Final Exam Problems

1. Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & -3 \\
2 & 5 & 1 \\
3 & 7 & -2
\end{array}\right)
$$

a. Find all solutions to the equation $A x=0$.
b. Find all solutions (if any) to $A x=b$ where

$$
b=\left(\begin{array}{l}
2 \\
0 \\
2
\end{array}\right)
$$

c. Find all solutions (if any) to $A x=b$ where

$$
b=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)
$$

2.

a. Find all the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{cc}-5 & 2 \\ 2 & -2\end{array}\right]$.
b. Find the general solution of the homogeneous ODE

$$
\frac{d}{d t}\binom{x}{y}=A\binom{x}{y}
$$

3.

a. Write the following differential equation as a first order system:

$$
\frac{d^{3} y}{d x^{3}}+x^{2} \frac{d y}{d x}-y^{3}=0
$$

Express your answer as $Y_{0}^{\prime}=\cdots, Y_{1}^{\prime}=\cdots$, etc.
b. For the following, circle ALL statements about the above differential equation which are necessarily true:
(i) The equation is homogeneous.
(ii) The equation is linear.
4.
a. Find the Fourier series of the periodic function

$$
f(x)=\left\{\begin{array}{cc}
1 & \text { if }-1<x \leq 0 \\
-2 & \text { if } 0<x \leq 1
\end{array}\right.
$$

extended to have period 2. It may help to know that $\cos (\pi n)=(-1)^{n}$ and $\sin (\pi n)=0$ for any integer n.
b. At which points in the interval $-1 \leq x \leq 1$ does the series not converge to the value of the function? To which values does the series converge at these points?
5.
a. Consider the following partial differential equation for $u(x, y)$:

$$
\begin{aligned}
u_{x x}+u_{y y}-3 u_{y} & =0 \\
u(x, 0) & =0 \\
u(x, 1) & =0 \\
u(0, y) & =0 \\
u(2, y) & =\sin (4 \pi y) .
\end{aligned}
$$

Use separation of variables to obtain two ODE associated with this PDE. (DO NOT solve them.)
b. One (and only one) of those ODE's can be formed into a Sturm-Liouville equation with homogeneous boundary conditions using the boundary conditions from the PDE. State which one and give the boundary conditions.
6.

Consider the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

for $u(x, t)$ on a finite domain $0 \leq x \leq 10$, with boundary conditions

$$
\begin{aligned}
u(0, t) & =0 \\
u(10, t) & =0
\end{aligned}
$$

Recall that the general solution of the wave equation with these boundary conditions is of the form

$$
u(x, t)=\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi c t}{10}+B_{n} \sin \frac{n \pi c t}{10}\right) \sin \frac{n \pi x}{10}
$$

If the equation is given initial conditions

$$
\begin{aligned}
u(x, 0) & =\sin (5 \pi x) \\
\frac{\partial u}{\partial t}(x, 0) & =\sin (\pi x)
\end{aligned}
$$

then find the particular solution for $u(x, t)$ (that is, find the coefficients A_{n} and B_{n}). Note: you may leave your answer with terms like $A_{n}=\sin \frac{3 \pi n}{10}+\cos \pi n$ without further simplifying.
7.

Consider the wave equation

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}} & =c^{2} \frac{\partial^{2} u}{\partial x^{2}} \\
u(x, 0) & =f(x) \\
\frac{\partial u}{\partial t}(x, 0) & =0
\end{aligned}
$$

on the WHOLE LINE $(x \in(-\infty, \infty))$. Find $\hat{u}(w, t)$, the Fourier transform of the solution $u(x, t)$. DO NOT solve for $u(x, t)$ (only its Fourier tranform). Note: the answer should contain $\hat{f}(w)$.
8. For the following Sturm-Liouville problem, find all POSITIVE eigenvalues λ together with corresponding eigenfunctions.

$$
\begin{aligned}
y^{\prime \prime} & =-\lambda y \\
y^{\prime}(0) & =0, \quad y^{\prime}(2)=0
\end{aligned}
$$

9. Consider the heat equation

$$
u_{t}=c^{2} u_{x x}
$$

We want to solve this equation for $0<x<1$ and for all t with boundary conditions

$$
u_{x}(0, t)=u_{x}(1, t)=0
$$

(Notice the derivative in the boundary conditions) and with the initial condition

$$
u(x, 0)=x
$$

a. Separate the variables $u(x, t)=F(x) G(t)$ and find 2 ordinary differential equations satisfied by F and G.
b. Using the boundary conditions, find the F_{n}.
c. Find the G_{n} and write down the eigenfunctions u_{n}.
d. Write down the general solution $u(x, t)$ and use the initial condition to find the coefficients.
e. What is $\lim _{t \rightarrow \infty} u(x, t)$

