y+x^{2}
$$

Topics after Midterm II

Topic 4: Fourier Series

Problem 4.1: $f(x)$ has period 2π, and

$$
f(x)=|x|, \quad-\pi \leq x \leq-\pi
$$

Find the Fourier series of $f(x)$.
Problem 4.2: $f(x)$ has period π, and

$$
f(x)=x^{2}, \quad 0 \leq x \leq \pi
$$

Find the Fourier series of $f(x)$.

Problem 4.3:

$$
f(x)=\frac{\pi-x}{4}, \quad 0 \leq x \leq \pi
$$

Find the sine series of $f(x)$.

Topic 5: Fourier Transform

Problem 5.1: Find the Fourier transform of the following function.

$$
f(x)=e^{-2 x^{2}}, \quad \text { for }-\infty<x<\infty
$$

Problem 5.2: Find the Fourier transform of the following function.
$f(x)= \begin{cases}1, & \text { for }|x| \leq 1 ; \\ 0, & \text { for }|x|>1 .\end{cases}$
Problem 5.3: Circle ALL the statement that is true about the Fourier transforms.
(a). $\mathcal{F}(a f(x)+b g(x))=a(f(x))+b \mathcal{F}(g(x))$, where a and b are constants.
(b). $\mathcal{F}^{-1}(\hat{f}(k) \hat{g}(k))=\frac{1}{\sqrt{2 \pi}} f(x) * g(x)$, where $*$ is the convolution operator.
(c). $\mathcal{F}\left(\frac{d f(x)}{d x}\right)=i k \mathcal{F}(f(x))$.
(d). $\mathcal{F}\left(\frac{d^{2} f(x)}{d x^{2}}\right)=-k^{2} \mathcal{F}(f(x))$.

Topic 6: Partial Differential Equation (PDE) on a finite domain
Problem 6.1: Solve the boundary value problem defined by Laplace's equation using the method of separation of variables:

$$
u_{x x}+u_{y y}=0 \text { on the square } 0<x, y<10
$$

subject to the boundary conditions

$$
u(0, y)=0, u(10, y)=0, u(x, 10)=0, u(x, 0)=100 \sin (\pi x / 10)
$$

Problem 6.2: Solve the initial value problem defined by heat equation using the method of separation of variables:

$$
u_{t}=u_{x x} 0 \leq x \leq \pi, t \geq 0
$$

subject to the boundary conditions

$$
u(0, t)=0, u(\pi, t)=0
$$

and the initial condition

$$
u(x, 0)=1,0 \leq x \leq \pi
$$

Problem 6.3: Solve the initial value problem defined by heat equation using the method of separation of variables:

$$
u_{t}=u_{x x} 0 \leq x \leq 5, t \geq 0
$$

subject to the boundary conditions

$$
u(0, t)=0, u(5, t)=0
$$

and the initial condition

$$
u_{t}(x, 0)=x, 0 \leq x \leq 5
$$

Topic 7: Partial Differential Equation (PDE) on infinite domain

Problem 7.1: Use Fourier transform to solve the following heat equation on $(-\infty, \infty)$, where E is a constant.

$$
\begin{aligned}
& u_{t}=E^{2} u_{x x} \\
& u(x, 0)=e^{-2 x^{2}}, \quad \text { for }-\infty<x<\infty
\end{aligned}
$$

Topic 8: Laplace transform and properties

Problem 8.1: Find the Laplace transform for the following function.
$f(x)= \begin{cases}\cos (x), & \text { for } x>0 ; \\ 0, & \text { otherwise } .\end{cases}$
Problem 8.2: Find the Laplace transform for the following function.
$f(x)= \begin{cases}1, & \text { for } x>3 ; \\ 0, & \text { otherwise } .\end{cases}$
Problem 8.3: Circle ALL the statement that is true about the Laplace transforms.
(a). $\mathcal{L}(a f(x)+b g(x))=a \mathcal{L}(f(x))+b \mathcal{L}(g(x))$, where a and b are constants.
(b). $\mathcal{L}\left(\int_{1}^{\infty} f(x)\right)=\frac{1}{k} \mathcal{L}(f(x))$
(c). $\mathcal{L}\left(\frac{d f(x)}{d x}\right)=k \mathcal{L}(f(x))$.
(d). $\mathcal{L}\left(\frac{d^{2} f(x)}{d x^{2}}\right)=k^{2} \mathcal{L}(f(x))$.
(e). If $\mathcal{L}(f(x))=F(s)$, then $\mathcal{L}\left(e^{a x} f(x)\right)=F(s-a)$

Problem 8.4: Use Laplace transform to solve the following initial value problem.

$$
\begin{aligned}
\frac{d^{2} y}{d t^{2}}+y & =t \\
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Problem 8.5: Use Laplace transform to solve the following initial value problem.

$$
\begin{aligned}
\frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}-2 y & =0 \\
y(0) & =3 \\
y^{\prime}(0) & =0
\end{aligned}
$$

